Tecniche di Progettazione:
Design Patterns

GoF: Proxy

1 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Revisit the Gumball machine example

» The same example covered in the State pattern

» Now we want to add some monitor to a collection of
Gumball machines

23/05/2011

Gumball Class

public class GumballMachine { A location is J“{': a Strina.
// other instance variables : "

public GumballMachine
// other constructor code here

int count) {

tonstruttor and stored in the
instante vaviable,

Leb's also add 3 getter MMJJC:
/! other methods here grab the location when we need i

Gumball Monitor

public class GumballMonitor {

GumballMachine machine; P The monitor takes the mathine in its

public GumballMonitor (GumballMachine machine) { mathine ins nd a""ﬁ"\" it to the
this.machine = maching; tance varia le.

}

public void report() {
System.out.println(“Gumball Machine: “ + machine.getLocation());
System.out.println(“Current inventory: ™ + machine.getCount() + ™ gumballs”);
System.out.println(*Current state: “ + machine.getState());

Oue veport method iust pri i
Just prints 3 i
location, inventory and the :acham:e%

23/05/2011

Role of the remote Proxy

CEO's desktop Lends to Remote 5‘“-"6” Macehi
e S e

ut s jst 2 stand in é)
for the Real Thing, Remote Heap

Heve the ﬁuvnba'l'-‘
Monitor is the :,h‘erl\l'.
Jbietd; it thinks it's
+alking 4o the Real
5\»&\)31'- mathing, 'D\n#
s veally Jusl: {;a.lkmg
Lo the provy)s whith

he
Lhen talks to the Same as your old Joyeet ¥ ots the
Real qumball machine tode, only it's {\?a’c atualty &
aver the network: Lalking to 3 Pro®y: veal we¥

RMI Detour in looking at Proxy Pattern

€ First, we’re going to take the RMI
Detour and check RMI out. Even if
you are familiar with RMI, you might

want to follow along and check cut the
scenery.

© Then we’re going to take our
GumballiMachine and make it a remote
service that provides a set of methods
calls that can be invoked remotely.

€© Then, we going to create a proxy that can
talk to a remote GumballMachine, again
using RMI, and put the monitoring system
back together so that the CEO can monitor
any number of remote machines.

23/05/2011

Remote Methods 101

o should look Familiar-
This show Cl‘\!.h{': \\tlffr wg{cnds

= {o be the sevite, :
Cli:n'r heap it's just 2 prox or the
s Real Thing

C‘\l!h{ oh)cdﬁ Lhinks ‘

s talkng b e (- oy

Real Sevuite. | A

Ehinks the d-'"‘ - - i 00N cf.{'- 1S
helper s the {'.'MIIH& Sevvice helper aeks the The SC"“\"‘S";.iz_ st
fhat tan 3’-*-“‘: This is 4oing request from the client L R;a,,,—, h the methed
do the veal werk Lo be our helper, unpacks i, and "W: sekally 00

prony. o the method on e i o
L

How the method call happens
Client calls method

@ Client object calls doBigThing() on the client helper object.

23/05/2011

23/05/2011

Client Helper forwards to service helper

s Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

Service helper calls the real object

@ Service helper unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service object.

mewber, Lhis i the
5\: :’: wikh the REAL
method logic- The ont J
hat does Lhe veal work!

Real object returns result

e The method is invoked on the service object, which refurns
some result to the service helper.

\E Client heap

Server heap (et

Service helper forwards result to client

@ Service helper packages up information returned from the
call and ships it back over the network to the client helper.

23/05/2011

Client helper returns result to client

i d returns
Client helper unpackages the returned values and re
them fo ‘rﬁe client object. To the client object, this was all

fransparent.

Server heap

' Client heap

RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the
service helper is a ‘skeleton’,

This is going ; |.

