Neural control of
movement




Movement control is difficult

Humans and in general animals exhibit
remarkably complex movement behaviors.

Possible due to several brain regions taking care
of specific control issues like disturbance
rejection, state-estimation, prediction, internal
models about the body and the world and
several other features unexplored in artificial
systems




Disorders are equally puzzling

Damages to different regions results in different deficits
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At the same time.....

.. | A

Slicing off half the brain at an appropriate age to deal with epilepsy
doesn’t really cause major limitations in any behaviour — memory,
motor, personality etc.,



From sensation to movement and back

Neural control
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The difficulty is due to the multi-scale brain organization
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Pursuit to understand Brain as an encoding/decoding machine

» The nature of the world is stored/encoded in

the electrical firing patterns of brain circuits World Brain
> Different brain regions read-out/decode the
neural activity for generating meaningful action _ |
represen Ialion
> Encoding: how does a stimulus cause a pattern %

of responses? p(r | s) relation o ff@ﬁﬁ ‘\Kaz
" B3
/v _ 1

> Decoding: what do these responses tell us Wl
about the stimulus? p(s | r)

represeniation




Stimulus - ‘s’ Response - ‘r’

Spike raster plot
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* ‘s(t)’ can represent quantitative characteristics of the sensorY data like
the edge properties in the visual image, strength of the smell etc.,

what is neural * ‘r(t)’ is a function of the spikes in the neural response vector i.e., r(t) =
response ? f(rl,r2,r3.....rn). Two broad types of responses of most neurons:

 Spike count
* Spike timing

I What is stimulus and



Firing rate — spike count hypothesis

The intensity or/and identity of stimulus is encoded by the number of spikes emitted by

the neuron.
Firing rate = number of spikes per second

A. Stretch receptor on tfrog muscle Lord Adrian (1928). Showed that the
number of spikes emitted by a frog’s
150 |- . stretch receptor on a muscle increased
E when increasing the weight load
2100 |- - applied to the muscle.
£ &
= Spike counts increased with stimulus
Tz 0 /e intensity
o : : | Example for firing rate encoding of
0 1 2 3 identity is the face-selective neurons in
Weight [g] inferior temporal cortex (IT) of the

monkeys



Temporal coding — Spike time hypothesis

Not only the number of spikes per second, but also the temporal
patterns of successive spikes can be used for encoding the stimuli

(a) (b) Rate code

Stimulus'r R | | |
o GEL N, IR I | |

Encoding window :
g Reaction NN | | |

I R I Ji

Time
(c) Temporal code: latency code (d) Temporal code: interspike intervals

JJ J JJ J
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Hierarchical encoding of stimuli - V1 stimulus representation

s (orientation angle in degrees)

Gaussian tuning curve of a cortical (V1) neuron



Hierarchical encoding - MTL stimulus representation
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Medial temporal lobe - complex tuning like faces invariant to the image
transformation R. Quian Quiroga et al Nature 2005



Hierarchical encoding - sensory stimulus representation

“What pathway”
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Hierarchical encoding
Motor cortex (M1)
movement
representation
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. Multiple codes

. Importance of mechanism

Encoding view is only
descriptive . For example, the descriptive models would
not have anything to predict if the body under
the experimentation undergoes a physical
change unless more data is explicitly collected

for this specific case



Goal-driven understanding

Goal

l Muscle commands

Brain/Processor/Controller
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Optimal control formulation to find policy parameters

([t]"Qy[t] + u[t]"Ru[t])

i

] = Yf[N]TQfo[N] +

such that y|t| = f(y|t], ult])

ult =0:N| =mn(y*,y) =argmin]
T



Neural System ldentification

n(y*,y ———
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Goal-driven understanding

* The ‘brain’ receives sensory feedback,
combines it with motor plans, and somehow
‘decides’ what to do next.

brain I

MI out
\ 82 |
a5

 The focus of the model is the causal flow
from the MI output through spinal
processing, muscle force production and

causality > multijoint mechanics to endpoint force.

