Tecniche di Progettazione:
Design Patterns

GoF: Mediator Memento Prototype Visitor

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Mediator

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Applicability

» A set of objects communicates in well-defined, but
complex ways. Often with difficult because it refers to
and communicates with many other unstructured
dependencies.

» Reusing objects is objects.

» A behavior that’s distributed between several classes
should be customizable without a lot of subclassing.

LTC, Iviediator

Flight 111 Flight 1011 Flight 112 Flight 747

Mediator: structure
Mediator +hiediator Colleague
{
T Z‘s f
ConcreteMediator ConcreteColleague ConcreteColleague2
ey e
5 Design patterns, Laura Semini,

Universita di Pisa, Dipartimento di

Structure

(" aColleague
¢ mediator)
[_ncuugm\
kmodiator -
S\ i m—
aConcreteMediator \"_(. mediatorj
o o ¥
ﬁ i
—_
_mediator & N)
® mediator J

Consequences

» Limits subclassing

Localizes behavior that would be otherwise distributed among
many objects. Changing this behaviour requires subclassing.

Changes in behavior require changing only the Mediator class

» Decouples colleague
Colleagues become more reusable.

You can have multiple types of interactions between colleagues,
and you don’t need to subclass or otherwise change the
colleague class to do that.

Consequences

» Simplifies object protocols

Many-to-many interactions replaced with one-to-many
interactions

More intuitive
More extensible

Easier to maintain
» Abstracts object cooperation

Mediation becomes an object itself

Interaction and individual behaviors are separate concepts that
are encapsulated in separate objects

Consequences

» Centralizes control
Mediator can become very complex

With more complex interactions, extensibility and maintenance
may become more difficult

Using a mediator may compromise performance

Implementation Issues

» Omitting the abstract Mediator class — possible when
only one mediator exists

» Strategies for Colleague-Mediator communication

Observer class

Pointer / other identifier to “self” passed from colleague to
mediator, who pass it to the other colleague(s)

Related Patterns
» Facade

Unidirectional rather than cooperative interactions between
object and subsystem

Mediator is like a multi-way Fagade pattern.

» Observer

May be used as a means of communication between Colleagues
and the Mediator

Coordination

» Linda and tuple spaces

» BPEL (Business Process Execution Language) and web
services (BPEL4WS o WS-BPEL)

12 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Memento

» Intent

“Without violating encapsulation, capture and externalize an
object’s internal state so that the object can be restored to this
state later.”

» Motivation

When we want to store off an object’s internal state without
adding any complication to the object’s interface.

Perhaps for an undo mechanism

Memento pattern

» Memento:

a saved "snapshot” of the state of an object or objects for
possible later use
useful for:

writing an Undo / Redo operation

ensuring consistent state in a network

Persistency: save / load state between executions of program

15

Applicability

» Use this
when you want to save state on a hierarchy’s elements.

When the hierarchy’s interface would be broken if
implementation details were exposed.

Structure

Originator Memento
i mementul Caretaker
-state L _)-statﬂ _< <>|
+SetMemento(m Memento) ‘e +GetState() |
+CrealeMemento() \ 3 +SetState()
/ o
/ N N
relurn new Memento(state) state = m GelStale()

Participants

» Memento

stores the state of the Originator
» Originator

Creates the memento

“Uses the memento to restore its internal state”

» CareTaker
Keeps track of the Memento
Never uses the Memento’s Interface to the Originator

Collaboration

» Caretaker requests a memento from an Originator.
» Originator passes back memento.

» Originator uses it to restore state.

Collaboration

aCarelaker anQriginator alVlemento

| |
| |
| 1: CreateMementa() |
> 2 new Mementa

3. SetState()

)
} 4: setMemento(aMemento) }

o, Getstate()

-

20 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Consequences (good)

» “Preserves Encapsulation Boundaries”

» “lt simplifies Originator”

Consequences (bad)

» Might be expensive

» Difficulty defining interfaces to keep Originator
encapsulated
» Hidden costs in caring for mementos

Caretaker could have to keep track of a lot of information for
the memento

Storing Incremental Changes

» If storing state happens incrementally, then we can just
record the changes of what’s happened in a new
memento object.

» This helps with memory difficulties.

Prototype

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Prototype Pattern

» A creational pattern

» Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this
prototype

Problem

: i Graphic

§ Tool E)\

é Manipulate() -

§)\ L..{ Staff] MssicatNote

: RotateT ool GraphicT ool A

E Manipulate() Manipulatc() T
5 A 7| WholeNote HalfNote

| | |

StaffGraphicTool WholeNoteGraphicT ool
Mampulate() Manipulate()

Prototype solution

» Graphic
Tool Draw(Position)
Clone()
Manipulate() /k
prototype
Staff Visic
RotateTool Gr aphi cTool E— . alNote
) Draw(Position)
Manipulate() Manipulate()© Clone() \
E WholeNote HalfNote
: Draw(Position) Draw(Position)
p = prototype->Clone() B Clone() Clone()
while (user drags mouse){

p->Draw(new position)

}

insert p into drawing

=]
'
1
1
|
'
1
|
|
1

return copy of self BI

-emmme=-|-0

return copy ofseif Iﬁ

Structure & Participants

Prototype(Graphic)
-declares an interface
for cloning itself.

