Tecniche di Progettazione:
Design Patterns

GoF: Proxy

Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



Revisit the Gumball machine example

» The same example covered in the State pattern

» Now we want to add some monitor to a collection of
Gumball machines



Gumball Class

public class GumballMachine A lotation is just a Sti
// other instance variables | "

bR L

public GumballMachine (String Iocatien, int count) {

// other constructor

e T A Re The loation is Passed into the
tonstructor and stored in the

instante variable.

e

% SR e if Lg{‘,l! a‘.'aﬂ idd 3 se&“ u Idr
// other methods here arab the location when we need it




Gumball Monitor

public class GumballMonitor |{

GumballMachine machine; p The monitor takes the machine in its

tonstruttor and assigs i
public GumballMonitor (GumballMachine machine) { machine i“{a':: :::_'211 e
iable.

this.machine = machine;

}

public void report() |
System.out.println(“Gumball Machine: “ + machine.getLocation());
System.out.println(“Current inventory: ™ + machine.getCount() + ™ gumballs”);
System.out.println (“*Current state: “ + machine.getState());

\

Our veport method just by '
: Jus Prmtli
location, inventory and the mhim;#



Role of the remote Proxy

Remote :
with 3 Jg;ba" Machine

| O

Remote Heap

Lthe Gumball w01
l:::; is the ﬁ"lﬂ":{', i
oretk; it Ehinks it

?-Es veally jﬁ’ﬂ {‘-""_“"“‘5
o the proXy Z::"h
+ kalks to od Lt
iﬁh:al h..,..hal‘l mathine i‘;: iﬁﬂ;s ""“ﬁ)‘"I ’::J:,ua
over ?d\l network . to ) & oxk
Lalking to 3 proX ced



RMI Detour in looking at Proxy Pattern

€) First, we’re going to take the RMI
Detour and check RMI ocout. Even if
you are familiar with RMI, you might

want to follow along and check ocut the
scenery.

© Then we're going to take our
GumbaliMachine and make it a remote
service that provides a set of methods
calls that can be invoked remotely.

€© Then, we going to create a proxy that can
talk to a remote GumballiMachine, again
using RMI, and put the monitoring system
back together so that the CEQO can monitor
any number of remote machines.



Remote Methods 101

Client helper ?"'d'ﬂ'ds'
_— 4o be the sevvite,
|_J|Client heap it's just @ v

for the

.....

s talking tothe (1
Real Sevvite. [t Gl

Ehinks the client I S
| ‘ - e 90) 1)
helper 1$ the thing I Sevvice helper aets i The Ser 2o e th
that ean actudlly request from fahe tlieni. tpe Red i?m methot
do the real work. helper, unpacks it, and o'bjgﬂ; wi Ny docs khe
. ¢ -l wovk



How the method call happens
Client calls method

o e T T

. Client object calls doBigThing() on the client helper object.




Client Helper forwards to service helper

@ Client helper packages up information about the call
(arguments, method name, etc.) and ships it over the
network to the service helper.

Client htup "client wants to call a method"



Service helper calls the real object

0 Service help'er' unpacks the information from the client helper,
finds out which method to call (and on which object) and
invokes the real method on the real service object.

emember, this is the
E\:;i’c ith the REAL

method lodit: The one l
that does Lhe veal work!

438



Real object returns result

@ The method is invoked on the service object, which returns
some result to the service helper.

Client heap




Service helper forwards result to client

Service helper packages up information returned from the
call and ships it back over the network to the client helper.

Client heap



Client helper returns result to client

Client helper unpackages the returned values and refurns
them to the client object. To the client object, this was all
transparent.




RMI Nomenclature: in RMI, the client helper is a ‘stub’ and the
service helper is a ‘skeleton’,

This is going
to act as owr
|}l Client heap proxy

Now let’s go through all the steps needed to make an object into a the servey s:f : &
service that can accept remote calls and also the steps needed to is sti| handliy,

allow a client to make remote calls,

You might want to make Sure your seat belt is fastened; there are

a lot of steps and a few bumps and curves - but nothing to be too
worried about.



Steps in using Java RMI

Step one: | eckate 8¢ im‘: Jc:u
Make a Remote Interface [ é““‘::t pkhods J‘E |
The remote interface defines the methods that ":a ients ¥ ©
a client can call remotely. It’s what the client ~ MyService.java
will use as the class type for your service. Both
the Stub and actual service will implement
this!