< prediction * First we hypothesize how M1 might be
causing movement

R . :
Uc(t—A) = F(t) + mx(t) + bx(t) + kx(2) * And then any correlations could be explained

as emergent properties of the causal flow
M = 1kg, b=10N.s/m, k=50N/m

E. Todorov, Nature neuroscience 2000

Body dynamics determines the neural encoding 19



Problem with a simple feedback based model

1. Sensorimotor delays

2. Stochastic process

3. Redundancies

Let us consider the problem posed by sensorimotor delays in animal movement
control in detail, and for now ignore the other issues



A simple example of the effect of feedback delays

Consider a simple feedback control loop
with proportional feedback gain

Desired

trajectory
ﬁ

Stiffness,

Viscosity Feedback

motor
¢ command
—
K=1 |
Delays = Oms

Low gain + No delay

Controlled

object

Realized

trajectory
ﬁ
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A simple example of the effect of feedback delays

Consider a simple feedback control loop
with proportional feedback gain

Desired

trajectory
ﬁ

Stiffness,

Viscosity Feedback

motor
¢ command
—
K=10 |
Delays = Oms

High gain + No delay

Controlled

object

Realized

trajectory
ﬁ
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A simple example of the effect of feedback delays

Consider a simple feedback control loop
with proportional feedback gain

Desired

trajectory
ﬁ

Stiffness,

Viscosity Feedback

motor
command
— .
object

K=1

Controlled

Delays = 10ms

4

Low gain + delay

Realized

trajectory
ﬁ
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A simple example of the effect of feedback delays

Consider a simple feedback control loop
with proportional feedback gain

Desired

trajectory
ﬁ

Stiffness,

Viscosity Feedback

motor
command
— .
object

K=10

Controlled

Delays = 10ms

4

High gain + delay

Realized

trajectory
ﬁ
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How does the brain deal with delayed sensory feedback?

Two possibilities

1. Equilibrium point control - Simple brain command & complex
spring-like muscle control

. Internal model based control - Predictive brain command &
simple muscle control

As simulated earlier, the effect of delays in feedback is more pertinent when
we have to compensate for the error in movement

So we consider situations where we have to successfully deal with errors
caused by mechanical/visual disturbances

25



Feedback Perturbation experiments

PFM
target Of
1
I
®
|
start $

y
0,0] X

Reaching under perturbations

Posture control against
mechanical loads
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EMG responses to perturbation _&

0 50 100

Joint motion

0 50 100

EMG of stretched muscle

Spinal proprioceptive feedback

r
Cortical proprioceptive feedback
r
Visual feedback
Perturbation i Short Long i  Voluntary epoch
onset datency: latency
tepoch epoch
: R1 | R2 @ R3 i

:epoch i epoch : epoch
The majority of the EMG response is
observed during the long-latency epoch. L —

Hence ascertaining that spinal processing Time (ms)

plays limited role during the stretch control TREDS I Gognive Saences

Figure |. Mechanical perturbation applied to a joint causes joint motion and
a multiphasic electromyographic response in stretched muscles.
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Brain receives large amount of sensory projections

Neural control (' A Controlled plant
e g Basal ganglia
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Difficult to interpret how the brain motor areas can have a simpler role in
online movement control when it receives very dense sensory projections



Cerebral EEG response to mechanical loads - supports a complex brain signal
hypothesis

A D

Different brain regions fire vigorously
response to mechanical perturbations
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This argues against a lesser
involvement of cortical regions and
hence against the equilibrium-point
hypothesis
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Internal models can be used to deal with delays and disturbances

Two types of internal models

Inverse model — Takes the desired state trajectory as input and produces the
muscle/motor commands that are necessary to move the body accordingly

Feedforward Inverse Model

motor command

Realized
trajectory

Desired
trajectory

Feedback
controller

Body +

environment |

Sensory system
(proprioception, €= Delay
vision, audio)
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Internal models can be used to deal with delays and disturbances

Two types of internal models

Forward model — takes the copy of muscle commands that the body receives from

motor centres as input and generates the prediction of the current/future state of the body

Desired
trajectory

-+

Body +
environment

: Feedback
% controller

Integration

| Sensory system

(proprioception,
vision, audio)

<= | Delay

Forward Model

Realized
trajectory

—
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Internal models can be used to deal with delays and disturbances

Two types of internal models

Forward model

Inverse model

Further, an integrator region should continuously integrate the predictions of the internal
models with the respective delayed sensory feedback and produce an estimate of the most
likely body state.