ConcretePrototype
(Staff, WholeNote,
HalfNote)

-implements an
operation for cloning
itself.

Client(GraphicalTo
ol)

- creates a new
object by asking a
prototype to clone
itself.

Client prototype
Operation() o

p = prootype->Clons() |

*___Protogype

Clone()

A

ConcretePrototypel

|

Clone()

Clone()

- - nqo

LA L L L L A 1 ..o

return copy of self b]

rohmeopyofsdflb]

java.lang Class Object
protected Object clone() throws
CloneNotSupportedException

Creates and returns a copy of this object. The precise meaning of "copy" may
depend on the class of the object. The general intent is that, for any object
X, the expression:

x.clone() = x
will be true, and that the expression:
x.clone().getClass() == x.getClass()

will be true, but these are not absolute requirements.While it is typically the
case that:

x.clone().equals(x)
will be true, this is not an absolute requirement.

By convention, the returned object should be obtained by calling super.clone.
If a class and all of its superclasses (except Object) obey this convention, it
will be the case that x.clone().getClass() == x.getClass().

29 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

java.lang Class Object
protected Object clone() throws

CloneNotSupportedException

» By convention, the object returned by this method should be
independent of this object (which is being cloned).

» To achieve this independence, it may be necessary to modify
one or more fields of the object returned by super.clone
before returning it.

30

Typically, this means copying any mutable objects that comprise the
internal "deep structure" of the object being cloned and replacing the
references to these objects with references to the copies.

If a class contains only primitive fields or references to immutable
objects, then it is usually the case that no fields in the object
returned by super.clone need to be modified.

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Ex.
Animal [awacis

(2 AnimalClient

farm | Grs_main _!)
Zlses

2l «Java Class»
(9 AnimalCreator
| = sheep : Amimal
o chicken : Animal

- @ AnimalCreator {'] '

@ retrieveAnimal ()

B «Java Class»
© Animal
L | @ numberOfLegs : int

v description : String

© name ; String
@' helloAnimal ()
@ clone ()

getName ()
setName ()

000 OO

yges 5

a2l «Java Class»
(3 Sheep
" @ numberOfClones : int |
@ helloAnimal ()
_ @ clone ()

«t&r»

getDescrniption ()
setDescription ()
getNumberOfLegs ()
setNumberOflLegs ()

&

Bl Java Class»
© Chicken
j 8 numberOfClones : int |
- @ helloAnimal ()
| @ ;Ic_nne ()

Prototype Pattern Example code

public abstract class Animal implements Cloneable {
protected int numberofLegs = 0;
protected string description = ™";
protected 5tring name = "";

public abstract string helloAnimal();

public Animal clone() {
Animal clonedanimal = null;
clonedanimal = (Animal) super.clone();
clonedAnimal. setName{name);
return clonedanimal;

t // method clone
public string getMame() {
return name;
s
public void setName(string name) 1

this.name = name;

P // class Animal

Prototype Pattern Example code

public class chicken extends animal {
private int numberofClones = 0;

public string helloanimal({) {
stringButfer chickenTalk = new Stringﬂuffer{};
chickenTalk. append{ "'Cluck cluck world. I am ");
chickenTalk. append(name);

return chickenTalk.tostring();
T // helloAanimal

public Chicken clone() {
Chicken clonedChicken = (Chicken) super.clone();
string chickenName = clonedChicken. getName();
numberofclones++;
clonedChicken. setName{chickenName + numberofClones);

return clonedChicken;
+ // method clone

Prototype Pattern Example code

public class sheep extends Animal {
private int numberofClones = 0;

public string helloanimal{) {
stringButfer sheepTalk = new stringBuffer();
sheepTalk. append("Meeeeeee world. I am ");
sheepTalk. append{name) ;

return ShEEETa1k.tDStriﬂgf};
T // helloAanima

public Sheeq clone() {
sheep clonedsheep = (Sheep) super.clone();
string sheepName = clonedsheep. getName();
numberofclones++;
clonedsheep. setName{sheepName + numberofClones);

return clonedsheep;
r // method clone

Prototype Pattern Example code

public class animalCreator {
private Aanimal SHEEE = new sheep();
private Animal chicken = new Chicken();

public AnimalCreator() 1
ShEEE.SEtNamE{“ShEEp“};
chicken.setName("Chicken");

¥ // no-arg constructor

public animal retrieveanimal (5tring kindofanimal) {
it {("Chicken". equals{kindotTanimal})} {
return (Animal) chicken.clone();

I
else if ("sheep"”.equals(kindofanimal)) {
i 77 i return (animal) sheep.clone();

3

return null;
1 // method retrieveanimal
} // class AnimalCreator

Prototype Pattern Example code

public class animalclient {

public static void main{string[] args) {

AnimalCreator animalCreator

= new AanimalCreator();