Step two: e ) ¢ The Real Service, t{t‘: f"’::
Make a Remote Implementation ™ i e acied CL
This is the class that does the Real Work, I the vel wor

has the real implementation of the remote MyServicelmpljava  the remots intertace
methods defined in the remote interface,
It’s the object that the client wants to call
methods on (e.g., our GumballMachine!).



Additional steps

methods on (e.g., our GumballMachine!).

~3pits out ¢
Step three: —— 353"“"'{,‘ the actual tlasses Loy 'f::: new
Generate the stubs and skeletons using rmic cervite implementation elass.. helper objeets.

These are the client and server ‘helpers’. You
don't have to create these classes or ever look
at the source code that generates them. It’s all
handled automatically when you run the rmic
tool that ships with your Java development kit.

File Edit Window Help

Eal

$rmic MyServicelImpl

MyServicelmpl_Stub.class

L1y
s 118

011 0
Step four: ot o1
Start the RMI registry (rmiregistry) MyServicelmpl_Skel.class
The rmuregistry is like the white pages of a phone
book. It’s where the client goes to get the proxy
(the client stub/helper object).

File Edil Window Help Drink

$rmiregistry

Step five:
Start the remote service

You have to get the service object up and running. Your
service implementation class instantiates an instance e j
of the service and registers it with the RMI registry. tJava MyServicelmpl
Reglatering it makes the service available for clients.

il




@ Extend java.rmi.Remote STEP 1
Remote is a ‘marker’ interface, which means it has no methods. It has special Remote Interface

meaning for RMI, though, so you must follow this rule. Notice that we say
‘extends’ here. One interface 15 allowed to extend another interface.

the
This Lells vs that
" m{:*' Ei-'.-t s 56“\5 to e s

public interface MyRemote ' e { ko support cemote talls
. Declare that all methods throw a RemoteException
The remote interface is the one the client uses as the type for the service. In
other words, the client invokes methods on something that implements the
remote interface. That something is the stub, of course, and since the stub is
doing networking and 1/0, all kinds of Bad Things can happen. The client
has to acknowledge the risks by handling or declaring the remote exceptions. If
the methods in an interface declare exceptions, any code calling methods on a
reference of that type (the interface type) must handle or declare the exceptions.
i@ort java_ rmi.¥*; (__..; R,tlnﬂ'tc in‘l’.ﬂ"a": isn ja\-‘i.rml.
public interface MyRemote extends Ramuta { F Euery remote method call is
public String sayHello() throws RemoteException; c‘onsidered ' risky. D¢¢|a,.,h5
} ) Rthﬂ‘&Eﬂep{:m on ever
method forees the tlient
to pay attention and
atkmwlcdse that -[-,h,

'“lal'l{'. not work.



STEP 1
Remote Interface

. Be sure arguments and return values are primitives or Serializable

Arguments and return values of a remote method must be either primitive

or Serializable. Think about it. Any argument to a remote method has to

be packaged up and shipped across the network, and that’s done through
Serialization. Same thing with return values. If you use primitives, Strings, and
the majority of types in the API (including arrays and collections), you'll be fine.

[ you are passing around your own types, just be sure that you make your classes
implement Serializable.

na be shi
server bstk fo the flact o |

how aras and veturn values

shipped over the wire from the
) 50 it must be Sevializable That's
9t packaged up and sent



: STEP 2
@ Implement the Remote interface Remote Implementation

Your service has to implement the remote interface—the one with
the methods your client is going to call.

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote
public String sayHello() { Al |
return “Server says, ‘Hey'”; T,

tompiler will make sure that

} 0U Ve implem ted
// more code in class Zm ﬂ: ':;c:: {_‘R:;Lfi::;:::i‘
] ’h thli f,.jsg’ ﬂ"ﬂ"t& ﬂhy

@ Extend UnicastRemoteObject

In order to work as a remote service object, your object needs some functionality
related to ‘being remote’, The simplest way s to extend UnicastRemoteObject

(from the java.rmi.server package) and let that class (your superclass) do the
work for you.

