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Mediator
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Applicability

� A set of objects communicates in well-defined, but 
complex ways.  Often with difficult because it refers to 
and communicates with many other unstructured 
dependencies.

� Reusing objects is objects.

� A behavior that’s distributed between several classes 
should be customizable without a lot of subclassing.





Mediator: structure
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Structure



Consequences

� Limits subclassing

� Localizes behavior that would be otherwise distributed among 
many objects. Changing this behaviour requires subclassing.

� Changes in behavior require changing only the Mediator class

� Decouples colleague

� Colleagues become more reusable.

� You can have multiple types of interactions between colleagues, 
and you don’t need to subclass or otherwise change the 
colleague class to do that.



Consequences

� Simplifies object protocols

� Many-to-many interactions replaced with one-to-many 
interactions

� More intuitive

� More extensible

� Easier to maintain

� Abstracts object cooperation

� Mediation becomes an object itself

� Interaction and individual behaviors are separate concepts that 
are encapsulated in separate objects



Consequences

� Centralizes control

� Mediator can become very complex

� With more complex interactions, extensibility and maintenance 
may become more difficult

� Using a mediator may compromise performance



Implementation Issues

� Omitting the abstract Mediator class – possible when 
only one mediator exists 

� Strategies for Colleague-Mediator communication

� Observer class

� Pointer / other identifier to “self” passed from colleague to 
mediator, who pass it to the other colleague(s)



Related Patterns

� Façade

� Unidirectional rather than cooperative interactions between 
object and subsystem

� Mediator is like a multi-way Façade pattern.

� Observer

� May be used as a means of communication between Colleagues 
and the Mediator



Coordination

� Linda and tuple spaces 

� BPEL (Business Process Execution Language) and web 
services (BPEL4WS o WS-BPEL)
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Memento
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Memento

� Intent

� “Without violating encapsulation, capture and externalize an 
object’s internal state so that the object can be restored to this 
state later.”

� Motivation

� When we want to store off an object’s internal state without 
adding any complication to the object’s interface.

� Perhaps for an undo mechanism
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� Memento: 

� a saved "snapshot" of the state of an object or objects for 
possible later use

� useful for:

� writing an Undo / Redo operation

� ensuring consistent state in a network

� Persistency:  save / load state between executions of program

Memento pattern



Applicability

� Use this

� when you want to save state on a hierarchy’s elements.

� When the hierarchy’s interface would be broken if 
implementation details were exposed.



Structure



Participants

� Memento

� stores the state of the Originator

� Originator

� Creates the memento

� “Uses the memento to restore its internal state”

� CareTaker

� Keeps track of the Memento

� Never uses the Memento’s Interface to the Originator



Collaboration

� Caretaker requests a memento from an Originator.

� Originator passes back memento.

� Originator uses it to restore state.



Collaboration
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Consequences (good)

� “Preserves Encapsulation Boundaries”

� “It simplifies Originator”



Consequences (bad)

� Might be expensive

� Difficulty defining interfaces to keep Originator 
encapsulated

� Hidden costs in caring for mementos

� Caretaker could have to keep track of a lot of information for 
the memento



Storing Incremental Changes

� If storing state happens incrementally, then we can just 
record the changes of what’s happened in a new 
memento object.

� This helps with memory difficulties.



Prototype
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Prototype Pattern

� A creational pattern

� Specify the kinds of objects to create using a prototypical 
instance, and create new objects by copying this 
prototype



Problem



Prototype solution



Structure & Participants

Prototype(Graphic)
-declares an interface 
for  cloning itself.

ConcretePrototype
(Staff,WholeNote,
HalfNote)
-implements an 
operation for cloning 
itself.

Client(GraphicalTo
ol)
- creates a new 
object by asking a 
prototype to clone 
itself.



java.lang Class Object

protected Object clone() throws 

CloneNotSupportedException

Creates and returns a copy of this object.  The precise meaning of "copy" may 
depend on the class of the object. The general intent is that, for any object 
x, the expression: 

x.clone() != x 

will be true, and that the expression: 

x.clone().getClass() == x.getClass() 

will be true, but these are not absolute requirements. While it is typically the 
case that: 

x.clone().equals(x) 

will be true, this is not an absolute requirement. 

