01 - Introduction
English vs Italian

Methods for the specification and verification of business processes

Metodi per la specifica e verifica dei processi aziendali
Classes

Every

Monday: 11:00-13:00, room N1

Wednesday: 11:00-13:00, room N1
Who am I?

http://www.di.unipi.it/~bruni

bruni@di.unipi.it

Office hours
Wednesday 14:00-16:00
(or by appointment)
Who are you?

First Name: John
Last Name: Smith
Enrollment number: 123456
email: john.smith@email.com
Bachelor degree: Comp. Sci., Stanford, US
MSc course of enrollment: Data Science & BI
Subjects of interest: Statistics

Please, send your data to bruni@di.unipi.it with object “MPB”
What is BPM about?
Course objectives

Key issues in Business Process Management (patterns, architectures, methodologies, ...)

Graphical languages & visual notation (BPMN, EPC, BPEL, ...)

Structural properties, behavioural properties and problematic issues (dead tasks, deadlocks, ...)

Formal models (automata, Petri nets, workflow nets, YAWL, ...)

Analysis techniques and correctness by construction (soundness, boundedness, liveness, free-choice, ...)

Tool-supported verification (WoPeD, YAWL, ProM, ...)

Performance analysis (bottlenecks, simulation, capacity planning, ...)

Process mining (discovery, conformance checking, enhancement, ...)

8
Course activities

attend classrooms:
ask questions!
(sleep quietly)

learn theorems:
(drink many coffees)

do some thinking:
solve ALL exercises

deliver a project:
practice with concepts,
experiment with tools

give the exam:
time for a party!
Main Textbook

Mathias Weske
http://bpm-book.com
Other Textbooks

Joerg Desel and Javier Esparza
Free Choice Petri Nets
Cambridge Tracts in Theoretical Computer Science 40, 1995
https://www7.in.tum.de/~esparza/bookfc.html

Wil van der Aalst, Kees van Hee
Workflow Management: Models, Methods, and Systems
MIT Press (paperback) 2004
http://www.workflowcourse.com
Other Textbooks

Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo Reijers
Fundamentals of Business Process Management
Springer 2013
http://fundamentals-of-bpm.org

Wil van der Aalst
Process Mining
Springer 2011 / 2016
http://springer.com/978-3-642-19344-6
http://springer.com/978-3-662-49850-7
Main resources

• Petri nets
 • http://www.pnml.org
 • http://www.informatik.uni-hamburg.de/TGI/PetriNets

• BPMN
 • http://www.bpmn.org

• BPEL
 • http://www.oasis-open.org/committees/wsbpel

• Workflow Patterns
 • http://www.workflowpatterns.com
Main resources (tools)

• Woped
 - http://www.woped.org

• ProM
 - http://www.promtools.org/prom6
 - http://www.win.tue.nl/woflan

• YAWL
 - http://www.yawlfoundation.org
Why BPM?

Highly relevant for practitioners

Offers many challenges for software developers and computer scientists
What is BPM about?

Giving shape to ideas, organizations, processes, collaborations, practices

To analyse them
To communicate them to others
To change them if needed
Quoting Michelangelo

EVERY BLOCK OF STONE HAS A STATUE INSIDE IT AND IT IS THE TASK OF THE SCULPTOR TO DISCOVER IT.

Michelangelo
Quoting Michelangelo

Every organization has some processes running inside it and it is the task of the designer to discover them.
Data and processes

Traditionally, information systems used information modelling as a starting point.
Data and processes

Nowadays, processes are of equal importance and need to be supported in a systematic manner.
Motivation

• Each product is the outcome of a number of activities performed
• Because of modern communication facilities:
 • traditional product cycles not suitable for today's dynamic market
• Competitive advantages of successful companies:
 • the ability to bring new products to the market rapidly and
 • the ability to adapt an existing product at low cost
• Business processes are the key instrument:
 • to organize these activities
 • to improve the understanding of their relationships
• IT is an essential support for this aim
Workflow wave

In the mid-nineties, workflow management systems aimed to the automation of structured processes but their application was restricted to only a few application domains.
Process awareness

BPM moves from workflow management systems (intra-organization) to the broader perspective of process-aware information systems (inter-organizations)
What is the BPM maturity of your organization?