The summary of sensorimotor control with delays and variability

Def,ired ) Total motor Realized
trajectory (y*) command (u) Body + trajectory (y)
environment
ply” 1Y) 2) T Efference copy
p(y’ | u)

Integration < Gr—————— Delay

Delayed

Measurements (z) Sensory system

(proprioception,
vision, audio)

p(y’ | u) - likelihood/internal-belief of the original state ‘y’

p(y” | Y/, z) - posterior estimate of the original state ‘y’ 35



The summary of neural sensorimotor control

Desired
trajectory (y*)

ply” 1Y) 2) T Efference copy

Total motor Realized
command (u) Body + trajectory (y)

environment

Integration Delay

Delayed
Measurements (z)

Sensory system
(proprioception,
vision, audio)

The brain region that houses internal models should display
1. movement prediction and 2. plasticity




Evidence of cerebellum as forward model — saccadic eye movements

Central-fixation
spot

* Saccades are ballistic eye movements that can reach speeds
500-1000 deg/sec, and take place within 20-200 milli-seconds

* Sensory feedback is completely absent during the movement



Feedback effects can be neglected during saccades

Desired
trajectory (y*)

p(y” | Y’ 2) T

Integration

Total motor
command (u)

Realized
Body + trajectory (y)
environment
Efference copy
Delay

Delayed
Measurements (z)

Sensory system
(proprioception,
vision, audio)
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Feedback effects can be neglected during saccades

Desired
trajectory (y*)

p(y” | Y’ 2) T

Total motor

command (u)

Body +
environment

Efference copy

Integration

p(y’ | u)

G Cerebellum 77

Realized

trajectory (y)
—
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Movements to similar distances are highly variable

Central-fixation
spot

High vigor means low reaction-time and high velocity,
which indicates a high motivation to reach the target



Brain lesion studies / abnormalities
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Brain lesion studies / abnormalities

Control Cerebellar
15 -

1st block

104
last block
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(CS5)
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400 -

W
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N
o
o

100

Horiz. velocity (deg/s)

o

L L) 1

0 50 100

Xu-Wilson & Reza Shadmehr, J.Neuro 2009
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Summary

Saccades are faster to more valuable stimuli

Stimulus value acts as a source of variability during saccades

In cerebellar patients the value-induced variability in the motor commands is

poorly compensated
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The computational circuit of cerebellum

Purkinje cell
Parallel fibre I

Purkinje cell
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b Mixed inputs
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Mixed-mixed inputs
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Granule
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Input sources
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The computational circuit of cerebellum - adaptive filter approximation

a 2 . W, PF-PC synapse Organization
" =1 J /’ Repetitive crystal like
=i i
| Climbing fibre

-
e(t)
z (t)l Purkinje cell

Operation

1.Receives input information ‘y(t)’

2. Generates a high-dimensional representation
p(t) = G*y(t)

3. Produces a purkinje cell output z(t) = w*p(t)

How is the output adjusted to
produce desired response??

P.Dean et al., Nature reviews neuroscience 2010 o1



The computational circuit of cerebellum - adaptive filter

Motor
command

L

Variable impulse response

7

d
1 Sensory 1
input
R Filter —
b Adaptive filter X
Spike input
C
A Analysis Synthesis |
Spike input

Ca

Adjustable impulse
response
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Psi activations

1.0 .
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X
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0.75 0.5 - 0.25 0.0
P.Dean et al., Nature reviews neuroscience 2010

StudyWolf blog

52



F___________1

Purkinje cells
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What is cerebellum
computing?
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Record from cerebellum
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Output of cerebellum precedes the actual eye movement

1,500

O " g
£y 2y “g
"ég Rg S &
3% o c38 £
C g © 8
i 15
¢ gl ' Purkinje cell firing is correlated
7-1@ 50 0 50 100 -100 50 0 50 100 . .
B e S s S with the eye speed, displacement

and precedes the eye movement,

C e | o« e

B e e o At =006 <109 predicting the state of the eye
.6.? - | §G : | |
< 2 § < X
gg 2 i3 3
- . -
® 2 ® 5