By convention, the returned object should be obtained by calling super.clone. 
If a class and all of its superclasses (except Object) obey this convention, it 
will be the case that x.clone().getClass() == x.getClass(). 
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java.lang Class Object

protected Object clone() throws 

CloneNotSupportedException

� By convention, the object returned by this method should be 
independent of this object (which is being cloned). 

� To achieve this independence, it may be necessary to modify 
one or more fields of the object returned by super.clone 
before returning it. 

� Typically, this means copying any mutable objects that comprise the 
internal "deep structure" of the object being cloned and replacing the 
references to these objects with references to the copies. 

� If a class contains only primitive fields or references to immutable 
objects, then it is usually the case that no fields in the object 
returned by super.clone need to be modified. 
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Ex.
Animal 
farm



Prototype Pattern Example code 



Prototype Pattern Example code 
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Prototype Pattern Example code



Prototype Pattern Example code



Prototype Pattern

� When to Use

� When product creation should be decoupled from system 
behavior

� When to avoid subclasses of an object creator in the client 
application 

� When creating an instance of a class is time-consuming or 
complex in some way. 



Consequences of Prototype Pattern

� Hides the concrete product classes from the client

� Adding/removing of prototypes at run-time

� Allows specifying new objects by varying values or 
structure

� Reducing the need for sub-classing 

� no need of a sub-class of the factory per each product

� Just clone each product



Drawbacks of Prototype Pattern 

� It is built on the method .clone(), which could be 
complicated sometimes in terms of 

� shallow copy and 

� deep copy.  

� Moreover, classes that have circular references to other 
classes cannot really be cloned.



Visitor
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Visitor Pattern

� Intent

� Lets you define a new operation without changing the classes 
on which they operate.

� Motivation

� Allows for increased functionality of a class(es) while 
simplifying base classes. 

� A primary goal of designs should be to ensure that base classes 
maintain a minimal set of operations.

� Encapsulates common functionality in a class framework.



Visitor Pattern

� Motivation (cont)

� Visitors avoid type casting that is required by methods that 
pass base class pointers as arguments. The following code 
describes how a typical class could expand the functionality of 
an existing composite.

Void MyAddition::execute( Base* basePtr) {

if( dynamic_cast<ChildA*>(basePtr)){

// Perform task for child type A.

} else if ( dynamic_cast<ChildB*>(basePtr)){

// Perform task for child type B.

} else if( dynamic_cast<ChildC*>(basePtr)){

// Perform task for child type C.

}

}



Visitor Pattern: Applicability

� The following situations are prime examples for use of 
the visitor pattern.

� When an object structure contains many classes of objects 
with different interfaces and you want to perform functions on 
these objects that depend on their concrete classes.

� When you want to keep related operations together by 
defining them in one class.

� When the class structure rarely change but you need to define 
new operations on the structure.



Structure
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Visitor Pattern: Participants

� Visitor

� Declares a Visit Operation for each class of Concrete Elements in the 
object structure.

� Concrete Visitor

� Implements each operation declared by Visitor.

� Element

� Defines an Accept operation that takes the visitor as an argument.

� Concrete Element

� Implements an accept operation that takes the visitor as an argument.

� Object Structure

� Can enumerate its elements.

� May provide a high level interface to all the visitor to visit its elements.

� May either be a composite or a collection.



Visitor Pattern: Collaborations



Visitor Pattern: Consequences

� Makes adding new operations easier.

� Collects related functionality.

� Adding new Concrete Element classes is difficult.

� Can “visit” across class types, unlike iterators.

� Accumulates states as they visit elements.

� May require breaking object encapsulation to support the 
implementation.



Visitor: Related Patterns

� Composites

� Visitors can be used to apply an operation over an object 
structure defined by the composite pattern.

� Interpreter

� Visitors may be applied to do the interpretation.


