Tecniche di Progettazione:
Design Patterns

GoF: Command

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

The Command Pattern

» When two objects communicate, often one object is

sending a message to a receiver to perform a particular
function

» The first object (the "sender") could hold a reference to
the second (the "receiver")

or get it as a return value, or argument, or construct it

» The senders sends a specific method to the receiver

The Command Pattern

» But what if the sender is not aware of, or does not care
who the receiver is?

» The Command design pattern encapsulates the concept
of a "Command" as an object

» The sender holds a reference to a Command object
rather than to the specific receiver

The Command object encapsulates the receiver

The Command Pattern

» The sender sends a vanilla message

such as actionPerforme, execute, doit, or undo

to the Command object

» The Command object is then responsible for dispatching
the correct messages to the specific receiver(s) to get the
job done

Command Pattern in Java

» One object can send messages to other objects without
knowing anything about

the actual operation or
the type of object
» Polymorphism lets us encapsulate a request for services
as an object
Establish a method signature name as an interface
Vary the algorithms in the called methods

Uses

» The Command object can also be used when you need to
tell the program to execute the command later.

In such cases, you are saving commands as objects to be
executed later

GoF example

Application

AddiDocument)

o

Q—.J Memn

c::—H] Memliem

Add(henalterm)

Clickeds)

cotrinatid

!

Document

open()
Close)
Cut()

Copy()
Paste()

Cormtnand->Exzecute]) Il}

Design patterns, Laura Semini, Universita di Pisa,

Cammond

Eracutef)

A

Dipartimento di Informatica.

PasteCommand i1s a concrete Command
that implements paste function.

Document

opel)
Clozel)
Cut()

Copy()
Paste()

Carrrcgud

Executef)

document

Pastel omnmand

Execute!) o -

____________ document -= Pastel) Il\}

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

OpenCommand is a concrete Command
that implements open function.

Coamrrugicd

Execute()

A

9 Design patterns, Laura Semini, Universita di Pisa,

Application l
AddiDocument) Epplication Op enC ommand
Execute() o
AgkUszer(y |
|
|
l
|

natne = & skl zer()

S

doc = new Docutmnent(hiame)

application -> Add{doc)
doc - Cpen()

Dipartimento di Informatica.

MacroCommand is a concrete Command that
executes a sequence of commands.

Coamrmegid

Executef) >

S

Comimatds

MacroC ommand

Execute) =
|
|
i

for all ¢ i conunands
c -*= Execute)

10 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

The Command Pattern structure

Client

ot

11

—» Receiver

Action()

receiver

» Command

Execute()

a'>

]‘—

<ZCreate=»

Design patterns, Laura Semini, Universita di Pisa,

ConcreteCommand

Execute)

&

----- —{receiver -> Action()

State

Dipartimento di Informatica.

Command: Participants

» Command: declares an interface for executing an
operation.

» ConcreteCommand: defines a binding between a
Receiver object and an action, and implements Execute.

» Client: creates a ConcreteCommand object and sets its
receiver.

» Invoker: asks the command to carry out the request.

» Receiver: knows how to perform the operations.

12

Command: collaboration (with two
invokers for a command)

C
Client

inmv
Ivoker

1: createdn

imwd
Imvoker

I

|

I

I
2: storeCommandicomirng

T

3 storeCommandicormg)

i
!

13

5 execute:

4 execute):

COmm
ConcreteCommand

4.1 action:

r

Receiver

-
I

5.1 action):

]
I
I
I
I
|

Universita di Pisa, Dipartimento di Informatica. IS

2003

Implementation issues

» How intelligent should a command be!?

one extreme: A command only defines a binding between a
receiver and the actions that carry out the request.

the other extreme: A command implements everything itself
without delegating to a receiver at all.

» Supporting undo and redo. A ConcreteCommand class
might need to store some additional states:

the Receiver object
the arguments to the operation performed on the receiver

any original values in the receiver that may change as a result
of handling the request

14 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Command pattern: Consequences

» You can undo/redo any Command

Each Command stores what it needs to restore state

» You can store Commands in a stack or queue
Command processor pattern maintains a history
» It is easy to add new Commands, because you do not
have to change existing classes

Command is an abstract class, from which you derive new
classes

execute(), undo() and redo() are polymorphic functions

Asynchronous Method Invocation

» Another usage for Command is to run commands
asynchronously in background of an application.

In this case the invoker is running in the main thread and sends
the requests to the receiver which is running in a separate
thread.

The invoker will keep a queue of commands to be run and will
send them to the receiver while it finishes running them.

» Instead of using one thread in which the receiver is
running more threads can be created for this. The
invoker will use a pool of receiver threads to run
command asynchronously.

16 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

Summary

» The Command design pattern encapsulates the concept
of a command into an object.

» A command object could be sent across a network to be
executed elsewhere or it could be saved as a log of
operations.

17

® Supponiamo di avere una classe Account che
rappresenta un conto corrente, e vogliamo che nel
nostro programma le operazioni di prelievo

(withdraw) e versamento (deposit) siano
“annullabili”, con il vincolo che I'annullamento puo
essere fatto solo in ordine cronologico inverso

18 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

public class Account {
private double balance; // Saldo del conto

public Account{double initialBalance) {
balance=initialBalance;

i

/7 Restituisce 11 saldo

public double getBalance() {
return balance;

i

/4 Esegue un versamento

public void deposit({double amount) {
balance += amount;

}

// Esegue un prelievo
public wvoid withdraw(double amount) {
balance -= amount;

}
}

19 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

public abstract class Command {
protected Account account;

protected Command(Account account) {
this.account = account;

¥

public abstract void perform();
public abstract void undo();

20 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

public class DepositCommand extends Command {
private double amount;
public DepositCommand(Account account, double amount) {
super(account);
this.amount=amount;

¥

public void perform() {
account.deposit(amount);

¥

public void undo() {
account.withdraw(amount);

3
¥

21 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

public class WithdrawCommand extends Command {
private double amount;
public WithdrawCommand(Account account, double amount) {
super(account);
this.amount=amount;

3

public void perform() {
account.withdraw(Camount);

¥

public void undo() {
account.deposit(amount);

}
¥

22 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

import java.util.Stack;

public class AccountManager {
private Account account;
private Stack<Command> commandHistory;

public AccountManager(Account account) {
this.account=account;
commandHistory=new Stack<Command>{);

¥

public double getBalance() {
return account.getBalance();

}

/7 continua ...

23 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

// ... continug

public void deposit(double amount) {
Command cmd=new DepositCommand(account, amount);
commandHistory.push(cmd);
cmd.perform();

}
public void withdraw(double amount) {

Command cmd=new WithdrawCommand(account, amount);
commandHistory.push(cmd);
cmd . perform();
}
public void undo() {
Command last=commandHistory.pop();
last.undo();

3
¥

24 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

25

Design patterns, Laura Semini, Universita di Pisa,

Dipartimento di Informatica.

26

Design patterns, Laura Semini, Universita di Pisa,

Dipartimento di Informatica.

Implementation issues (cont’d)

» In programming languages like C, there are the function
pointers.

» Java doesn't have function pointers, we can use the
Command pattern to implement callbacks.

» One might be tempted to use the Method objects of the
Reflection API. Better not to use the Reflection APl when
other tools more natural to the Java programming
language will suffice

27 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.

