Business Processes Modelling

MPB (6 cfu, 295AA)

Roberto Bruni

http://www.di.unipi.it/~bruni

01 - Introduction
Every

Tuesday:
11:00-13:00
M1

Thursday:
16:00-18:00
L1
Course Material shared on Microsoft Teams and DidaWiki

No streaming / recording planned
Who am I?

http://www.di.unipi.it/~bruni

bruni@di.unipi.it

Office hours: by appointment preferably
Wednesday 16:00-18:00
Who are you?

Hi, I’m … from …

I have studied … at the University of …

I am now a student of the MSc degree in …

Hi, I’m Paolo Rossi from Italy
I have studied Computer Science at the University of Pisa (Italy)
I am now a student of the MSc degree in Data Science and Business Informatics
Who are you?

Enrollment number:
Bachelor degree:
MSc course of enrollment:
Subjects of interest:
... :

Background check (form)
Who are you?

Enrollment number: 123456
Bachelor degree: Comp. Sci., Pisa, IT
MSc course of enrollment: Data Science and BI
Subjects of interest: Data analysis, AI

Background check (form)
The Course
Some quotes

All models are wrong, but some are useful
- George Box

Subjects are divided in two categories:
1) *too difficult matters, that CANNOT be studied*
2) *easy matters, that DO NOT NEED to be studied*
- back of a t-shirt
What is a BP?

Any set of steps aimed to reach some outcome from opening an account to processing a custom order.
What is BPM about?

- Lower Costs
- Reduced Risks
- Simplified Operations
- Product Safety
- Greater Brand Protection
- Improve Predictability
- Enhanced Process Consistency
- Superior Quality
Course objectives

Key issues in Business Process Management (patterns, architectures, methodologies, …)

Analysis techniques and correctness by construction (soundness, boundedness, liveness, free-choice, …)

Graphical languages & visual notation (BPMN, EPC, …)

Tool-supported verification (WoPeD, ProM, Woflan, …)

Structural properties, behavioural properties and problematic issues (dead tasks, deadlocks, …)

Performance analysis (bottlenecks, simulation, capacity planning, …)

Formal models (automata, Petri nets, workflow nets, …)

Process mining (discovery, conformance checking, enhancement, …)
Course activities

attend classrooms:
 ask questions!
 (sleep quietly)

learn theorems:
 (drink many coffees)

do some thinking:
 solve ALL exercises
 (at least try to)

deliver a project:
 practice with concepts,
 experiment with tools

give the exam:
 time for a party!
Exam

• Project + Oral exam (see FAQ for more infos)

• Group project
 • at most 2 students for group
 • can be requested any time
 • three-weeks deadline
 • modelling + analysis + short report
 • the validity of the project is for the current academic year

• Oral exam
 • registration mandatory
 • actual date fixed at the time of project delivery
 • group discussion of the project
 • followed by individual questions on course topics
Main Textbook

Mathias Weske
http://bpm-book.com
Suggested Reading

Joerg Desel and Javier Esparza
Free Choice Petri Nets
Cambridge Tracts in Theoretical Computer Science 40, 1995
https://www7.in.tum.de/~esparza/bookfc.html

Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo Reijers
Fundamentals of Business Process Management
(2nd ed.) Springer 2018
http://fundamentals-of-bpm.org
Other Textbooks

Wil van der Aalst
Process Mining
(2nd ed.) Springer 2016
http://springer.com/978-3-662-49850-7

Wil van der Aalst, Kees van Hee
Workflow Management: Models, Methods, and Systems
MIT Press (paperback) 2004
https://mitpress.mit.edu/books/workflow-management
Main resources

Petri nets world
http://www.informatik.uni-hamburg.de/TGI/PetriNets

BPMN
http://www.bpmn.org

Workflow Patterns
http://www.workflowpatterns.com
Main resources (tools)

WoPeD

http://www.woped.org

ProM (and Woflan)

http://www.promtools.org/

http://www.win.tue.nl/woflan

YAWL

https://yawlfoundation.github.io
Modelling

Giving shape to ideas, organizations, processes, collaborations, practices
Modelling

Giving shape to ideas, organizations, processes, collaborations, practices
Modelling

Giving shape to ideas, organizations, processes, collaborations, practices

To analyse them
Modelling

Giving shape to ideas, organizations, processes, collaborations, practices

To analyse them
To communicate them to others
To change them if needed
Quoting Michelangelo

Every block of stone has a statue inside it and it is the task of the sculptor to discover it.
Quoting Michelangelo

Every organization has some processes running inside it and it is the task of the designer to discover them.
A taste of BPMN

The scenario modeled in Figure 12-4 entails shipment planning for the next supply replenishment variations: the Supplier confirms all previously accepted variations for delivery with the Retailer; the Retailer sends back a number of further possible variations; the Supplier requests to the Shipper and Consignee possible changes in delivery; accordingly, the Retailer interacts with the Supplier and Consignee for final confirmations.

