
Marcello Calisti
marcello.calisti@santannapisa.it

The BioRobotics Institute

Scuola Superiore Sant’Anna

387AA – ROBOTICS [WIF-LM]

NATURAL AND ARTIFICIAL VISION MODULE

Overall computer vision process and scope of the lessons

applications

Scope of the lessons

Image processing

Transform one or more input images into an output image.

To enhance the image

Human interpretation
Features extraction

Computer aided diagnosis
Metin Gurcan, Ph.D – Ohio State

Objects recogniton
HERB robot butler – Carnegie Mellon

What’s a digital image?

Digital images are mosaics
made of pixels

Image resolution is the
number of pieces (pixel)
used to build the mosaic
(image)

Image depth is the number
of colours (levels) of mosaic
pieces

I[600,516]=213

Colour images

Colour images have three channels: the most common triplet is the R-G-B

There are other very useful common space:
HSV, XYZ, CIE, YUY, …

Colour images

640x854x3 uint8

640x854x1 uint8

Red channel Green channel Blue channel

Monadic operations (pixel operators)

𝑶 𝑢, 𝑣 = 𝑓 𝑰 𝑢, 𝑣 , ∀(𝑢, 𝑣) ∈ 𝑰

Lightening and darkening

𝑶 𝑢, 𝑣 = 𝑰 𝑢, 𝑣 + 50

𝑶 𝑢, 𝑣 = 𝑰 𝑢, 𝑣 - 50

Monadic operations change
the distribution of grey levels
on images

𝑰 𝑢, 𝑣

Simple monadic operation (more channel):

Gray-scale conversion with International
Telecommunication Unit (ITU) recommendation 709

Y=0,212R+
0,7152G+0
,0722B

Histogram
Is a graph representing the grey level occurrences of an image.

Histograms and monadic operations

𝑶 𝑢, 𝑣 = 𝑰 𝑢, 𝑣 + 50𝑶 𝑢, 𝑣 = 𝑰 𝑢, 𝑣 - 50 𝑰 𝑢, 𝑣

Common operations

Common operations

Contrast enhancement

𝑠 𝑙 =
256

1 + 𝑎−(𝑙−125)

Sigmoid function

𝑎 = 𝑒
𝑎 = 1,05

𝑎 = 1,2

Pay attention

% lightening/darkening

xwing_light=xwing_grey+50;

idisp(xwing_light);

xwing_dark=xwing_grey-50;

idisp(xwing_dark);

% select areas by levels

level48 = (xwing_grey>=40) & (xwing_grey<=50) ;

idisp(level48);

level225 = (xwing_grey>=225) &

(xwing_grey<=255) ;

idisp(level225);

% contrast enanch

xwing_contrast=zeros(r,c);

for i=1:r

for j=1:c

xwing_contrast(i,j)=256./(1+1.05.^-(

double(xwing_grey(i,j))-150)); % Sigmoid

end

end

idisp(xwing_contrast)

Code sample >

Monadic operations

Pay attention

Histogram equalization

𝑐 𝑙 =
1

𝑁
෍

𝑖=0

𝑙

ℎ 𝑙 = 𝑐 𝑙 − 1 +
ℎ(𝑙)

𝑁

f(l)=c(l)
Monadic
operation

𝑶 𝑢, 𝑣 = 𝑐 𝑰 𝑢, 𝑣 , ∀(𝑢, 𝑣) ∈ 𝑰

c(l) Cumulative distribution

h(l) histogram

l Grey level

Histogram equalization

After equalization

Histogram equalization

before

after

Code sample >

%hist equalization

[n,v]=ihist(xwing_grey);

plot(v,n)

cd=zeros(length(v),1);

cd(1)=v(1)/(r*c);

for l=2:length(v)

cd(l)=cd(l-1)+1/(r*c)*n(l); % cumulative distribution

end

xwing_equalized=zeros(r,c);

for i=1:r

for j=1:c

xwing_equalized(i,j)=255*cd(xwing_grey(i,j)+1); % Equalization

end

end

idisp(xwing_equalized)

Diadic operations

𝑶 𝑢, 𝑣 = 𝑓 𝑰1 𝑢, 𝑣 , 𝑰2 𝑢, 𝑣 , ∀(𝑢, 𝑣) ∈ 𝑰1

Green screen

If 𝑰1[𝑢, 𝑣] isGreen
𝑶 𝑢, 𝑣 = 𝑰2 𝑢, 𝑣

Else
𝑶 𝑢, 𝑣 = 𝑰1 𝑢, 𝑣

I1[u,v] I2[u,v]

O[u,v]

High Dynamic Range

Power law
γ = 4

Power law
γ = 0.5

Sigmoid

Background subtraction

𝑶 𝑢, 𝑣 = 𝑰1 𝑢, 𝑣 − 𝑰2 𝑢, 𝑣 = 𝑰1 𝑢, 𝑣 − 𝑩 𝑢, 𝑣

Another important diadic operation is the background subtraction to find novel elements
(foreground) of a scene.

background

We can take a
shoot when we
know that only
background is
visible

How we estimate
the background
𝑩 𝑢, 𝑣 ?