public class MYRﬁmoteImp PRl o

emoteObject implements MyRemote |



STEP 2
Remote Implementation

@ Write a no-arg constructor that declares a RemoteException

Your new superclass, UnicastRemoteObject, has one little problem—its
constructor throws a RemoteException. The only way to deal with this is to
declare a constructor for your remote implementation, just so that you have a
place to declare the RemoteException. Remember, when a class is instantiated,
its superclass constructor is always called. If your superclass constructor throws
an exception, you have no choice but to declare that your constructor also throws

an exception, don't have b u{'.. ah'ﬂ‘-hi'l"& n
‘i:: tonsbructor. You just necd iiLla«ss
way ko detlare that you e
construttor throws an exteption

public MyRemoteImpl () throws RemoteException { }

@ Register the service with the RMI registry

Now that you've got a remote service, you have to make it available to remote
clients. You do this by instantiating it and putting it into the RMI registry (which
must be running or this line of code fails). When you register the implementation
object, the RMI system actually puts the stub in the registry, since that's what the
client really needs. Register your service using the static rebind() method of the
java.rmi.Naming class. (kha
try { Give Yyour servite 3 name ) and r:&u‘i‘,ﬂ'
te service = new MyRemotelImpl () ; to look it wp in ‘Uﬂ *‘ﬁ'm o0 bind the
with the RM| vegistry Whin YO0 0 e the

ek, RMI swaps the servic
} cate ' A :i‘;ﬂ,j f:& the stub in the vegistry




STEP 3
Create Stubs &

Run rmic on the remote implementation class Skeletons
(not the remote interface)

The rmic tool, which comes with the Java software
development kit, takes a service implementation and
creates two new classes, the stub and the skeleton. It uses

. . . , M
a naming convention that 1s the name of your remote v "5 Jenerates 4y,
" (] L] ] {
implementation, with either _Stub or _Skel added to Notice that You don t 53y tlass . 35;-\‘.'5 for the
: : : = . : er ob;
the end. There are other options with rmic, including on the end Jusk the tlass name: per objects

not generating skeletons, seeing what the source code
for these classes looked like, and even using IHOP as

File Edit Window Help Whufhe
the protocol, The way we're doing 1t here is the way $rmic MyRemoteImpl
you'll usually do it. The classes will land in the current
directory (1.e. whatever you did a cd to). Remember,
rmic must be able to see your implementation class, so
you'll probably run rmic from the directory where your
remote implementation is located. (We're deliberately
not using packages here, to make 1t simpler, In the Real
World, you'll need to account for package directory
structures and fully-qualified names).

MyRemotelmpl_Stub.class

MyRemotelmpl_Skel.class



Step four: run rmiregistry

Bring up a terminal and start the rmiregistry. File Edt Window Help Huh?

Be sure you start it from a directory that has access to srmiregistry
vour classes. The simplest way is to start it from your

‘clagses’ directory.

Step five: start the service

Bring up another terminal and start your service

| File Edit Window Help Huh?
This might be from a main() method m your remote
implementation class, or from a separate launcher class.

In this simple example, we put the starter code in the
implementation class, in a main method that nstan tates the
object and registers it with RMI registry.

% java MyRemoteImpl




Complete code for the server side

The Remote interface:

W Rcmo{cﬁﬁ.cf‘{iaﬂ Bnd Rtmab’.

lmport java.mmi.*; -mjurﬁgu are n Jaua.rm- pat 49

¢ Y our wkeekate MUST extend qua.rm.RcmoJc:
public interface MyRemote extends Remote {

public String sayHello() throws RemoteException; Al of Your remote methods must
\ e~ detlare 3 RemoteExcteption



The Remote service (the implementation):

i e
: JL 15
import java.rmi.*; st {;2125" UicastRemobeObject is the
: S ke 1.5EY : 1La% :
import java.rmi.server.*; 53#3“%‘ ( E;:::f !:2-1 Eﬁ make 3 rwaﬁt °h.}¢f'{:'

public class MyRemoteImpl extends UnicastRemoteObject implements MyRemote |

public String sayiiello{) { £ You have 4o implement all the You MUST o

: leme
return “Server says, ‘Hey'”; intevfate methods, of course But  TO™ote inferfig T YO

} notice that you do NOT have Lo ”
detlare the R:ma{cﬁﬂcﬁian-
public MyRemoteImpl () throws RemoteException { } ‘{aur supertiass construetor (For

i Hnir.as{RchccObjc&’c) detlares an exteption, so

' 1 i i i OU must write 3 tonstruttor, betause it "‘_53'“
R TR \{ha{: Your Lonstruttor is ta’lling !risk*f tode (its
try | super tonstruttor).