A problem with model interconnections for complex Choreographies is that they are vulnerable to errors – interconnections may not be sequenced correctly, since the logic of Message exchanges is considered from each partner at a time. This in turn leads to deadlocks. For example, consider the PartnerRole of Retailer in Figure 12.4 and assume that, by error, the order of Confirmation Delivery Schedule and Retailer Confirmation received (far right) were swapped. This would result in a deadlock since both, Retailer and Consignee would wait for the other to send a Message. Deadlocks in general, however, are not that obvious and might be difficult to recognize in a Collaboration.

Figure 12.4 shows the Choreography corresponding to the Collaboration of Figure 12.3 above.
What

Data and processes

Traditionally, information systems used information modelling as a starting point.
Data and processes

Nowadays, processes are of equal importance and need to be supported in a systematic manner.
Motivation

- Each product is the outcome of a number of activities performed
- Because of modern communication facilities:
 - traditional product cycles not suitable for today's dynamic market
- Competitive advantages of successful companies:
 - the ability to bring new products to the market rapidly and
 - the ability to adapt an existing product at low cost
- Business processes are the key instrument:
 - to organize these activities
 - to improve the understanding of their relationships
- IT is an essential support for this aim
Workflow wave

In the mid-nineties, workflow management systems aimed to the automation of structured processes but their application was restricted to only a few application domains.
Process awareness

BPM moves from workflow management systems (intra-organization) to the broader perspective of process-aware information systems (inter-organizations)
Process awareness

Know end goal

Handled differently every time

Know how to handle each occurrence
Benefits of BPM

- automate workflow and orchestrate processes,
- reduce risk of errors,
- provide metrics,
- real time status,
- enforce deadlines,
- validate data,
- reduce training costs,
...
What is the BPM maturity of your organization?

1. Initial
 No structured BPM activities in the area of responsibility of the stakeholder.

2. Awareness
 Awareness of BPM exists in the organization.
 (Planning) activities have started for the definition of the subject.

3. Defined
 BPM is defined.
 Implementation is yet missing or ongoing.

4. Managed
 BPM is implemented.
 (People assigned. Communication to relevant people done. Training done, etc.)

5. Excellence
 BPM is implemented enterprise-wide.
 A continuous review & improvement process is implemented to exchange lessons-learned & address required changes proactively.

© 2008 IDS Scheer
Why BPM?

Highly relevant for practitioners

Offers intellectual challenges for software developers and computer scientists
BPM angles

Analysis: simulation, verification, process mining, ...

Influences: business aspects, social aspects, training, education, ...

Technologies: interoperability, standardization efforts, service orientation, ...
Essential concepts

Different educational backgrounds and interests are in place.

This course is not about a particular XML syntax (e.g., BPMN) or tool (e.g. ProM).

It is about using some process languages to describe, single out, relate, compare essential concepts.
Which target?

Formal methods people
- investigate properties
- detect and correct deficiencies
- abstract from "real world"

Software develop people
- provide robust and scalable sw
- integration of existing sw
- look at new technology trends

Business admin people
- increase customer satisfaction
- reducing costs
- establishing new products
BPM aims at robust and correct realization of business processes in software that increases customer satisfaction and ultimately contributes to the competitive advantage of an enterprise.
Abstraction

• Business admin people
 – IT as a subordinate aspect (for expert technicians)
 – This course: too much math!
• Software develop people
 – Current technology trend as main concern
 – This course: too abstract!
• Formal methods people
 – Underestimate business goals and regulations
 – This course: too much handwaving!

Abstraction as the key to achieve some common understanding, to build a bridge between views...
Levels of abstractions

One object, many views
Different views are common

- Different purposes
- Different abstractions
- Different models

Same purpose
- Different abstractions
- Different models
Everybody wanted to be the Italian soccer team coach.
What about the adversaries?