— to aet as our ;
C!ient heap g proxy! Server heap =

N"’"" VCr‘sFons

N o
"equre an expligiy

ot
UL somethj
Now let’s go through all the steps needed to make an object into a he sm:,. :io"
service that can accept remote calls and also the steps needed to 15 SEill hand,
allow a client to make remote calls. J

skeleto, behavioy.
You might want to make sure your seat belt is fastened; there are

a lot of steps and a few bumps and curves - but nothing to be too
worried about,

23/05/2011

23/05/2011

Steps in using Java RMI

| . e Ehe
Step one: T L Laee debne
’:Aake a Remote Interface e | 6—Twe L&:i:«\"’d’ ’d{{i}c ™
The remote interface defines the methods that :an’ff f_\-‘mb ko

a client can call remotely. It's what the client ~ MyServicejava
will use as the class type for your service, Both
the Stub and actual service will implement

this!
Step two: B The Real Scw'u:;is 5:: afad’:
Make a Remote Implementation with the methods lements
i Lhe veal work. [t imple
This is the class that does the Real Work. It

intertate.
has the real implementation of the remote ~ MyServicelmpljava the venate ke
methods defined in the remote interface.
It’s the object that the client wants to call
methods on (e.g., our GumballMachine!).

Additional steps

methods on (e.g., our GumballMachine!).

~Spits out:

Step three: Runring vt 33;.“5{_ the ae,b:alj elasses foy i:: "y
Generate the stubs and skeletons using rmic service implementation €1ass- helper objeets,
These are the client and server ‘helpers’. You File_Edit_Window Heip Eat o iie 3
don'’t have to create these classes or ever look %rmic MyServiceImpl asas
at the source code that generates them. It’s all

handled automatically when you run the rmic

MyServicelmpl_Stub.class
tool that ships with your Java development kit.

TELI00

0 11 0
Step four:

Start the RMI registry (rmiregistry) MyServicelmpl_Skel.class
The rmiregistry is like the white pages of a phone File Edil Window Help Drink

book. It's where the client goes to get the proxy
(the client stub/helper object).

Run L
a segad

Step five: Jw‘-"“\’

Start the remote service
You ‘hav.e to get the service nb-Jem up and running, Your T

service implementation class instantiates an instance D A
of the service and registers it with the RMI registry. RS MRS 1 CALED
Reglatering It makes the service available for clients.

@ Extend java.rmi.Remote STEP 1
Remote is a ‘marker” interface, which means it has no methods. It has special
meaning for RMI, though, so you must follow this rule. Notice that we say
‘extends’ here. One interface is allowed to extend another interface.

Remote Interface

the
This Lells vs that
< 'm{:;rgat.z is going Lo loe used

4o support vemoke talls

public interface MyRemote

@ Declare that all methods throw a RemoteException
The remote interface is the one the client uses as the type for the service. In
other words, the client invokes methods on something that implements the
remote interface. That something is the stub, of course, and since the stub is
doing networking and I/0, all kinds of Bad Things can happen. The client
has to acknowledge the risks by handling or declaring the remote exceptions. If
the methods in an interface declare exceptions, any code calling methods on a
reference of that type (the interface type) must handle or declare the exceptions.

import java.rmi.*; &— Rnote interfate isin Jpvaiow

public interface MyRemote extends Remot
public String sayHello() throws not

A [\ Every remote method call is

tonsidered 'risky'. Declari
Rcmo{:eEntC?{:ioh on :ver;ﬂ
method Fortes the tlient
{;nkpayla{:‘l:cnfim and
atknowledge that thi

might not work. -

STEP 1
Remote Interface

. Be sure arguments and return values are primitives or Serializable

Arguments and return values of a remote method must be either primitive

or Serializable. Think about it. Any argument to a remote method has to

be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings, and
the majority of types in the API (including arrays and collections), you'll be fine.

