
27/05/2011

1

Tecniche di Progettazione:

Design Patterns

Esercitazione e progetti

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

Summary

� In questa lezione alcuni esercizi e la presentazione dei
progetti finali, da portare all’orale.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

27/05/2011

2

Ex: MediatorChatRoom

� This example demonstrates the Mediator pattern
facilitating loosely coupled communication between
different Participants registering with a Chatroom.

� The Chatroom is the central hub through which all
communication takes place.

� At this point only one-to-one communication is
implemented in the Chatroom, but would be trivial to
change to one-to-many.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

Mediator: structure

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

4

27/05/2011

3

Structure

Ex: MementoSales

� This example demonstrates the Memento pattern which
temporarily saves and then restores the SalesProspect's
internal state.

� sistemare in modo che sia il caretaker a ordinare i set e
get menento

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

27/05/2011

4

Structure

Collaboration

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

8

27/05/2011

5

Ex: VisitorEmployee

� Two objects traverse a list of Employees and performs
the same operation on each Employee.

� The two visitor objects define different operations -- one
adjusts vacation days and the other income

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9

Structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

27/05/2011

6

Visitor Pattern: Collaborations

Ex:

CommandDaCombinareConMemento

� pattern used in a simple calculator with unlimited number
of undo's and redo's

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

27/05/2011

7

The Command Pattern structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

Università di Pisa, Dipartimento di Informatica. IS200314

Command: collaboration (with two

invokers for a command)

27/05/2011

8

Progetto 1: Game of Life

� The Game of Life is not your typical computer game. It is
a 'cellular automaton', and was invented by Cambridge
mathematician John Conway.

� This game became widely known when it was mentioned
in an article published by Scientific American in 1970. It
consists of a collection of cells which, based on a few
mathematical rules, can live, die or multiply. Depending on
the initial conditions, the cells form various patterns
throughout the course of the game.

� http://www.bitstorm.org/gameoflife/

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

Rules

� The universe of the Game of Life is an infinite two-dimensional orthogonal
grid of square cells, each of which is in one of two possible states, live or
dead. Every cell interacts with its eight neighbours, which are the cells that
are horizontally, vertically, or diagonally adjacent. At each step in time, the
following transitions occur:

1. Any live cell with fewer than two live neighbours dies, as if caused by under-population.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if by overcrowding.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

� The initial pattern constitutes the seed of the system. The first generation is
created by applying the above rules simultaneously to every cell in the
seed—births and deaths occur simultaneously, and the discrete moment at
which this happens is sometimes called a tick (in other words, each
generation is a pure function of the preceding one). The rules continue to
be applied repeatedly to create further generations.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

27/05/2011

9

Progetto 2: RMI Auction Server Project

� In this project, you will be adding some functionality to the
auction server you did in the midterm Project and also
implementing a true client-server system using RMI and the
Proxy pattern.

� As in the first project, the server will be used to maintain a list
of items available for auction purchase. Clients will be allowed
to make bids on available items or put new items up for
auction. Clients can also be notified when the current bid on a
particular item changes. In addition, the client will be able to
specify different automatic bidding strategies. This application
will require that both the client and server have remote
objects.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

Progetto 2: RMI Auction Server Project

� The server has a remote object which implements the
following interface:

� public interface IAuctionServer extends Remote {

public void placeItemForBid(String ownerName, String itemName,
String itemDesc, double startBid, int auctionTime) throws
RemoteException;

public void bidOnItem(String bidderName, String itemName, double
bid) throws RemoteException; public Item[] getItems() throws
RemoteException;

public void registerListener(IAuctionListener al, String itemName)
throws RemoteException

}
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.18

27/05/2011

10

Progetto 2: RMI Auction Server Project

These methods do the following:

� public void placeItemForBid(String ownerName, String
itemName, String itemDesc, double startBid, int auctionTime)

� Puts a new item up for auction by the owner with name
ownerName. The itemName argument uniquely identifies the
new item to be auctioned. If an item by that name already is up
for auction in the server, a RemoteException is thrown. A
description of the item is given by the itemDesc argument. The
starting (minimum) bid is given by the startBid argument. The
item will be available for auction for the number of seconds
given by the auctionTime argument.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.19

Progetto 2: RMI Auction Server Project

� public void bidOnItem(String bidderName, String itemName,
double bid)

� The bidder with name bidderName makes a new bid on the
item specified by the itemName argument. The bid amount is
specified by the bid argument. For the bid to be accepted it
must be higher than the current bid on the specified item, else
a RemoteException is thrown.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.20

27/05/2011

11

Progetto 2: RMI Auction Server Project

� public Item[] getItems()

� Returns an array of items available for auction. Each Item
object consists of the owner's name, item name, item
description, current bid, current bidder's name and time
remaining on the auction period for the item.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.21

Progetto 2: RMI Auction Server Project

� public void registerListener(IAuctionListener al, String
itemName)

� Registers a listener with the auction server for changes in the
item specified by the itemName argument. Whenever the
current bid on the specified item changes (or its auction
period expires), the IAuctionListener is notified via its update()
method. Note that the IAuctionListener object is a remote
object!

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

27/05/2011

12

Progetto 2: RMI Auction Server Project

� Any client object which desires to be notified of changes in the
bid status of a specific item must implement the following
interface:

� public interface IAuctionListener extends Remote { public void
update(Item item) throws RemoteException; }

� The update() method of this interface does the following:

� public void update(Item item) Invoked by the auction server
for each IAuctionListener which has registered to be notified
of changes in the bid status of the specified item.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