Can we find out their plan?

Knowing it would be quite helpful

Any idea how to?

(abstractions can be designed but can also be derived)
A taste of Process Mining

1.3 Process Mining

Fig. 1.4

Positioning of the three main types of process mining: discovery, conformance, and enhancement.

However, most information systems store such information in unstructured form, e.g., event data is scattered over many tables or needs to be tapped off from sub-systems exchanging messages. In such cases, event data exist but some efforts are needed to extract them. Data extraction is an integral part of any process mining effort.

Let us assume that it is possible to sequentially record events such that each event refers to an activity (i.e., a well-defined step in the process) and is related to a particular case (i.e., a process instance). Consider, for example, the handling of requests for compensation modeled in Fig. 1.1. The cases are individual requests and per case a trace of events can be recorded. An example of a possible trace is ⟨register request, examine casually, check ticket, decide, reinitiate request, check ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used to identify events. However, there are two decide events that occurred at different times (the fourth and eighth event of the trace), produced different results, and may have been conducted by different people. Obviously, it is important to distinguish these two decisions. Therefore, most event logs store additional information about events. In fact, whenever possible, process mining techniques use extra information such as the resource (i.e., person or device) executing or initiating the activity, the timestamp of the event, or data elements recorded with the event (e.g., the size of an order).

Event logs can be used to conduct three types of process mining as shown in Fig. 1.4.
Digression:
formal modelling
and the importance of proofs
Let us travel back in time to the 18th century, in the beautiful Prussian city of Königsberg:

it was thanks to the layout of that city that Leonhard Euler answered a puzzle which eventually contributed to the birth of two new areas of maths known as topology and graph theory.
Königsberg was built on the bank of the river Pregel. **Seven bridges** connected two islands and the banks of the river (see map).

A popular pastime of the residents was to try to cross all the bridges in one complete circuit (without crossing any of the bridges more than once).
A seemingly simple task was more than tricky...

Nobody had been able to find a solution to the puzzle when Euler first heard of it and, intrigued by this, he set about proving that no solution was possible!
In 1736, Euler analysed the problem by converting the map into a more abstract diagram... and then into a graph (a formal model):

areas of land separated by the river were turned into points, which he labelled with capital letters. Modern graph theorists call these vertices or nodes.

The bridges became edges between nodes.
Digression...

Modeling activities require several steps of abstraction that must preserve the set of solutions: in other words the abstractions must preserve the topology of the problem.

Original problem: seven bridges of Königsberg

Graph problem: *redrawing this picture without retracing any line and without picking your pencil up off the paper*

![Graph](image)

Generalized problem: *given a connected graph, find a circuit that visits every edge precisely once, if it exists*
Digression...

A non-connected graph
Informal reasoning:
All the vertices in the picture are connected to an **odd** number of edges

In a circuit every time you enter a node you must be able to leave it: thus, every vertex must be connected to an **even** number of edges!

This suffices to establish that no solution can be found!
Take one of these vertices, say A, and start trying to trace the figure out without picking up your pencil: then two edges are left from/to A.

Next time you arrive in A, one edge will be left, and when you will leave A, no edge to re-enter it will be left!

Analogously for B, C, D: No circuit is possible!
Formal reasoning:

Definition: A path is a (finite) sequence of contiguous edges. It is a circuit if it ends in the same vertex where it starts.

Definition: An Eulerian path is a path that passes through every edge of the graph once and only once.

Definition: The number of edges attached to v is called degree of v. A vertex is called odd if it has an odd degree, even otherwise.

Theorem: A (connected) graph G contains an Eulerian circuit if and only if each vertex is even.
Digression...

Theorem: A (connected) graph G contains an Eulerian circuit if and only if each vertex is even.
Proof of necessity:
(If G has an Eulerian circuit, then any vertex is even)

Suppose G contains an Eulerian circuit C.

Then, for any choice of vertex v, C contains all the edges that are adjacent to v.

Furthermore, as we traverse along C, we must enter and leave v the same number of times, and it follows that v must be even.

While this proof of necessity was given by Euler, the converse was not stated in his paper.