'http://wc2.dartmouth.edu‘, 05:19 p.m.,
Rome time

Background subtraction

𝑰1 𝑢, 𝑣 − 𝑩 𝑢, 𝑣 = 𝑶[𝑢, 𝑣]

'http://wc2.dartmouth.edu‘, 05:19 p.m., Rome time

foreground

background

Background subtraction

𝑰1 𝑢, 𝑣 − 𝑩 𝑢, 𝑣 = 𝑶[𝑢, 𝑣]

'http://wc2.dartmouth.edu‘, 07:48 p.m., Rome time

foreground

background

What went wrong?

Background subtraction

𝑰1 𝑢, 𝑣 − 𝑩 𝑢, 𝑣 = 𝑶[𝑢, 𝑣]

'http://wc2.dartmouth.edu‘, 10:55 p.m., Rome time

foreground

background

What went wrong?

Background estimation

𝑩 𝑘 + 1 = 𝑩 𝑘 + 𝑐 𝑰 𝑘 − 𝑩 𝑘

𝑐 𝑥 = ቐ
𝜎, 𝑥 > 𝜎
𝑥, −𝜎 ≤ 𝑥 ≤ 𝜎

−𝜎, 𝑥 < −𝜎

We require a progressive adaptation to small, persistent changes in the background.

Rather than take a static image as background, we estimated it as follow:

Code sample >

Background subtraction

% backgorund estimation

sigma=0.01;

vid = videoinput('winvideo', 1);

bg=getsnapshot(vid);

bg_small=idouble(imono(bg));

while 1

img=getsnapshot(vid);

img_small=idouble(imono(img));

if isempty(img), break; end

d=img_small-bg_small;

d=max(min(d,sigma), -sigma);

bg_small=bg_small+d;

idisp(bg_small); drawnow

end

Spatial operation (local operators)

𝑶 𝑢, 𝑣 = 𝑓 𝑰 𝑢 + 𝑖, 𝑣 + 𝑗 , ∀ 𝑖, 𝑗 ∈ 𝑾,∀(𝑢, 𝑣) ∈ 𝑰

1D Convolution

One important local operator is the convolution:

f

g

f * g

f(t-τ)

g(τ)

(f * g)(t)

τ

τ

t

wikipedia

2D Convolution

𝑶 𝑢, 𝑣 = ෍

𝑖,𝑗∈𝑲

𝑲[𝑖, 𝑗]𝑰 𝑢 − 𝑖, 𝑣 − 𝑗 , ∀(𝑢, 𝑣) ∈ 𝑰

𝑶 = 𝑲⨂𝑰

k1 k2 k3

k4 k5 k6

k7 k8 k9
Convolution mask

21

0 1 2 0 12 5 0 1

5 2 6 0 0 1 1 1

5 0 0 4 5 6 1 0

12 25 0 24 56 8 2 3

1 2 6 0 0 1 5 2

1 2 0 2 1 2 1 0

12 0 12 25 3 5 0 1

1 1 1 35 57 5 3 1

·1+ ·1+ ·1+

·1+ ·1+ ·1+

·1+ ·1+ ·1+

kernel

Input image Output image

2D Convolution

1521

0 1 2 0 12 5 0 1

5 2 6 0 0 1 1 1

5 0 0 4 5 6 1 0

12 25 0 24 56 8 2 3

1 2 6 0 0 1 5 2

1 2 0 2 1 2 1 0

12 0 12 25 3 5 0 1

1 1 1 35 57 5 3 1

·1+ ·1+ ·1+

·1+ ·1+ ·1+

·1+ ·1+ ·1+

Input image Output image

Convolution

Boundary effect

• Duplicate
• All black
• Reduce size
• …

Smoothing

𝑶 = 𝑲⨂𝑰

𝑮 𝒖, 𝒗 =
1

2𝜋𝜎2
𝑒
−
𝑢2+𝑣2

2𝜎2

𝑲 = 𝒐𝒏𝒆𝒔(𝟐𝟏, 𝟐𝟏)/𝟐𝟏𝟐

Kernel examples

Gaussian Top hat

Difference of Gaussian
(DiffG)

Derivative of Gaussian
(DoG)

Laplacian of Gaussian
(LoG)

