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Memento

� Intent

� “Without violating encapsulation, capture and externalize an 
object’s internal state so that the object can be restored to this 
state later.”

� Motivation

� When we want to store off an object’s internal state without � When we want to store off an object’s internal state without 
adding any complication to the object’s interface.

� Perhaps for an undo mechanism



� Memento: 

� a saved "snapshot" of the state of an object or objects for 
possible later use

� useful for:

� writing an Undo / Redo operation

ensuring consistent state in a network

Memento pattern
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� ensuring consistent state in a network

� Persistency:  save / load state between executions of program



Applicability

� Use this

� when you want to save state on a hierarchy’s elements.

� When the hierarchy’s interface would be broken if 
implementation details were exposed.



Structure



Participants

� Memento

� stores the state of the Originator

� Originator

� Creates the memento

� “Uses the memento to restore its internal state”

� CareTaker

� Keeps track of the Memento(s)

� Never uses the Memento’s Interface to the Originator



Collaboration

� Caretaker requests a memento from an Originator.

� Originator passes back memento.

� Originator uses it to restore state.



Collaboration
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Consequences (good)

� “Preserves Encapsulation Boundaries”

� “It simplifies Originator”



Consequences (bad)

� Might be expensive

� Difficulty defining interfaces to keep Originator 
encapsulated

� Hidden costs in caring for mementos

� Caretaker could have to keep track of a lot of information for 
the memento
Caretaker could have to keep track of a lot of information for 
the memento



Storing Incremental Changes

� If storing state happens incrementally,  then we can just 
record the changes of what’s happened in a new 
memento object.

� This helps with memory difficulties.



Exercise: re-engineer the command-

memento example 
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Prototype

Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic 

Prototype
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Prototype Pattern

� A creational pattern

� Specify the kinds of objects to create using a prototypical 
instance, and create new objects by copying this 
prototype



Applicability

� when a system should be independent of how its 
products are created, composed, and represented and any 
of the following is the case:

� when the classes to instantiate are specified at run-time

� avoid building a class hierarchy of factories that parallels the class 
hierarchy of productshierarchy of products

� when instances of a class can have one of only a few different 
combinations of state.

� It may be more convenient to have the proper number of prototypes 
and clone them rather than instantiate the class manually each time 
with appropriate state.
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Structure & Participants

Prototype(Graphic)
-declares an interface 
for  cloning itself.

ConcretePrototype
(Staff,WholeNote,
HalfNote)HalfNote)
-implements an 
operation for cloning 
itself.

Client(GraphicalTo
ol)
- creates a new 
object by asking a 
prototype to clone 
itself.



Problem



Prototype solution



Benefits of Prototype Pattern

� Hides the complexities of making new instances from the 
client.

� Provides the option for the client to generate objects 
whose type is not known.

� In some circumstances, copying an object can be more 
efficient than creating a new object.efficient than creating a new object.



Implementation of Prototype Pattern 

� It is built on the method .clone()



java.lang Class Object

protected Object clone() throws 

CloneNotSupportedException

Creates and returns a copy of this object.  The precise meaning of "copy" may 
depend on the class of the object. The general intent is that, for any object 
x, the expression: 

x.clone() != x 

will be true, and that the expression: 

x.clone().getClass() == x.getClass() 

will be true, but these are not absolute requirements. While it is typically the will be true, but these are not absolute requirements. While it is typically the 
case that: 

x.clone().equals(x) 

will be true, this is not an absolute requirement. 

By convention, the returned object should be obtained by calling super.clone. 
If a class and all of its superclasses (except Object) obey this convention, it 
will be the case that x.clone().getClass() == x.getClass(). 
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java.lang Class Object

protected Object clone() throws 

CloneNotSupportedException

� By convention, the object returned by this method should be 
independent of this object (which is being cloned). 

� To achieve this independence, it may be necessary to modify 
one or more fields of the object returned by super.clone 
before returning it. 

� Typically,  this means copying any mutable objects that comprise the � Typically,  this means copying any mutable objects that comprise the 
internal "deep structure" of the object being cloned and replacing the 
references to these objects with references to the copies. 

� If a class contains only primitive fields or references to immutable 
objects, then it is usually the case that no fields in the object 
returned by super.clone need to be modified. 
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Clone and deep/shallow copy

� Clone can be implemented either as a deep copy or a 
shallow copy:

� In a deep copy, all objects are duplicated,

� In a shallow copy, only the top-level objects are duplicated and 
the lower levels contain references.
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Deep vs shallow copy
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java.lang

Class Object

� protected Object clone() 

� this method creates a new instance of the class of this object 
and initializes all its fields with exactly the contents of the 
corresponding fields of this object, as if by assignment

� the contents of the fields are not themselves cloned. Thus, this 
method performs a "shallow copy" of this object, not a "deep method performs a "shallow copy" of this object, not a "deep 
copy" operation.
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java.lang

Interface Cloneable

� A class implements the Cloneable interface to indicate to the 
Object.clone() method that it is legal for that method to make 
a field-for-field copy of instances of that class. 

� Invoking Object's clone method on an instance that does not implement 
the Cloneable interface results in the exception 
CloneNotSupportedException being thrown. 

� By convention, classes that implement this interface should 
override Object.clone (which is protected) with a public 
method. 

� Note that this interface does not contain the clone method. 

� Therefore, it is not possible to clone an object merely by virtue of the 
fact that it implements this interface.  
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Point

� class Point implements Cloneable{
private int x;
private int y;

@Override
public Point clone() {public Point clone() {

return (Point)super.clone();
}

}
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Line: shallow copy

� class Line implements Cloneable {
private Point start;
private Point end;
public Line() {

//Careful: This will not happen for the cloned object
SomeGlobalRegistry.register(this);SomeGlobalRegistry.register(this);

}
@Override
public Line clone() {

return (Line)super.clone();
}

}
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Line: deep copy.

@Override

public Line clone() {
Line line = (Line)super.clone();
//since Point is cloneable. Otherwise we will
//have to instantiate and populate it's fields manually//have to instantiate and populate it's fields manually
line.start = this.start.clone();
line.end = this.end.clone;
return line;
}
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Ex.
Animal 
farm



Prototype Pattern Example code 



Prototype Pattern Example code 



Prototype Pattern Example code 



Prototype Pattern Example code



Prototype Pattern Example code