If you are passing around your own types, just be sure that you make your classes
implement Serializable.

|

' sayHello() throws RemoteException;

R T el
) valuc 1S Qonng bc hi .
server back {o the talicn’c, s0 :{‘WCd over the vire from the

must be Serial '
how args and return values et packaged :‘: ':::3 :’:{Thﬁ‘

23/05/2011

23/05/2011

‘ STEP 2
@ Implement the Remote interface Remote Implementation
Your service has to implement the remote interface—the one with

the methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject imp
public String sayHello() { .
return “Server says, 'Hey'”;

| The] ompiler ill make suve fhat

U Ve implem
// more code in class I:.: th ,: {:::}td all the methods

3te You implement.
In this tase, there's any :‘LI"‘"“{

@ Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some functionality
related to ‘being remote’. The simplest way is to extend UnicastRemoteObject

(from the java.rmi.server package) and let that class (your superclass) do the
work for you.

public class MyRemoteImpl exf en

t implements MyRemote {

STEP 2
Remote Implementation

@ Write a no-arg constructor that declares a RemoteException

Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws a RemoteException. The only way to deal with this is to
declare a constructor for your remote implementation, just so that you have a
place to declare the RemoteException. Remember, when a class is instantiated,
its superclass constructor is always called. If your superclass constructor throws
an exception, you have no choice but to declare that your constructor also throws

an exception. o Y _
Lhe tonstruttor: You just need ah
way to detlave ghat your svpertiass

tonstruttor throws an exeeption.

public MyRemoteImpl () [§

@ Register the service with the RMI registry

Now that you've got a remote service, you have to make it available to remote

clients. You do this by instantiating it and putting it into the RMI registry (which

must be running or this line of code fails). When you register the implementation

object, the RMI system actually puts the stub in the registry, since that’s what the

client really needs. Register your service using the static rebind() method of the

Jjava.rmi.Naming class. 4 e

try { ﬁ'l\lt \’M servite @ nam:. ({‘,\\g{’, a:hul:f;‘:; rt

MyRemote service = new MyRemoteImpl(); i, ook it up in the "5':::’ ow bind the

with the RML“?;;FY&\‘I :.::Yscwiu for the
cate . ice objet: AW e

108 ™ :i'::‘: & ‘:,*, Ehe skub in the regjstry

10

23/05/2011

STEP 3
Create Stubs &
(@ Run rmic on the remote implementation class Skeletons
(not the remote interface)
The rmic tool, which comes with the Java software
development kit, takes a service implementation and
creates two new classes, the stub and the skeleton. It uses Ruie
a naming convention that is the name of your remote bilad WAL Jenerates i,
implementation, with cither _Stub or _Skel added to Notice that You dont say tlass b 35|:c& for the
the end. There are other options with rmic, including on the end: Just he tlass name per o jects
not generating skeletons, secing what the source code [y
for these classes looked like, and even using IIOP as File Edit Window Help Whuffie e
the protocol. The way we're doing it here is the way $rmic MyRemoteImpl 2= |

you'll usually do it. The classes will land in the current
directory (i.e. whatever you did a cd to), Remember,

MyRemotelmpl_Stub.class

lﬁllﬂlh
rmic must be able to see your implementation class, so Jriaty
you'll probably run rmic from the directory where your ot 1
remote implementation is located. (We're deliberately MyRemotelmpl_Skel class
not using packages here, to make it simpler. In the Real B
Warld, you'll need to account for package directory
structures and fully-qualified names).
Step four: iregist
ep rour: run rmiregistry
Bring up a terminal and start the rmiregistry. Fiie Edil Window Helg Huh?

Be sure you start it from a directory that has access to $rmiregistry
your classes. The simplest way is to start it from your
‘classes’ directory.

Step five: start the service

@ Bring up another terminal and start your service

Fila Edit Window Help Huh?

This might be from a main() method in your remote :
: i i v Y $java MyRemoteImpl
implementation class, or from a separate launcher class.

In this simple example, we put the starter cade in the
implementation class, in a main method that instantiates the

object and registers it with RMI registry.