Smoothing

Edge detectionGradient

Edge detection

Horizontal profile of
the image at v=360

𝑝′ 𝑢 = 𝑝 𝑢 − 𝑝[𝑢 − 1]

𝑝′ 𝑢 =
1

2
(𝑝 𝑢 + 1 − 𝑝 𝑢 − 1)

𝑲 = −
1

2
0
1

2

Gradient computation

Common convolution kernel: Sobel, Prewitt, Roberts, …

Sobel 𝑫𝑢 =
−1 0 1
−2 0 2
−1 0 1

𝑫𝑣 =
−1 −2 −1
0 0 0
1 2 1

𝑰𝑣 = 𝑫𝑣⨂𝑰 𝑰𝑢 = 𝑫𝑢⨂𝑰

Direction and magnitude

𝑚 = 𝑰𝑣
2 + 𝑰𝑢

2 𝜃 = atan(𝑰𝑣, 𝑰𝑢)

Noise amplification

Derivative amplifies high-frequency noise. So, firstly we can smooth the image,
after that we can take the derivative:

𝑰𝑢 = 𝑫𝑢 ⊗ (𝑮 ⊗ 𝑰)

Associative property:

𝑰𝑢 = (𝑫𝑢 ⊗𝑮) ⊗ 𝑰

Derivative of Gaussian
(DoG)

𝑮𝑢 = −
𝑢

2𝜋𝜎2
𝑒
−
𝑢2+𝑣2

2𝜎2 Derivative of Gaussian
(DoG)

<<DoG acts as a bandpass filter!>>

The algorithm is based on a few steps:
1. Gaussian filtering
2. Gradient intensity and direction
3. non-maxima suppression (edge thinning)
4. hysteresis threshold

Canny edge detection

Canny edge detection

3. Non local maxima suppression

Evaluation along gradient direction

Maxima detection

4. hysteresis threshold

High threshold

Low threshold

St
ro

n
g

ed
ge

s
N

o
 e

d
ge

s
W

ea
k

ed
ge

s

Canny edge detection

canny

Magnitude of the gradient

Thresholding

Edge detection

High
gradient

Local
maxima

Alternative approach is to use second derivative and to find where there
is a zero

Laplacian operator

𝛻𝑰2 =
𝜕2𝑰

𝜕𝑢2
+
𝜕2𝑰

𝜕𝑣2
= 𝑰𝑢𝑢 + 𝑰𝑣𝑣 = 𝑳⊗ 𝑰

𝑳 =
0 −1 0
−1 4 −1
0 −1 0

Noise sensitivity

Again, derivative amplifies high-frequency noise. So firstly we can smooth the
image, after that we take the derivative:

𝑳 ⊗ (𝑮 ⊗ 𝑰) = (𝑳 ⊗ 𝑮) ⊗ 𝑰

Laplacian of Gaussian
(LoG)

𝑳𝒐𝑮 𝑢, 𝑣 =
1

𝜋𝜎4
𝑢2 + 𝑣2

2𝜎2
− 1 𝑒

−
𝑢2+𝑣2

2𝜎2
Laplacian of Gaussian

(LoG)

Marr-Hildreth operator or the Mexican hat kernel

Edge detection

Gradient and Laplacian

Gradient and Laplacian

Gradient and Laplacian

Gradient and Laplacian

Gradient and Laplacian

Code sample > % denoising/edge detection
dx=[-1 0 1;-2 0 1; -1 0 1];
dy=[-1 -2 -1;0 0 0;1 2 1];
K=kgauss(3);
K1=ones(19,19).*1/(19*19);
xwingDenoisMean=iconv(K1,xwing_grey);
idisp(xwingDenoisMean)
xwingDenoisGaus=iconv(K,xwing_grey);
idisp(xwingDenois)
xwingIx=iconv(dx,xwing_grey);
idisp(xwingIx)
xwingIy=iconv(dy,xwing_grey);
idisp(xwingIy)
magnGrad=sqrt(xwingIx.^2+xwingIy.^2);
idisp(magnGrad)
edgeGrad=magnGrad>250;

edgeLapl=iconv(klog(2),xwing_grey);
idisp(iint(edgeLapl)>250);

edgeLapl=iconv(klog(1),xwing_grey);
idisp(iint(edgeLapl)>250);

edgeLapl=iconv(klog(3),xwing_grey);
idisp(iint(edgeLapl)>250);

Template matching

𝑶 𝑢, 𝑣 = 𝑠 𝑻,𝑊 , ∀(𝑢, 𝑣) ∈ 𝑰

Similarity measures

Sum of absolute differences

SAD 𝑠 =෍
𝑢,𝑣 ∈𝑰

𝑰1 𝑢, 𝑣 − 𝑰2[𝑢, 𝑣]