It is not until 1873 (137 years later) when a young German mathematician, Carl Hierholzer published the proof of sufficiency.
Proof of sufficiency:
(If any vertex is even, then G has an Eulerian circuit)

The proof is by induction on the numbers of edges, ctd)

Base case: the smallest possible number of edges is 3 (i.e. a triangle) and the graph trivially contains an Eulerian circuit.
Proof of sufficiency: (by induction on the numbers of edges, ctd)

Inductive case:

Inductive hypothesis: Let us assume that any connected graph H that contains k or less than k edges and such that every vertex of H is even, contains an Eulerian circuit.

Now, let G be a graph with $k + 1$ edges, and such that every vertex is even. We want to prove G has an Eulerian circuit.

Since there is no odd vertex, G cannot be a tree (no leaves). Thus, G must contain at least one cycle C.

...
Proof of sufficiency: (by induction on the numbers of edges, ctd)

… Remove the edges of C from G, and take the remaining graph G'.

Since removing C from G may disconnect the graph, G' is a collection of connected components, namely G_1, G_2, . . . , etc.
Proof of sufficiency: (by induction on the numbers of edges, ctd)
… Remove the edges of C from G, and take the remaining graph G'.

Since removing C from G may disconnect the graph, G' is a collection of connected components, namely $G_1, G_2, \ldots, \text{etc.}$
Proof of sufficiency: (by induction on the numbers of edges, ctd)

… When the edges in C are removed, each vertex loses an even number of adjacent edges. Thus, the parity of each vertex is unchanged in \(G' \).

It follows that, for each connected component of \(G' \), every vertex is even (and \(G' \) must have less than \(k \) edges).

Therefore, by the inductive hypothesis, each of \(G_1 \), \(G_2 \), . . . has its own Eulerian circuit, namely \(C_1 \), \(C_2 \), etc.
Proof of sufficiency: (by induction on the numbers of edges, ctd) … We can now build an Eulerian circuit for the whole graph G.

Pick an arbitrary vertex \(v \) from C.

Traverse the edges along C until we reach a vertex \(v_i \) that belongs to one of the connected components \(G_i \).

Then, traverse \(G_i \) along its Eulerian circuit \(C_i \) until we traverse all the edges of \(C_i \).

We are now back at \(v_i \), and so we can continue on along C.

In the end, we shall return back to the first starting vertex \(v \) of C, after visiting every edge exactly once. \(\text{qed} \)
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we’d like to find an Eulerian circuit.

The sufficiency proof gives us an algorithm to build Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
Digression...

Theorem: A graph contains an **Eulerian path** if and only if there are 0 or 2 odd vertices.

Proof. (first part: if G has an Eulerian path then there are 0 or 2 odd vertices)
Suppose a graph G contains an Eulerian path P.
Then, for every vertex v, P must enter and leave v the same number of times, except when it is either the starting vertex or the final vertex of P.
When the starting and final vertices are distinct, there are precisely 2 odd vertices. When these two vertices coincide, there is no odd vertex.

(Second part: if G has 0 or 2 odd vertices, then there is an Eulerian path)
Conversely, suppose G contains 2 odd vertices u and v.
(The case where G has no odd degree vertex is shown in the previous Theorem.)
Then, temporarily add a dummy edge (u, v) to G.
Now the modified graph contains no odd vertex.
By the previous Theorem, this graph contains an Eulerian circuit C that includes (u, v).
Remove (u, v) from C, and now we have an Eulerian path where u and v serve as initial and final vertices.
In the late 19th century an eighth bridge was built (see map). Was Königsberg Eulerised?

Exercise: prove that an Eulerian path can be found (but not a circuit)

Sadly, in 1944 air raids obliterated most of the bridges. However, five bridges crossing were rebuilt (see map). Was the city Eulerised?

Exercise: prove that an Eulerian path can be found (but not a circuit)
Digression...

Exercises: find Eulerian paths/circuits in the graphs above or prove that they cannot exist.
Recap
Lessons learned

- Start with a concrete instance of the problem
- Abstraction: modeling and generalization, property preserving
- Visual notation: informal, intuitive
- Mathematical notation: rigorous, precise
- Theorems: alternative ways to find answers
- Proofs: construct solutions from formal reasoning
- Implementation: solve any concrete instance of the problem
Yet to learn

- Formal models used in prescriptive manner
- Correctness by design
- Separation of concerns
- Model discovery
Avoid bad designs!