MyRemote service = new MyRemoteImpl () ; 1‘\
Naming.rebind (“"RemoteHello”, service);

} cateh(Exception ex) ({ Make the remote obi e
) éx.printStackTrace () ; \__ rmiregistery sing Lﬁm};ﬂﬁmﬂ? ifh‘&’ ?)ht
n ' : 'h§ reb
) :sat L‘fi’“ h!-ﬂuﬁr 1t underis the hﬂsm: c'l?: f;s T‘he
} ook it up in the RM| ——" nts will



Client talks to the stub

Code Up Close

The tlient always uses the remote

;:ﬂlt;er}{afml ai the type of the
- In act, the tlient never -
:Ef::ufar:“ovécfhc actual elass name E::i 'E:Sf o o
mOTL Servite. I
iy il il rcais{cr:;::::: -

\f of the Naminﬁ tlass.
", 4

MyRemote service =
(MyRemote) Naming. lookup (“rmi://127.0.0. 1/RemoteHello”) ;

\ "‘-‘ﬁv"‘\_—.f
You have to tast it +o Lhe The host name or [P
interfate, since the lookup addvess wheve the

method veturns type Object. Servite is vunning,




Hooking up client and server objects




How it works...

(1) Client does a lookup on the RMI registry
Naming.lookup(“rmi://127.0.0.1/RemoteHello”) ;

@ RMI registry returns the stub object
(as the return value of the lookup method) and RMI deseralizes the stub
automatically. You MUST have the stub class (that rmic generated for you)
on the client or the stub won't be deseralized,

Client invokes a method on the stub, as if the
stub IS the real service



Complete client code

The Naming 4|
K ooksp) 1 - if:s- (For o

import java.rmi.*;

IS In Ja\’ﬂ-mi Pack h..wcgigf,-
public class MyRemoteClient {
public static void main (String[] args) f{
new MyRemoteClient().go() ;
}
ey 35 Y
. : Ve iibf." as
public void go() { 1t tonts out ’{%:""ﬁi the Last;
-y ( Ob)'-f-h 50 flon
MyRemote service = (MyRemote) Naming.lnukup{“rmi:ﬂlﬂ.O.U.IfRamotaHalln"];
String s = service.sayHello(); T X
& YOU need 'HIE IP ﬂhd 'H"IC name used {U
} syzt:?;ut-irintl“}{”{f - 'osthine bind/vebind the sevvite
catch (Exception ex

egular olg
{ it must
¢ the RemaftEMEFfiaﬁ-}

If fﬂnks uet [
: J“t '!kf_‘ ar
ex.printStackTrace(); .,

} Jﬁkhﬂ’w,tda



Back to Gumball machine problem

Thisis owr
Monitor tode, i
Lalk ta vemote

3u#"oa'ﬂ mathines:

The stb is 3 proy

{0 the Tt'ﬂ"m
GurmballMathine:

Client heap

The skeleton ateepts the
remote £alls and makes

c-very-thing work on the
servite side.

Remote Qumball Mathine

with 3 Jum.




Gumball Machine remote interface

» import java.rmi.’*;
4

» public interface GumballMachineRemote extends Remote

{
> public int getCount() throws RemoteException;
> public String getLocation() throws RemoteException;
> public State getState() throws RemoteException;

>}



State interface extends Serializable

import java.io.®;

public interface State extends Serializable {
public void insertQuarter();
public void ejectQuarter();
public void turnCrank();

4
4
4
4
4
4
> public void dispense();
4

}



Use of keyword “transient”

public class NoQuarterState implements State {

transient GumballMachine gumballMachine;

public NoQuarterState(GumballMachine gumballMachine) {
this.gumballMachine = gumballMachine;

public void insertQuarter() {
System.out.printIn("You inserted a quarter");
gumballMachine.setState(gumballMachine.getHasQuarterState());

}

/| other methods

J The use of transient to ensure that the serialization

does not involve this object as well.



Proxy Pattern defined

The Proxy Pattern provides a surrogate or

placeholder for another object to control access
to it.

The proxy pattern is used to create a
representative object that controls access
to another object, which may be remote,
expensive to create or in need of securing.



