
Tecniche di Progettazione:

Design Patterns

GoF: Bridge

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1



The Bridge Pattern

� The Bridge Pattern permits to vary the implementation 
and abstraction by placing the two in seperate 
hierarchies.

� Decouple an abstraction or interface from its 
implementation so that the two can vary independently. implementation so that the two can vary independently. 

� The bridge uses encapsulation, aggregation, and can use 
inheritance to separate responsibilities into different 
classes.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2



Pattern structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3



Participants

� Abstraction

defines the abstract interface 
maintains the Implementor reference 

� Refined Abstraction 

extends the interface defined by Abstraction extends the interface defined by Abstraction 

� Implementor

defines the interface for implementation classes 

� ConcreteImplementor 

implements the Implementor interface

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4



Uses and Benefits

� Want to separate abstraction and implementation 
permanently 

� Share an implementation among multiple objects 

Want to improve extensibility � Want to improve extensibility 

� Hide implementation details from clients

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5



� Bridge might be a situation where the programmer 
thought it would be best to isolate the handling of the 
system-dependent stuff from the handling of the system-
independent stuff.

The collections class framework in the Java API provides The collections class framework in the Java API provides 
several examples of use of the bridge pattern. Both the 
ArrayList and LinkedList concrete classes implement the 
List interface. The List interface provides common, 
abstract concepts, such as the abilities to add to a list and 
to ask for its size. The implementation details vary 
between ArrayList and LinkedList, mostly with respect to 
when memory is allocated for elements in the list.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6



First, we have our TV implementation 

interface

//Implementor 

public interface TV {

public void on();

public void off(); 

public void tuneChannel(int channel);public void tuneChannel(int channel);

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7



And then we create two specific 

implementations.

//Concrete Implementor 

public class Sony implements TV{

public void on(){

//Sony specific on

}

public void off(){

//Concrete Implementor 

public class Philips implements TV{

public void on(){

// Philips specific on

}

public void off(){public void off(){

//Sony specific off

}

public void tuneChannel(int 
channel) {

//Sony specific tuneChannel

}

}

public void off(){

// Philips specific off

}

public void tuneChannel(int 
channel) {

// Philips specific tuneChannel

}

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.8



Now, we create a remote 

control abstraction to control the TV

//Abstraction 

public abstract class RemoteControl { 

private TV implementor; 

public void on() { implementor.on(); } 

public void off() { implementor.off(); } public void off() { implementor.off(); } 

public void setChannel(int channel) { 
implementor.tuneChannel(channel); } 

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.9



But what is we want a more specific remote control -

one that has the + / - buttons for moving through the 

channels?

//Refined abstraction 

public class ConcreteRemote extends RemoteControl { 
private int currentChannel; 

public void nextChannel() { 

currentChannel++; currentChannel++; 

setChannel(currentChannel); } 

public void prevChannel() { 

currentChannel--; 

setChannel(currentChannel); } 

}

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10



Bridge vs Strategy

Bridge vs Adapter

� Often, the Strategy Pattern is confused with the Bridge 
Pattern. Even though, these two patterns are similar in 
structure, they are trying to solve two different design 
problems. Strategy is mainly concerned in encapsulating 
algorithms, whereas Bridge decouples the abstraction 
from the implementation, to provide different from the implementation, to provide different 
implementation for the same abstraction. 

� The structure of the Adapter Pattern (object adapter) 
may look similar to the Bridge Pattern. However, the 
adapter is meant to change the interface of an existing 
object and is mainly intended to make unrelated classes 
work together.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11