1. Initial
 - No structured BPM activities in the area of responsibility of the stakeholder.

2. Awareness
 - Awareness of BPM exists in the organization.
 - (Planning) activities have started for the definition of the subject.

3. Defined
 - BPM is defined.
 - Implementation is yet missing or ongoing.

4. Managed
 - BPM is implemented.
 (People assigned. Communication to relevant people done. Training done, etc.)

5. Excellence
 - BPM is implemented enterprise-wide.
 - A continuous review & improvement process is implemented to exchange lessons-learned & address required changes proactively.

© 2008 IDS SCHEER
A taste of BPMN

The scenario modeled in Figure 12.3 entails shipment planning for the next supply replenishment variations: the Supplier confirms all previously accepted variations for delivery with the Retailer; the Retailer sends back a number of further possible variations; the Supplier requests to the Shipper and Consignee possible changes in delivery; accordingly, the Retailer interacts with the Supplier and Consignee for final confirmations.

A problem with model interconnections for complex Choreographies is that they are vulnerable to errors – interconnections may not be sequenced correctly, since the logic of Message exchanges is considered from each partner at a time. This in turn leads to deadlocks. For example, consider the PartnerRole of Retailer in Figure 12.4 and assume that, by error, the order of Confirmation Delivery Schedule and Retailer Confirmation received (far right) were swapped. This would result in a deadlock since both, Retailer and Consignee would wait for the other to send a Message. Deadlocks in general, however, are not that obvious and might be difficult to recognize in a Collaboration.

Figure 12.4 shows the Choreography corresponding to the Collaboration of Figure 12.3 above.
BPM angles

Analysis: simulation, verification, process mining, ...

Influences: business aspects, social aspects, training, education, ...

Technologies: interoperability, standardization efforts, service orientation, ...
Essential concepts

Different educational backgrounds and interests are in place

This course is not about a particular XML syntax (e.g., BPEL) or tool (e.g. ProM)

It is about using some process languages to describe, single out, relate, compare essential concepts
Which target?

Formal methods people
- investigate structural properties
- detect and correct deficiencies
- abstract from "real world"

Software develop people
- provide robust and scalable sw
- integration of existing sw
- look at new technology trends

Business admin people
- increase customer satisfaction
- reducing costs
- establishing new products
Aim

Robust and correct realization of business processes in software that increases customer satisfaction and ultimately contributes to the competitive advantage of an enterprise
Abstraction

- Business admin people
 - IT as a subordinate aspect (for expert technicians)
 - This course: too much math!

- Software develop people
 - Current technology trend as main concern
 - This course: too abstract!

- Formal methods people
 - Underestimate business goals and regulations
 - This course: too much handwaving!

Abstraction as the key to achieve some common understanding, to build a bridge between views...
Levels of abstractions

One object, many views
Different views are common
Everybody wants to be the Italian soccer team coach
What about the adversaries?

Can we find out their plan?

Knowing it would be quite helpful

Any idea how to?

(abstractions can be designed but can also be derived)
A taste of Process Mining

However, most information systems store such information in unstructured form, e.g., event data is scattered over many tables or needs to be tapped off from sub-systems exchanging messages. In such cases, event data exist but some efforts are needed to extract them. Data extraction is an integral part of any process mining effort.