1

Complete code for the server side

The Remote interface:

¥ RemoteEsception and Remote

import java JImiL ¥ 'mtﬂ'gau are in Java.r".-. ?Qﬂka(jc

£, ‘{ow intevkate MUST extend java-\’mi‘Rmoch
public interface MyRemote extends Remote {

public String sayhiello() throws RemoteException; o YO remote nethods mct
) i detlare RemoteException

The Remote service (the implementation):

‘ o the
'tasﬁ{cmc’tﬂobfdb = th
: i G i (4 .
import java.rmi.*; U a.rm"-w'“r ?35\135 Exkending Mﬂltasatwwob.)c"im t 3
import java.rmi.server.*; B c:s\cht way to make vemote abjett:

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote {

public String sayHello() { € You have +o implement all the You MUST imPlement
return “Server says, 'Hey'"; interface methods, of course But Femote ihfcr-{"ate.'ﬁcn o
} notite that you do NOT have +o '
declare the RemoteExeeption.
public MyRemoteImpl() throws RemoteException { } \,/ow su?erdass orshbeuttor (For
Mnitas‘wcmo'be(}bjttu detlares an C“‘Fhm" *

L i Sl A i OU must write a tonstruetor, betause it medn
i L i‘,‘at your tonstruttor is ealling visky tode (its
try { super (,om{ru(_{:ur)-

MyRemote service = new MyRemoteImpl () ;
Naming.rebind (“RemoteHello”, service);

) catch(Exception ex) { Sl) ‘
ex . printStackTrace () ; \' “"'"5”{‘"7' sing zs‘eitthm bi'}d —
| it NJmlhs vebind(). The

| ndme You register it undey i5 the name tlients will
Il wi

| use to look it Up in the Rm| reaistyy

23/05/2011

12

Client talks to the stub

Code Up Close

Thc tlient always uses the remote
implementation a5 Lhe type of the

servite. [n 'Fa-'.":, the clien .
needs £o know Lhe o m'ft) E’hxs must be the o
of Your remote servige, 2 "a_{: the SErVite was
lookup() is a static method Vedistered wngey.
l of the Nam'lnﬁ ¢lass.
MyRemote service = \[I/
(MyRemote) Naming.loockup(“rmi://127.0.0. 1/RemoteHello”) ;
'\ kﬁ"\:---..._,-
You have to cast it to the The host name or [P
interfate, since the lockup address wheve the
method vetuens type Object. sevvite is vunning,

Hooking up client and server objects

Mo R

RMI registry (n ser-vr)

23/05/2011

13

How it works...

Client does a lookup on the RMI registry
Naming.lookup (“rmi://127.0.0.1/RemoteHello”) ;

@ RMI registry returns the stub object
(as the return value of the lookup method) and RMI deserializes the stub
automatically. You MUST have the stub class (that rmic generated for you)
on the client or the stub won't be deserialized.

. Client invokes a method on the stub, as if the
stub IS the real service

Complete client code

Th i)
K ok h;a "9 elas (o 4

import java.mi. *; D1 the g 3 O ety
i

rack.;sa‘
public class MyRemoteClient {
public static void main (String[] args) {
new MyRemoteClient().go();
}
ey 38 TYRE
public void go() { the rcﬁ,‘s{'-‘"\' ;
o tomes 0y Toragh the 125
i gont o9
try { (0‘0\)&5)
MyRemote service = (MyRemote) Naming.lookup (“mi://127.0.0.1/RemoteHello”) ;
String s = service.sayHello(); V 7 \
ou need the [P
System.out.println(s) R dddress o hostng and the name :SCdl f‘:u
} catch(Exception ex) { - lni,\d/rcbmdt RS

It looks et |
e) JUS‘ﬁ lnkc
: ex.printStackTrace(); M.de caH! (F

; atkhowfcdge Ty

d reqular ofg
XL it st
e Remo{eExch'&ion.)