Both the Proxy and th:h
[—\ RcalSuchct wmpl lement the
Cub ett m{-,erfrac.: This
o £ to breat
allows any tlien
the prowy jwst like the
Rt&\Subj:c.

subject
RealSubject Fmﬂ
K request() = (\

Proxy Class Diagram

The Proxy keeps 3

Lo the

Th 'rc.‘[:ﬂ'chf-t

= u: iﬁ;ﬂi“l:‘,):ct {;s The Pro:ﬁ o-(:{:cn instantiates Sub‘)tt-h so it tan

that does mag-z ovr 'handlts the eveation of waard rtq_uti“is
the RealSubject. Lo the Subject

O‘F {:hf rfal Wmnk ht “Ec':s'm\,i
wheén

{Z"IE Pl"r,hgy Lon 'Ei"'oh

aetess to it



€ The CEO runs the monitor, which first grabs the proxies to the remote
gumball machines and then calls getState() on each one (along with
getCount() and getLocation()).

CEOD's desktop

emote 6""“*’3” Maehin
. : e
I YPe is ﬁmba"ﬂlaﬂhincﬂcmg{c with 3 JUM




Making the call

© getState() s called on the proxy, which forwards the call to the remote
sevice. The skeleton receives the request and then forwards it to the
gunball machine.




GumballMachine returns the state to the skeleton, which serializes it and

transfers it back over the wire to the proxy. The proxy deserializes it and
returns it as an object to the monitor.

£ all Likewise, the QumballMachine
The monitor hasn t c’hahﬁtd;n{ﬂ; implements another intevface and
gﬁ.tvjc t kmw?s i "TE ;:i uses the may theow a remote cﬁtt?‘ﬁim in its
rtmﬂt‘ E%E?imh& ' w‘F ate raﬂlﬂ' ﬂﬂﬁ-’h‘!‘.\"“ﬂ'ﬁﬂh b!l'['. Q‘H‘lﬂ‘ ‘H’iah 'El'lﬂ'tp ‘t’ht
ﬁmb&\\Mat.hing\F’““:"‘ v oo tode hasn't thanged.
than 3 tontrete ™Y Ll

We also have a small bit of tode to register and locate stubs using the
RMI vegistry. But no matter what, it we were writing something to
work over the [nternet, we'd need some kind of lotator sevvite.



Remote Proxy

Remote Proxy

With Remote Proxy, the proxy
acts as a local representative

for an object that lives ina
different JVM. A method call

on the proxy results in the call
being transferred over the wire,
invoked remotely, and the result
being returned back to the proxy
and then to the Client.

We know this diagram
?rc'f;'f‘,y wcll by nOW. ..



Virtual Proxy

Virtual Proxy

Virtual Proxy acts as a
representative for an object that
may be expensive to create, The
Virtual Proxy often defers the
creation of the object until it

Is needed; the Virtual Proxy

also acts as a surrogate for

the object before and while it

is being created. After that, the
proxy delegates requests directly to
the RealSubject.




Choose the album Lover o‘{,' TP e n Lii o KD Cower Viewer

Your liking heve. ; et e Sl e el
\\ Buddha Bar
Selectad Ambient Works, Vol 2 |

\\__—_}" 4 Northern Exposure

Ima
MCRMXC AD.

Karma ;
Ambient: Music for Alrports

Playing CD Covers

1
1
|
!
L8 - o SRR S e e L GE G Wigdver i il s
{ Favarite COs = = = —— = ==

While the CD Cover

/ is lo&ding, the proxy
“Loading CD cover, please wait...”. '. dispfa}rs d messdae.

{ Favorite CDs

'] b
z

LT T Sy

e CD eover
ded, the FrorT
BN

When
Cully \od
duglays

_)



Playing CD Cover Proxy

This is the Qwing
eon ih{tr‘Fatc used

to display images in a

usey ih‘EEI"‘FEﬂ-t.

/\

This is Jﬂ“ﬂ‘ﬁ--swih

ﬁlfha ﬂl‘l‘. n,
a ¢tlass that displays ai | :asf-

T <<interface=>
leon
getlconlWidthy)
getfconHeight()
paintlcon()
-
» subject
Imagelcon ImageProxy
geticonWidth() getlconWidthi)
geticonHeight() getlconHeight()
painticon() painticon()

C This is our proxy, which Fivst
disflays a message and then when
the image is loaded, dclcga{'.cs to
Imageleon to display the imaae.



ImageProxy process

L

3

ImageProxy first creates an Imagelcon and starts
loading it from a network URL.

While the bytes of the image are being retrieved,
imageProxy displays “Loading CD cover, please
wait...”.

When the image is fully loaded, ImageProxy del-
egates all method calls to the image icon, including
painticon(), getWidth() and getHeight().