Let us assume that it is possible to sequentially record events such that each event refers to an activity (i.e., a well-defined step in the process) and is related to a particular case (i.e., a process instance). Consider, for example, the handling of requests for compensation modeled in Fig. 1.1. The cases are individual requests and per case a trace of events can be recorded. An example of a possible trace is ⟨register request, examine casually, check ticket, decide, reinitiate request, check ticket, examine thoroughly, decide, pay compensation⟩. Here activity names are used to identify events. However, there are two decide events that occurred at different times (the fourth and eighth event of the trace), produced different results, and may have been conducted by different people. Obviously, it is important to distinguish these two decisions. Therefore, most event logs store additional information about events. In fact, whenever possible, process mining techniques use extra information such as the resource (i.e., person or device) executing or initiating the activity, the timestamp of the event, or data elements recorded with the event (e.g., the size of an order).

Event logs can be used to conduct three types of process mining as shown in Fig. 1.4.
On the shores of the Baltic Sea wedged between Lithuania and Poland is a region of Russia known as the Kaliningrad Oblast.

The city of Kaliningrad is, by all accounts, a bleak industrial port with shoddy grey apartment buildings built hastily after World War II, when the city had been obliterated first by Allied bombers and later by the invading Russian forces.

Little remains of the beautiful Prussian city of Königsberg, as it was formerly known.
This is sad not only for lovers of architecture, but also for nostalgic mathematicians:

it was thanks to the layout of 18th century Königsberg that Leonhard Euler answered a puzzle which eventually contributed to two new areas of maths known as topology and graph theory.
Königsberg was built on the bank of the river Pregel. Seven bridges connected two islands and the banks of the river (see map).

A popular pastime of the residents was to try to cross all the bridges in one complete circuit (without crossing any of the bridges more than once).
This seemingly simple task proved to be more than tricky...

Nobody had been able to find a solution to the puzzle when Euler first heard of it and, intrigued by this, he set about proving that no solution was possible!
In 1736, Euler analysed the problem by converting the map into a more abstract diagram... and then into a graph (a formal model):

areas of land separated by the river were turned into points, which he labelled with capital letters. Modern graph theorists call these vertices or nodes.

The bridges became arcs between nodes.
Modeling activities require several steps of abstraction that must **preserve the set of solutions**: in other words the abstractions must preserve the topology of the problem.

Original problem: seven bridges of Königsberg

Graph problem: redrawing this picture without retracing any line and without picking your pencil up off the paper

Generalized problem: given a **connected** graph, find a **circuit** that visits every edge precisely once, **if it exists**.
Informal reasoning:
All the vertices in the above picture have an odd number of arcs connected to them.
Informal reasoning:
All the vertices in the above picture have an odd number of arcs connected to them.

Take one of these vertices, say D, and start trying to trace the figure out without picking up your pencil: then two arcs are left from/to D.

Next time you arrive in D, one arc will be left, and when you will leave D, no arc from/to it will be left!

Analogously for A, B, C.

No circuit possible!
Formal reasoning:

Definition: An Eulerian path is a continuous path that passes through every arc once and only once. It is a circuit if it ends in the same vertex where it starts.

Definition: A vertex is called odd if it has an odd number of arcs leading to it, otherwise it is called even. The number of arcs attached to node v is called degree of v.

Theorem: A (connected) graph G contains an Eulerian circuit if and only if the degree of each vertex is even.
Proof of necessity: (existence of Eulerian circuit implies any vertex has even degree)

Suppose G contains an Eulerian circuit C.

Then, for any choice of vertex v, C contains all the edges that are adjacent to v.

Furthermore, as we traverse along C, we must enter and leave v the same number of times, and it follows that v must be even.

While this proof of necessity was given by Euler, the proof of converse is not stated in his paper.

It is not until 1873 (137 years later) when a young German mathematician, Carl Hierholzer published the proof of sufficiency.
Digression...

Proof of sufficiency: (by induction on the numbers of arcs)

Base case: the smallest possible number of edges is 3 (i.e. a triangle) and the graph trivially contains an Eulerian circuit.
Digression...

Proof of sufficiency: (by induction on the numbers of arcs)

Inductive case:
Inductive hypothesis: Let us assume that any connected graph H that contains k or less than k arcs and such that every vertex of H has even degree, contains an Eulerian circuit.