23/05/2011

14

Back to Gumball machine problem

CEO's desktop The stvb is 3 prony Remote GQumball Mathine
to the vemote with a wm
QumballMathine

Server heap i A)

This is owr .
Meonibor codes ¥
T -
wses 3 provy to The skeleton aecepts the g:.m\aa\\r\'\achmc s b
Lalk o vemote vemote calls and makes . vew ser it s’t.
prball waihineE "‘"YH‘"‘S work on th ‘,’“: o erge
3 sevvice side. & s 50‘.? nkeryate

Gumball Machine remote interface
» import java.rmi.*;
>

» public interface GumballMachineRemote extends Remote

{

> public int getCount() throws RemoteException;
> public String getLocation() throws RemoteException;
> public State getState() throws RemoteException;

>}

23/05/2011

15

State interface extends Serializable

» import java.io.*;

>

» public interface State extends Serializable {
> public void insertQuarter();

> public void ejectQuarter();

> public void turnCrank();

) public void dispense();

Use of keyword “transient”

public class NoQuarterState implements State {

transient GumballMachine gumballMachine;

public NoQuarterState(GumballMachine gumballMachine) {

this.gumballMachine = gumballMachine;

}

public void insertQuarter() {
System.out.printin("You inserted a quarter");
gumballMachine.setState(gumballMachine.getHasQuarterState());

}

/I other methods

}

does not involve this object as well.

The use of transient to ensure that the serialization

23/05/2011

16

23/05/2011

Proxy Pattern defined

The Proxy Pattern provides a surrogate or

placeholder for another object to control access
to it.

The proxy pattern is used to create a
representative object that controls access
to another object, which may be remote,
expensive to create or in need of securing.

Proxy Class Diagram

/7 Both the Prory and

<<interlace>>

Subject

The RealSub e(,{: is
“3“3”)4 the ob ject
that does rnos{;

of the veal work;
the Proxy tontrols
actess to it

request()

the
RcalSubJett imp cmcrjl'g.h’d\e
Sub‘)ef.{'. m‘l‘,e"-ca&c s
allows any

the pro*y
Rc aISu\:ch-

ush ‘lkt {',\'\ﬂ

The Prox o-H‘,Cn instantiates va‘)cf-{-; so it ean
or handlcs the ereation of Lorward veaues
the RealSubject.

subject
RealSubject
f request() ' request() ' é\

The Proxy keeps 2
velfevente Lo the

Lo the Sub \)Cf-JC

when netessavy:

17

[@ The CEO runs the monitor, which first grabs the proxies to the remote

gumball machines and then calls getState() on each one (along with
getCount() and getlLocation()).

CEO's desktop

with & Ji/m

ppbireEss

Remote Qumbal| Maehing
Type is ﬁmbaHMachineRemo{g

RMI registry (on gumball machine|

Making the call

© getState() is called on the proxy, which forwards the call to the remote

sevvice. The skeleton receives the request and then forwards it to the
gunball machine.

23/05/2011

18

Q GumballMachine returns the state o the skeleton, which serializes it and
transfers it back over the wire o the proxy. The proxy deserializes it and
returns it as an object to the monitor.

t 4 at all Likewise, the QumballMathine
The monitor "‘3’“: f‘hangc Lounter implements another interface and
ceepk it knows § may en the may throw a remote exception in its
:.l:jtc excepbions I a'\s{.;g:?;ce vather tonstruttor, but other than that, the
ﬁw..'na\\r\/\t?""""“"Rma‘JDe ation tode hasn't thanged.
implemen
Lhan 3 tontrete imple

We also have a small bit of code o vegister and locate stubs using the
RMI vegistry. But no matter what, it we were writing something to
work over the Internet, we'd need some kind of locator service

Remote Proxy

Remote Proxy

With Remote Proxy, the proxy
acts as a local representative
for an object that lives ina
different TVM. A methed call

on the proxy results in the call
being transferred over the wire,
invoked remotely, and the result
being returned back to the proxy
and then to the Client,

We know this diaﬁram
pretty well by now..

23/05/2011

19

23/05/2011

Virtual Proxy

Big “expensive bo treate’ °bjc¢£'

Virtual Proxy

Virtual Proxy acts as a
representative for an object that
may be expensive to create. The
Virtual Proxy often defers the
creation of the object until it

is needed; the Virtual Proxy

also acts as a surrogate for

the object before and while it

is being created. After that, the
proxy delegates requests directly to
the RealSubject.