Animal[] animalFarm = new Animal[8];

animalFarm[0]
animalFarm[1]
animalFarm[2]
animalFarm[3]
animalFarm[4]
animalFarm[5]
animalFarm[6]
animalFarm[7]

for {int i= 0O;

animalCreator.
animalCreator.
animalCreator.

animalCreator

animalCreator

i++) 1

retrieveAnimal {"Chicken");
retrieveanimal {'Chicken");
retrieveanimal { 'Chicken”);

.retrieveanimal { "Chicken");
animalCreator.
animalCreator.

retrieveanimal {"sheep");
retrieveanimal {'Sheep");

.retrieveanimal ("sSheep");
animalCreator.

retrieveanimal ("sheep");

system. out. printinf{animalrFarm[i]. helloanimal ());

+ // for
T // main method

T /S class animalClient

Cluck cluck world.
Cluck cluck world.
Cluck cluck world.
Cluck cluck world.

Meeseeeee World., I
Meeeeese wWorld., I
Megeeeee World. I
Megeeeee World. I

am Chickenl.
am Chicken?Z.
am Chicken3.
am Chickend.

sheepl.
Sheepl.
sheep3.
Sheep4.

Prototype Pattern
» When to Use

When product creation should be decoupled from system
behavior

When to avoid subclasses of an object creator in the client
application

When creating an instance of a class is time-consuming or
complex in some way.

Consequences of Prototype Pattern

» Hides the concrete product classes from the client
» Adding/removing of prototypes at run-time

» Allows specifying new objects by varying values or
structure
» Reducing the need for sub-classing
no need of a sub-class of the factory per each product

Just clone each product

Drawbacks of Prototype Pattern

» It is built on the method .clone(), which could be
complicated sometimes in terms of

shallow copy and
deep copy.
» Moreover, classes that have circular references to other
classes cannot really be cloned.

Visitor

Design patterns, Laura Semini,
Universita di Pisa, Dipartimento di

Visitor Pattern

» Intent

Lets you define a new operation without changing the classes
on which they operate.

» Motivation

Allows for increased functionality of a class(es) while
simplifying base classes.

A primary goal of designs should be to ensure that base classes
maintain a minimal set of operations.

Encapsulates common functionality in a class framework.

Visitor Pattern

» Motivation (cont)

Visitors avoid type casting that is required by methods that
pass base class pointers as arguments. The following code
describes how a typical class could expand the functionality of
an existing composite.

Void MyAddition::execute(Base* basePtr) {
if(dynamic_cast<ChildA*>(basePtr)){
Il Perform task for child type A.
} else if (dynamic_cast<ChildB*>(basePtr)){
Il Perform task for child type B.
} else if(dynamic_cast<ChildC*>(basePtr)){
Il Perform task for child type C.

Visitor Pattern: Applicability

» The following situations are prime examples for use of
the visitor pattern.

When an object structure contains many classes of objects
with different interfaces and you want to perform functions on
these objects that depend on their concrete classes.

When you want to keep related operations together by
defining them in one class.

When the class structure rarely change but you need to define
new operations on the structure.

Structur

€

Vizitaor Pattern rJ

Client

Visitor

w»

YiztConcreteElement Al ConcreteElement)
YiztConcreteElementBl ConcreteElementB)

ConcreteVisitord

ConcreteVismor2

YizitConcreteElement Al ConcreteElement 4
YiztConcreteElemertB{ConcreteElementB)

YizitConcreteElement Al ConcreteElement 4
YiztConcreteElemertB{ConcreteElementB)

o

ObjectStructure

Elomant

w»

AcceptWisitor ¥

i

i

ConcreteElement

ConcreteElementB

Acceptvisitar v
Dperation L)

Accept(Visitar v
DperationB)

44

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Visitor Pattern: Participants

» Visitor

Declares a Visit Operation for each class of Concrete Elements in the
object structure.

» Concrete Visitor

Implements each operation declared by Visitor.

» Element

Defines an Accept operation that takes the visitor as an argument.
» Concrete Element

Implements an accept operation that takes the visitor as an argument.

» Obiject Structure
Can enumerate its elements.
May provide a high level interface to all the visitor to visit its elements.

May either be a composite or a collection.

Visitor Pattern: Collaborations

anObjectStructure aConcreteElementA aConcreteElementB aConcreteVisitor
‘L Accept(aVisitor) _L
» VisitConcreteElementA(aConcreteElementA)
I OperationA()
=
Accept(aVisitor) T 1
—

VisitConcreteElementB(aConcreteElementB)

F—E OperationB()

Visitor Pattern: Consequences

» Makes adding new operations easier.

» Collects related functionality.

» Adding new Concrete Element classes is difficult.
» Can “visit” across class types, unlike iterators.

» Accumulates states as they visit elements.

» May require breaking object encapsulation to support the
implementation.

Visitor: Related Patterns

» Composites

Visitors can be used to apply an operation over an object
structure defined by the composite pattern.

» Interpreter

Visitors may be applied to do the interpretation.