T Q
iE & T
5 4 38
- § All saccades (direction CS-off) -
bl s S S S S S S S s —
10 11 12 13 14 15 400 450 500 550 600 650
Saccade ampitude (deg) Peak saccade speed (deg per s)

Herzfeld et al., Nature 2015
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Internal models should continuously adapt

control policy
Both ‘T’ and ‘p” are probability
distributions over state and actions

respectively. ‘¢’ indicates the
current context of movement

These distributions should be
continuously estimated/inferred
from experience

Uncertain body+environment 1\)
dynamics

p(st+1 I Strat)
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Decorrelation learning in cerebellum

The PF-PC synapses can be subject to

a N— W. PF—PC synapse o
Parallel fibreT b, (0 == ’ pIaSt|C|ty.
— 2 | J Y,
=0 |
|

Grﬁnule ‘_ Adaptation
A <Tc)“mb‘”8 tore ‘e(t) be the error between desired cerebellum output and
2 &) Ipurkinie cel the actual cerebellum output. Then the PF-PC weights can

be adjusted based on

Aw, (t) « - <e(t) . Api(t)>

i.e., occurence of a positive error decreases the weight of
PF-PC synapses and vice-versa

This learning rule enables cerebellum to behave as a
supervised learning center, that functions to reduce the

mean square error between the desired response and actual
58
response.



Can the same learning rule explain movement adaptation?

Consider the vestibulo-ocular reflex or head - video




Applications —icub VOR experiment

A COMPRE
CONTROL

ENSIVE GAZE STABILIZATION

LER BASED ON CEREBELLAR
INTERNAL MODELS

LORENZO VANNUCCI, EGIDIO FALOTICO, SILVIA TOLU,
VITO CACUCCIOLO, PAOLO DARIO, HENRIK HAUTOP

THE BIOROBOTICS

INSTITUTE

(L,

LUND, CECILIA LASCHI

DTU

=
/ Sant Anna =
<=1

e \ < .
o b Sceuola superiore
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Applications — smooth pursuit gaze control

Humans, in order to follow a moving target with
foveal vision, use a combination of eye and head
movements in conjunction with prediction of the
target dynamics in order to align eye and target
motion.
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Applications — smooth pursuit gaze control model

Processing

ER

Visual

A

camera image,
proprioceptive feedbacl

Inverse Dynamics
Controller

motor
command

Robot

proprioceptive
feedbacl




Applications — smooth pursuit gaze control model

SENS
ER ER
: : > :
Visual sens Weighted Inverse Dynamics
Processing TR Sum > Controller
A A A
motor
red command
FRPTES
Y 4
Predictor brec Robot
TR proprioceptive
feedbacl
camera imadge, proprioceptive
proprioceptive feedbacl feedbacl

Vannucci, L., Falotico, E., Di Lecce, N., Dario, P., & Laschi, C. (2015, July). Integrating feedback and predictive control in a bio-inspired
model of visual pursuit implemented on a humanoid robot. In Conference on Biomimetic and Biohybrid Systems (pp. 256-267).

Springer, Cham.
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Applications — smooth pursuit gaze control model

ERSEHS

Visual . The camera image is processed to get
' TR . .
Processing sensory information about the target.

camera imadge,
proprioceptive feedbacl

ERse"s = error reference (retinal slip, 3D gaze
displacement, etc...)

TRsens = target reference (target velocity,
target 3D position, etc...)

74



Applications — smooth pursuit gaze control model

THSEHS
l EHpred

The predictor uses sensory information to
Predictor TRPred predict future states of the target.

proprioceptive
feedbacl

Predictor implemented as
inear neural model:
Rosenblatt’s  single layer

perceptron with a tap delay.
d

out(t) = z x(t—1)-w;

(=0

— out(t)




Applications — smooth pursuit gaze control model

— out(t)

x(t) = TR>®™(t)

TRP"e4(t) = out(t)

Training with an online version of
Widrow-Hoff rule: (which is also a
decorrelation learning rule)

Aw =1 - (x(t +p) — out(t)) - x(t)

where p is the number of prediction
steps.