T '?';0*1! b
. = when E'ES nee dtd f

~ Theprony ma\,? handle the request, or if
- the RealSubject has been ¢reated, delegate
the call to e RealSbjert,

Choose the album tover of

your liking here. \}

Playing CD Covers

Buddha Bar
Selected Ambient Works, Vol. 2 |
{ Northern Exposure

Karma
Ambient: Music for Airports
v =

LT
{Favorics c0n

| | While the CD cover

/ is loading, the proxy
“Loading CD cover, please wait...”. dls?{ays a message.

I .
f T SEREATHNECUR SRS R - R s 3
Favorite CDs 1

20

Playing CD Cover Proxy

This is Javax,swinﬁ.llmagekon.
B class that displays an Image.

This is the Swing
= <<interface>>
|eon m{:cr\facc used lcon
to display images in a getloonWidthy)
user intertace. getlconHeight()
painticonf)

subject

getlconWidth()

getlconHeight()
painticon()

getleonWidth()
/ geticonHeight()
painticon()

C This is our proxy, which Fivst
displays a message and then when
the image is loaded, delegates to
Imageleon to display the imaae.

o

ImageProxy process

ImageProxy first creates an Imagelcon and starts
loading it from a network URL.

While the bytes of the image are being retrieved,
ImageProxy displays “Loading CD cover, please
wait...”.

When the image is fully loaded, ImageProxy del-
egates all method calls to the image icon, including
painticon(), getWidth() and getHeight().

If the user requests a new image, we’ll create a
new proxy and start the process over.

23/05/2011

21

ImageProxy process

What did we do? &)
We created an ImageProxy for the display. The paintIcon()
method is called and ImageProxy fires off a thread to ﬂle 5cenes
retrieve the image and create the ImageIcon.
f,rcﬂ{'.cs 3
e o tanbiats te
o~ PpaintIcon() Imasylcon, which starts Sone iege
,—/ vebrieving {he image- : the Internet
J - get l‘r Kilg!
= 5 ' :
onl'"’"ﬂ.* . 5& l
e Tmag® ragercon
displays loading
message

image: retrieved

At some point the image is returned and
the ImageIcon fully instantiated.

z”’egeIcO“

6 After the ImageIcon is created, the next time paintIcon() is
called, the proxy delegates to the ImageIcon,

paintIcon()

paintIcon()

displays the real image

23/05/2011

22

class ImageProxy implements Icon {
Imagelcon imageIcon;
URL imageURL;
Thread retrievalThread;
boolean retrieving = false;

public ImageProxy (URL url) { imageURL = url; }

public int getIconWidth() {
if (imageIcon != null) return imageIcon.getIconWidth();
else return 800; }
public int getIconHeight () {
if (imageIcon != null)return imagelIcon.getIconHeight();
else return 600;}
public void paintIcon(final Component c, Graphics g, int x, int y) {
if (imageIcon != null) imageIcon.paintIcon(c, g, x, V);
else{ g.drawString("Loading CD cover, please wait...", x+300, y+190);
if (!retrieving) {
retrieving = true;
retrievalThread = new Thread(new Runnable() {
public void run() {

try
imageIcon = new ImagelIcon (imageURL, "CD Cover");
c.repaint();

} catch (Exception e) { e.printStackTrace();}

}

1)
retrievalThread.start () ;

} 45 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Using Java API’s Proxy to create a
protection proxy

<<interface>> <<interface>>
Subject InvocationHandler

trequest() J tinvoke() J

Proxy InvocationHandler

L/

(RealSubject

request() request() invoke()

23/05/2011

23

23/05/2011

The proxy zoo

» Firewall proxy
» Smart Reference proxy
E.g. counts the number of references
» Caching proxy
» Synchronization Proxy
» Complexity hiding Proxy
Similar to fagade pattern, it also controls accesses

» Copy-on-write Proxy

47 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

24