Now, let G be a graph with $k + 1$ edges, and every vertex has an even degree. We want to prove G has an Eulerian circuit

Since there is no odd degree vertex, G cannot be a tree (no leaves). Thus, G must contain at least one cycle C.

...
Proof of sufficiency: (by induction on the numbers of arcs, continued)

Now, remove the edges of C from G, and consider the remaining graph G'.

Since removing C from G may disconnect the graph, G' is a collection of connected components, namely $G_1, G_2, \ldots, \text{etc.}$
Digression...

Proof of sufficiency: (by induction on the numbers of arcs, continued)

...

Now, remove the edges of C from G, and consider the remaining graph G'.

Since removing C from G may disconnect the graph, G' is a collection of connected components, namely G_1, G_2, G_3, etc.
Proof of sufficiency: (by induction on the numbers of arcs, continued)

...

Furthermore, when the edges in C are removed from G, each vertex loses even number of adjacent edges. Thus, the parity of each vertex is unchanged in G'.

It follows that, for each connected component of G', every vertex has an even degree.

Therefore, by the induction hypothesis, each of G_1, G_2, ... has its own Eulerian circuit, namely C_1, C_2, etc.
Proof of sufficiency: (by induction on the numbers of arcs, continued)
...

We can now build an Eulerian circuit for G.

Pick an arbitrary vertex v from C.

Traverse along C until we reach a vertex v_i that belongs to one of the connected components G_i.

Then, traverse along its Eulerian circuit C_i until we traverse all the edges of C_i.

We are now back at v_i, and so we can continue on along C.

In the end, we shall return back to the first starting vertex v, after visiting every edge exactly once.
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: \textit{recursively find a cycle, and then remove the edges of the cycle.}
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits:
recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: \textbf{recursively find a cycle, and then remove the edges of the cycle.}
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: *recursively find a cycle, and then remove the edges of the cycle.*
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: \textit{recursively find a cycle, and then remove the edges of the cycle.}
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits:
recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: **recursively find a cycle, and then remove the edges of the cycle.**
The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
Digression...

The theorem, as such, is only an existential statement.

If the necessary and sufficient condition is satisfied, we wish to find an Eulerian circuit.

The inductive proof naturally gives an algorithm to construct Eulerian circuits: recursively find a cycle, and then remove the edges of the cycle.
Theorem: A graph contains an Eulerian path if and only if there are 0 or 2 odd vertices.

Proof.
Suppose a graph G contains an Eulerian path P. Then, for every vertex v, P must enter and leave v the same number of times, except when it is either the starting vertex or the final vertex of P. When the starting and final vertices are distinct, there are precisely 2 odd degree vertices. When these two vertices coincide, there is no odd degree vertex.

Conversely, suppose G contains 2 odd degree vertex u and v. (The case where G has no odd degree vertex is shown in the previous Theorem.) Then, temporarily add a dummy edge (u, v) to G. Now the modified graph contains no odd degree vertex. By the previous Theorem, this graph contains an Eulerian circuit C that includes (u, v). Remove (u, v) from C, and now we have an Eulerian path where u and v serve as initial and final vertices.
In the late 19th century an eighth bridge was built (see map). As a result Königsberg had been Eulerised!

Exercise: prove that an Eulerian path can be found (but not a circuit)

Sadly, in 1944 air raids obliterated most of the bridges. However, from the maps made available since, it appears that five bridges crossing were rebuilt in such a way that Kaliningrad was Eulerised once again!

Exercise: prove that an Eulerian path can be found (but not a circuit)
Digression...

Exercises: find Eulerian paths/circuits in the graphs above or prove that they cannot exist.
Lessons learned

• Concrete instance of the problem
• Abstract modeling and generalization
• Visual notation, informal, intuitive
• Mathematical notation, rigorous, precise
• Solutions from formal reasoning, proofs
• Implementation and application to concrete instances
Yet to learn

- Formal models used in prescriptive manner
- Correctness by design
- Separation of concerns
- Model discovery
Examples of bad design choices