If the user requests a new image, we’ll create a
new proxy and start the process over.



ImageProxy process

What did we do?

€) We created an ImageProxy for the display. The paintIcon
method is called and ImageProxy fires of f a ?hrfuud to 9

retrieve the image and create the ImageIcon,

tes a
|mageProxy ereate
- thr?;d to 'Irﬂ'l'..in’c,iﬂﬂ the
— ; -
- paintIcon() |maoeleon, whith starts ——
S vebrieving the image: Sons s
- ,,M get in!mge. the Internet
ﬁ’_.‘} T TRE T g
. |
...-ﬂ”""" -
displays loading

message



At some point the image is returned and
the ImageIcon fully instantiated.

e After the ImageIcon is created, the next time paintIcon() is I
called, the proxy delegates to the ImageIcon,

&
;,.-"F.
i

paintIcon()

i} " "
G
- T

paintIcon()

displays the real image




cl ass I mageProxy inplenents |Icon {
| magel con i nagel con;
URL i mageURL;
Thread retrieval Thread,;
bool ean retrieving = fal se;

public I mageProxy(URL url) { imageURL = url; }

public int getlconWdth() {
I f (imagelcon !'= null) return inmagel con.getlconWdth();
el se return 800; }
public int getlconHeight() {
I f (imagelcon !'= null)return inmagel con. getlconHei ght();
el se return 600;}
public void paintlcon(final Conponent c, Gaphics g, int x, int vy) {
I f (imagelcon !'= null) inmagelcon.paintlcon(c, g, X, Y);
el se{ g.drawstring("Loading CD cover, please wait...", x+300, y+190);
If ('retrieving) {
retrieving = true;
retrieval Thread = new Thread(new Runnabl e() {
public void run() {
try {
| mgel con = new | magel con(i mageURL, "CD Cover");
c.repaint();
} catch (Exception e) { e.printStackTrace();}

}
1)
retrieval Thread. start();
}
}
1> 45 Design patterns, Laura Semini, Universita di Pisa,  Dipartimento di Informatica.



Using Java API’s Proxy to create a
protection proxy

<<interface>>
Subject

request()

RealSubject

\

request()

Proxy

<<interface>>
InvocationHandler

request()

invoke()
- /

InvocationHandler

invoke()




The proxy zoo (1/2)

» Firewall proxy

Protects targets from bad clients (or viceversa)
» Smart Reference proxy

E.g. counts the number of references to the target object
» Caching proxy

Provides temporary storage of the result of expensive target
operations so that multiple clients can share the results.

» Synchronization Proxy

Provides multiple accesses to a target object.

47 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



The proxy zoo (2/2)
» Complexity hiding Proxy

Similar to fagade pattern, it also controls accesses
» Protection (Access) Proxy

Provides different clients with different levels of access to a
target object

» Copy-on-write Proxy
Form of virtual proxy

Defers coping (cloning) a target object until required by a
client action.

48 Design patterns, Laura Semini, Universita di Pisa, Dipartimento di Informatica.



HJ Il pattern Access Proxy
E— <<=

1. Access Proxy (non documentato su Patterns in Java)

Il pattern Access Proxy viene utilizzato per far rispettare
una politica di sicurezza nell’accesso ad oggetti che

erogano determinati servizi.

Esempio: Il servizio pud essere erogato ad un massimo di n
client contemporaneamente

1 3
:Client » AccessPro * Service
— dolt () = doIt() E—
éz_b
if (actualClient<=n) service.dolt()
el=se f/ messaggio di errore
Informatica Vmiversiea di Romr

oo 2§ N TR WERSATA
L orso J1 liaurea Inoeoneria del Software - AA. 200372004




&

Il pattern Broker/Proxy

2. Broker [non documentato su Grand98]
Il pattern Proxy & a volte usato con il pattern Broker per
fornire un sistema trasparente finalizzato al
ridirezionamento di una richiesta di servizio verso un
service object selezionato dall’oggetto Broker/Proxy.

Esempio: Il Broker/Proxy ridireziona i client mrq una politica
Round Robin sulle istanze Service multithread disponibili

Senice
1 3 :
e :Broker/Proxy » 1 Seryice
doIt() doIt()
@ T Sehvice

Individuazione del

Informatica
Corso Ji laurea

Service object
SUCCessivo
II'I.E.l'IlﬂI del Software - A4 2003 /2004

Universtta & Bon
PO WERLSUE