SENsS
l TR EHpred

Predictor TRpred

ERPTed(t) = TRP™%(t) — g(sensors(t)) T proprioceptive




Applications — smooth pursuit gaze control model

X (k)

Such a linear model is able to predict
periodic motions, also in presence of
> outt) NOISE.

I I I
input signal
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———predicted signal
IO TR gl R RITTR e SRRTUUUUUT SRR P _
10 o S g b : :
r P i P4 : :
¥ \ i : ; P A "
LN £f 1 A ; £ i Fi
! l'; 1 i i I .{E ; 3 i ]
Fi f I 1 I: kY i 1 I: \ I 1
/ 1 b P ) e AN RS N A B A B
AP T o ‘1 ' [ Y O SR OO O ORI AU OO - O A O WY
0 ! ! I | f Vil b Pl e ey
i L i f \ ; W ol poalr e Yy o
? ) I ! i N v f (Y] 1 v
S f 1 ] L1 ] 1 1
L 1 \ ¥ s
: YA A W) : : :
: A : Y : : :
10 : A ~ : : :

0 2 4 6 8 10 12



Applications — smooth pursuit gaze control model

ERSeNS = In order to automatically switch between
cens ] Wesials:ed thg sensory and predictive pathways, a
g ] weighted sum of the error references
coming from the two pathways is
I i performed:
TRP'ed

o
L4

a € |0,1] is a measure of the accuracy of the
prediction and it is computed as follows:

a(t) = f(max{err(t),..,err(t —100)}) °°

‘TRsens (t) . TRpred (t . p)|

maxTR — meanTR Oo O.|O5 o.|1 o.|15 o.|2

err(t) =

| | ]
0.25 0.3 0.35 0.4



Applications — smooth pursuit gaze control model

EHSEHS
ER
> .
Weighted
TRSEHS
N Sum
A A
EHpred
THpred

The selection performed by o
works in two directions:

Its value increases when
prediction becomes
accurate enough

it suddenly decreases when
the sighal changes

The accuracy measure o actually
performs the selection between the
predictive and sensory pathways:

a(t) =1 - ERP™? will be used
a(t) = 0 - ER™ will be used




Applications — smooth pursuit gaze control model

. . . ER
The objective of the IDC is to move the target ] > Inverse Dynamics
. > Controll )
robot plant towards the target reference. This can i S
be in principle any kind of controller. _mator. 8
Two implementations were given: o Robot <
o e edback e

* an adaptive backstepping-based controller

* a neurocontroller, inspired by cortical sensory-
motor associations, capable of learning how to
perform coordinated gaze movements




Applications — smooth pursuit gaze control model

Same movement on both axes: from (0.25Hz, 0.1m) to (0.125Hz,
0.15m) after 26 seconds (in a 50 seconds trial), neurocontroller as IDC.
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Applications — smooth pursuit gaze control model

Switching from a sinusoidal motion (0.25Hz, 0.1m) to a random one
after 26 seconds (in a 50 seconds trial).

1.3

Position {m)
(=] - -
io - [\

o
(e

02

015}

o
-

0.05

Position {m)

target position (vertical plane)
gaze position {vertical plane)

o

20 30 40
Time (s)

gaze error (vertical plane)
alpha {vertical plane)

50

Time(s)

anjea eyde

Position {m)

o

Position {m})

0.2

e
—

o

target position (horizontal plane)
gaze position {horizontal plane)

10 20 30
Time (s)

gaze error (horizontal plane)
alpha {horizontal plane)

50

= = =
= om0

anjea eydpe

.
[

10 20 30
Time (s)

50

When the signal switches to the
random motion, the value of «
suddenly drops. Nevertheless, the
model is still able to follow a
moving target with a maximum
error amplitude of 0.05m.
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Applications - Lorenzo’s videos on icub smooth pursuit

This model was also implemented on the SABIAN robot (backstepping-
based version).
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Applications - Soft robot simulation video
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Applications - Soft robot simulation video
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Can the cerebellum forward
model compensate for
changes in the soft arm
dynamics?



Applications - Soft robot simulation video
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