
Tecniche di Progettazione:

Design Patterns

GoF: MVC e Observer

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.1

The Observer Pattern

� Intent

� Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically

� AKA

� Dependents, Publish-Subscribe, Model-View

� Motivation

� The need to maintain consistency between related objects
without making classes tightly coupled

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.2

Example

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.3

Structure

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.4

MVC

� Model view controller

� More architectural than design pattern

� How the structure changes?

� What is the controller for?

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.5

Role of the controller

� In MVC, the controller is a strategy for handling events.

� The events come directly to it, rather than to the view.

� The controller changes the model, but it is not notified by
the model.

� When the user presses a key or moves the mouse, the
controller receives the event. It checks with the view to
map mouse locations into model coordinates, then
interacts directly with the model.

� If it changes the model then the model notifies all
dependents (observers), which notifies the view, which
redisplays.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.6

Role of the controller

In a conversation form

� View: "Hey, controller, the user just told me he wants
item 4 deleted.“

� Controller: "Hmm, having checked his credentials, he is
allowed to do that... Hey, model, I want you to get item 4
and do whatever you do to delete it.“

� Model: "Item 4... got it. It's deleted. Back to you,
Controller.“

� Controller: "Here, I'll collect the new set of data. Back
to you, view.“

� View: "Cool, I'll show the new set to the user now."

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.7

Model View Controller with a different

perspective

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.8

The controller
handles input
events
The view deals with
"output"

Yet another picture

Design patterns, Laura Semini,
Università di Pisa, Dipartimento di

Informatica.

9

MVC: counter

� Counter component which consists of a text field and two arrow buttons
that can be used to increment or decrement a numeric value shown in the
text field.

� The counter’s data is held in a model that is shared with the text field. The
text field provides a view of the counter’s current value. Each button is an
event source, that spawns an action event every time it is clicked. The buttons
can be hooked up to trampolines that receive action events, and route them
to an action listener that eventually handles that event. Recall that a
trampoline is a predefined action listener that simply delegates action
handling to another listener.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.10

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.11

Brief Summary

1. You’re the user — you interact with the view.
� The controller takes your actions and interprets them. If you click on
a button, it’s the controller’s job to figure out what that means and
how the model should be manipulated based on that action.

2. The controller asks the model to change its state.
� The controller takes your actions and interprets them. If you click on
a button, it’s the controller’s job to figure out what that means and
how the model should be manipulated based on that action

3. The controller may also ask the view to change.
� When the controller receives an action from the view, it may need to
tell the view to change as a result. For example, the controller could
enable or disable certain buttons or menu items in the interface.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.12

Brief Summary

4. The model notifies the view when its state has changed.

� When something changes in the model, based either on some
action you took (like clicking a button) or some other internal
change (like the next song in the playlist has started), the
model notifies the view that its state has changed.

5. The view asks the model for state.

� The view gets the state it displays directly from the model. For
instance, when the model notifies the view that a new song has
started playing, the view requests the song name from the
model and displays it. The view might also ask the model for
state as the result of the controller requesting some change in
the view.

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.13

MVC1: CounterGui

/**
* Class CounterGui demonstrates having the model and view in the same class
*/

import java.awt.*;
import java.awt.event.*;

public class CounterGui extends Frame
{
//the counter (the model!)
private int counter = 0;

//the view/
private TextField tf = new TextField(10);

//………… see project

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.14

MVC2: CounterView & Counter

� This example shows the model and the view in separate
classes. First the view class:

� /**

� * Class CounterView demonstrates having the model and view

� * in the separate classes. This class is just the view.

� */

� public class CounterView extends Frame {

� // The view.

� private TextField tf = new TextField(10);

� // A reference to our associated model.

� private Counter counter;

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.15

MVC2: CounterView & Counter

� public CounterView(String title, Counter c) {

� super(title);

� counter = c;

� Panel tfPanel = new Panel();

� tf.setText(counter.getCount()+ "");

� tfPanel.add(tf);

� add("North",tfPanel);

� Panel buttonPanel = new Panel();

� Button incButton = new Button("Increment");

� incButton.addActionListener(newActionListener() {

� public void actionPerformed(ActionEvent e) {counter.incCount();

� tf.setText(counter.getCount() + "");

} });

� buttonPanel.add(incButton);
Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.16

MVC3: applying Observer

/**

* Class ObservableCounter implements a simple observable

* counter model.

*/

public class ObservableCounter extends Observable {

/**

* Class ObservableCounterView demonstrates having the model

* and view in the separate classes. This class is just the view.

*/

….. counter.addObserver(new Observer() {

public void update(Observable src, Object obj) { …….

Design patterns, Laura Semini, Università di Pisa, Dipartimento di Informatica.17

