
Tecniche di Progettazione:

Design Patterns

GoF: Memento Prototype Visitor

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

MementoMemento

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Memento

� Intent

� “Without violating encapsulation, capture and externalize an
object’s internal state so that the object can be restored to this
state later.”

� Motivation

� When we want to store off an object’s internal state without � When we want to store off an object’s internal state without
adding any complication to the object’s interface.

� Perhaps for an undo mechanism

� Memento:

� a saved "snapshot" of the state of an object or objects for
possible later use

� useful for:

� writing an Undo / Redo operation

ensuring consistent state in a network

Memento pattern

4

� ensuring consistent state in a network

� Persistency: save / load state between executions of program

Applicability

� Use this

� when you want to save state on a hierarchy’s elements.

� When the hierarchy’s interface would be broken if
implementation details were exposed.

Structure

Participants

� Memento

� stores the state of the Originator

� Originator

� Creates the memento

� “Uses the memento to restore its internal state”

� CareTaker

� Keeps track of the Memento(s)

� Never uses the Memento’s Interface to the Originator

Collaboration

� Caretaker requests a memento from an Originator.

� Originator passes back memento.

� Originator uses it to restore state.

Collaboration

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

9

Consequences (good)

� “Preserves Encapsulation Boundaries”

� “It simplifies Originator”

Consequences (bad)

� Might be expensive

� Difficulty defining interfaces to keep Originator
encapsulated

� Hidden costs in caring for mementos

� Caretaker could have to keep track of a lot of information for
the memento
Caretaker could have to keep track of a lot of information for
the memento

Storing Incremental Changes

� If storing state happens incrementally, then we can just
record the changes of what’s happened in a new
memento object.

� This helps with memory difficulties.

Exercise: re-engineer the command-

memento example

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

13

Prototype

Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic Holte Pratic

Prototype

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

Prototype Pattern

� A creational pattern

� Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this
prototype

Applicability

� when a system should be independent of how its
products are created, composed, and represented and any
of the following is the case:

� when the classes to instantiate are specified at run-time

� avoid building a class hierarchy of factories that parallels the class
hierarchy of productshierarchy of products

� when instances of a class can have one of only a few different
combinations of state.

� It may be more convenient to have the proper number of prototypes
and clone them rather than instantiate the class manually each time
with appropriate state.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

Structure & Participants

Prototype(Graphic)
-declares an interface
for cloning itself.

ConcretePrototype
(Staff,WholeNote,
HalfNote)HalfNote)
-implements an
operation for cloning
itself.

Client(GraphicalTo
ol)
- creates a new
object by asking a
prototype to clone
itself.

Problem

Prototype solution

Benefits of Prototype Pattern

� Hides the complexities of making new instances from the
client.

� Provides the option for the client to generate objects
whose type is not known.

� In some circumstances, copying an object can be more
efficient than creating a new object.efficient than creating a new object.

Implementation of Prototype Pattern

� It is built on the method .clone()

java.lang Class Object

protected Object clone() throws

CloneNotSupportedException

Creates and returns a copy of this object. The precise meaning of "copy" may
depend on the class of the object. The general intent is that, for any object
x, the expression:

x.clone() != x

will be true, and that the expression:

x.clone().getClass() == x.getClass()

will be true, but these are not absolute requirements. While it is typically the will be true, but these are not absolute requirements. While it is typically the
case that:

x.clone().equals(x)

will be true, this is not an absolute requirement.

By convention, the returned object should be obtained by calling super.clone.
If a class and all of its superclasses (except Object) obey this convention, it
will be the case that x.clone().getClass() == x.getClass().

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.22

java.lang Class Object

protected Object clone() throws

CloneNotSupportedException

� By convention, the object returned by this method should be
independent of this object (which is being cloned).

� To achieve this independence, it may be necessary to modify
one or more fields of the object returned by super.clone
before returning it.

� Typically, this means copying any mutable objects that comprise the � Typically, this means copying any mutable objects that comprise the
internal "deep structure" of the object being cloned and replacing the
references to these objects with references to the copies.

� If a class contains only primitive fields or references to immutable
objects, then it is usually the case that no fields in the object
returned by super.clone need to be modified.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.23

Clone and deep/shallow copy

� Clone can be implemented either as a deep copy or a
shallow copy:

� In a deep copy, all objects are duplicated,

� In a shallow copy, only the top-level objects are duplicated and
the lower levels contain references.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.24

Deep vs shallow copy

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.25

java.lang

Class Object

� protected Object clone()

� this method creates a new instance of the class of this object
and initializes all its fields with exactly the contents of the
corresponding fields of this object, as if by assignment

� the contents of the fields are not themselves cloned. Thus, this
method performs a "shallow copy" of this object, not a "deep method performs a "shallow copy" of this object, not a "deep
copy" operation.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.26

java.lang

Interface Cloneable

� A class implements the Cloneable interface to indicate to the
Object.clone() method that it is legal for that method to make
a field-for-field copy of instances of that class.

� Invoking Object's clone method on an instance that does not implement
the Cloneable interface results in the exception
CloneNotSupportedException being thrown.

� By convention, classes that implement this interface should
override Object.clone (which is protected) with a public
method.

� Note that this interface does not contain the clone method.

� Therefore, it is not possible to clone an object merely by virtue of the
fact that it implements this interface.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.27

Point

� class Point implements Cloneable{
private int x;
private int y;

@Override
public Point clone() {public Point clone() {

return (Point)super.clone();
}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.28

Line: shallow copy

� class Line implements Cloneable {
private Point start;
private Point end;
public Line() {

//Careful: This will not happen for the cloned object
SomeGlobalRegistry.register(this);SomeGlobalRegistry.register(this);

}
@Override
public Line clone() {

return (Line)super.clone();
}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.29

Line: deep copy.

@Override

public Line clone() {
Line line = (Line)super.clone();
//since Point is cloneable. Otherwise we will
//have to instantiate and populate it's fields manually//have to instantiate and populate it's fields manually
line.start = this.start.clone();
line.end = this.end.clone;
return line;
}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.30

Ex.
Animal
farm

Prototype Pattern Example code

Prototype Pattern Example code

Prototype Pattern Example code

Prototype Pattern Example code

Prototype Pattern Example code