ZSAD 𝑠 =෍
𝑢,𝑣 ∈𝑰

(𝑰1 𝑢, 𝑣 − ഥ𝑰1) − (𝑰2[𝑢, 𝑣] − ഥ𝑰2)

Sum of squared differences

SSD 𝑠 =෍
𝑢,𝑣 ∈𝑰

𝑰1 𝑢, 𝑣 − 𝑰2 𝑢, 𝑣
2

ZSSD 𝑠 = σ 𝑢,𝑣 ∈𝑰 (𝑰1 𝑢, 𝑣 − ഥ𝑰1) − (𝑰2[𝑢, 𝑣] − ഥ𝑰2)
2

Cross correlation

NCC
𝑠 =

Σ 𝑢,𝑣 ∈𝑰𝑰1 𝑢, 𝑣 ⋅ 𝑰2 𝑢, 𝑣

Σ 𝑢,𝑣 ∈𝑰𝑰1
2 𝑢, 𝑣 ⋅ Σ 𝑢,𝑣 ∈𝑰𝑰2

2 𝑢, 𝑣

ZNCC
𝑠 =

Σ 𝑢,𝑣 ∈𝑰 𝑰1 𝑢, 𝑣 − ഥ𝑰1 ⋅ (𝑰2 𝑢, 𝑣 − ഥ𝑰2)

Σ 𝑢,𝑣 ∈𝑰(𝑰1 𝑢, 𝑣 − ഥ𝑰1)𝟐 ⋅ Σ 𝑢,𝑣 ∈𝑰(𝑰2 𝑢, 𝑣 − ഥ𝑰2)𝟐

Template matching

Non-parametric similarity measures

Census

𝑠 𝑥 = ቊ
1, 𝑖𝑓 𝑥 > 𝑅
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Rank transform = 5

Hamming distance

Census representation

Rank transform is more compact but does not encode position information

50 10 205

1 25 2

102 250 240

Census: 01110101

Rank: 5

10 26 2

101 25 202

1 250 214

Census: 10111010

Rank: 5

Hamming distance: 6!

Non-parametric similarity measures

Non-linear operators

• Variance measure (on windows): Edge detection

• Median filter: noise removal

• Rank transform: non-local maxima suppression

Mathematical morphology

𝑶 𝑢, 𝑣 = 𝑓 𝑰 𝑢 + 𝑖, 𝑣 + 𝑗 , ∀ 𝑖, 𝑗 ∈ 𝑆, ∀(𝑢, 𝑣) ∈ 𝑰

Erosion

Erosion is a specific procedure of the more general Morphological Image
Processing techniques.

It belongs to the concept of mathematical morphology and it is strictly related
to the set theory.

Here the concept is roughly introduced to understand the basis of erosion.

Notation

Let consider A as a set in Z2

a = (a1,a2) belongs to A

a = (a1,a2) does not belong to A

We write:

We write:

A set is represented by the parenthesis{·}.

In our case, the elements of a set are the pixels belonging to a certain area or object of an
image. When we write:

This means that C is composed by all the elements w which are obtained by scalar product
of the elements of D and the value -1.

When all elements of A are also elements of B, we say that A is

a subset of B.

The translation of a set A by an element z, is represented as (A)z and is
defined by:

The verbose definition is: the erosion of A through B is the set of all the points z
whom the translation of B by z is a subset of A.

This definition represents an:
erosion

Now we can write the morphological operation which interest us, thus:

z=0

z=b/2

It’s simple to see that graphically:

b/2

In this case the eroded set will be;

We can figure the erosion as a “shape-cutting” of the most external part of the set.

Dilation is the «opposite» operation, but formally they are related by:

Which means that eroding the white pixels is the same as dilating the dark pixels,
and vice versa.

𝐴⊕𝐵 = ҧ𝐴 ⊖ 𝐵

1) Original image
2) Erosion by the element B
3) Dilatation (the opposite procedure of the Erosion)

Example: opening

𝑶 = 𝑰⊝ 𝑆 𝑶 = 𝑰⊕ 𝑆

Example: closing

𝑶 = 𝑰⊝ 𝑆𝑶 = 𝑰⊕ 𝑆

Noise removal & boundary detection

𝑶 = 𝑰⊝ 𝑆

𝑶2 = 𝑰 − 𝑶

?

Matlab sample of
buondary
detection

Example DLR

Oliver Birbach, Udo Frese and Berthold Bauml, (2011) ‘Realtime Perception for Catching a Flying Ball with a Mobile Humanoid’

Example DLR

Example DLR

Filtraggio con Sobel

Normalizzazione rispetto alla varianza locale

