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Robots outside factories...

IGEELEN  ...need to negotiate real-world environments and promptly react to
INSTITUTE

changes and unexpected situations
Scuola Superiore
/ Sant' Anna Biological systems stand
as an excellent source
of inspiration

Underwater applications

Unstructured environments
Workspace shared among people
and robots

Perception

Reactive behaviour

Space applications



Bioinspiration and biomimetics

Using principles in biology to stimulate research in non-
biological science and technology

Otto Schmitt, an American academic and inventor, coined
the term biomimetics to describe the transfer of ideas
from biology to technology.

The term biomimetics only entered the Websters
Dictionary in 1974 and is defined as "the study of the
formation, structure, or function of biologically produced
substances and materials (as enzymes or silk) and
biological mechanisms and processes (as protein
synthesis or photosynthesis) especially for the purpose of
synthesizing similar products by artificial mechanisms
which mimic natural ones".




Bioinspiration and biomimetics

Interdisciplinarity:

. . c . .. . “Engineers, chemists and others taking inspiration
Bring biologists into biomimetics g g nsp

from biological systems for human applications must
Te——— tcom up with biologists”

TRENDS IN BIOMIMETICS “I...] Fewer than 8% of the nearly 300 studies

A search of the more than 25,000 papers in . . . . .

biomimicry shows the rising interest in the field on biomimetics pUb“Shed in the paSt 3 months
Quorthe pas. Qecate, DUL Sludies Ate aiily and indexed in the Thomson Reuters Web of

restricted to the physical sciences. . . . .
Science had an author working in a biology

R0 pe e S e S . .
L —CierIstHY department — a crude proxy for 'a biologist'.”
== Materials . . . .
S gineeriii “[...] With around 1.5 million described species,

gy colanamoleotlar . and probably some 9 million eukaryotic species

biology . . . .

in existence, researchers pursuing biomimetic
approaches have barely scratched the surface
of biological inspiration.”

Number of papers

More biology education for engineers, in
academy and in industry

0 | 1 | | | |
1994 1998 2002 2006 2010 2014

" “ o
Date obiteinied by, searching the Web Emilie Snell-Rood, “Interdisciplinarity: Bring

of Science Core Collection with the

term “biomim* or bioinspir*”, enature

biologists into biomimetics”, Nature 529, 277-
278 (21 January 2016) doi:10.1038/529277a
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Velcro resulted in 1948 from a Swiss engineer, M. R. Cutkosky, Climbing with adhesion:
George de Mestral, seeing how the hooks of a From bioinspiration to biounderstanding.

plant burrs (Arctium lappa) stuck to his dog’s fur.  Interface Focus 5, 20150015 (2015).



Examples of bioinspiration and biomimetics

The Eiffel Tower: the perfect structure of trabecular struts in the head of the human femur inspired a
French engineer at the end of the 19t Century. He was intended to design the higher structure all the
world. The name of this engineer is Gustave Eiffel. In 1889 the Tower is completed.




The two-fold relation between
B robotics and biology
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NEW SCIENCE

NEV\?L@‘%§&)GY &, Applications
Biomimetic robotics:

* developing robots for real-world applications
* studying biological systems by robotic platforms
Unified approach to the study of living organisms and robots



Biorobotics Science and Engineering

Journals Topics Careers

Science Robotics....

Science Science Advances  Science Immunology  Science Robotics  Science Signaling  Science Translational Medicine

Free access to
Science Robotics

BiO ro bOtiCS SCie nce: i sty _< i |

. . s
using robotics to
discover new principles...

MORE FROM SCIENCE ROBOTICS

- Currant Tahla of Cantante

Contents =

Science for Robotics and Robotics for Science

Biorobotics Enginee ring: Paolo Dario, Editorial Board

Scuola Superiore Sant'’Anna, Pisa, Italy

M b M One of the ambitions of Science Robotics is to root robotics research deeply into science.

u S I n g ro Ot I C S t O Biorobotics represents such an ambition: It keeps the living world (and thus life sciences) at its
core and investigates different applications of bioinspired machines and robots, as well as

P o validates scientific hypotheses. The power of the latter is somewhat underestimated, but in

'n Ven t n e W SOIu tlons fact it may represent what really makes robotics worthy of constituting a scientific and not

eese only a technological or engineering pursuit. Robotics science can be pursued in two different

ways: the first, according to the model of synthetic science, in which engineers create new
knowledge (and thus science) by addressing and solving a series of problems; the second, by

using robots to unveil natural principles. The latter approach has been pursued explicitly by
some seminal papers in robotics that have appeared in the past 15 years.




Bioinspiration and biomimetics

Goals of natural selection

- Survival
- Reproduction

Result of incremental adaptations

Not optimal design

“Simply copying a biological system is either not feasible (even a
Son single neuron is too complicated to be synthesized artificially in every
detail) or is of little interest (animals have to satisfy multiple
constraints that do not apply to robots, such as keeping their
metabolism running and getting rid of parasites), or the technological
solution is superior to the one found in nature (for example, the
biological equivalent of the wheel has yet to be discovered).

Rather, the goal is to work out principles of biological = gytrac ey

systems and transfer those to robot design.” pri
Rolf Pfeifer

R. Pfeifer, M. Lungarella, F. lida (2007). "Self-Organization, Embodiment, and Biologically

Inspired Robotics", Science 318, 1088
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Robot vision Bioinspired vision

Robot sensors

Robot mechanics
and kinematics

Embodied Intelligence,
Soft Robotics

Robot control Neurocontrollers

Robot behaviour Predictive behaviour
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Embodied Intelligence: the modern
THE BIOROBOTICS ° ege o °
INSTITUTE view of Artificial Intelligence
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Modern approach

Classical approach The focus is on interaction with the
The focus is on the brain and environment. Cognition is emergent from
central processing system-environment interaction

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we think: a new view of
intelligence, The MIT Press, Cambridge, MA, 2007



e Properties of complete agents
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1. They are subject to the laws of physics (energy dissipation,
friction, gravity).

2. They generate sensory stimulation through motion and
generally through interaction with the real world.

3. They affect the environment through behavior.

4. They are complex dynamical systems which, when they
interact with the environment, have attractor states.

5. They perform morphological computation.

These properties are simply unavoidable consequences of

embodiment.

These are also the properties that can be exploited for

generating behavior, and how this can be done is specified in the

design principles.
Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



e Properties of complete agents
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1. A complete agent is subject to the laws of physics.

Walking requires energy, friction, and gravity in order to work.
Because the agent is embodied, it is a physical system (biological
or not) and thus subject to the laws of physics from which it
cannot possibly escape; it must comply with them. If an agent
jumps up in the air, gravity will inevitably pull it back to the
ground.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



e Properties of complete agents
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2. A complete agent generates sensory stimulation.

When we walk, we generate sensory stimulation, whether we
like it or not: when we move, objects seem to flow past us (this is
known as optic flow);

by moving we induce wind that we then sense with our skin and
our hair;

walking also produces pressure patterns on our feet;

and we can feel the regular flexing and relaxing of our muscles as
our legs move.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



e Properties of complete agents
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3. A complete agent affects its environment.

When we walk across a lawn, the grass is crushed underfoot;
when we breathe, we blow air into the environment;

when we walk and burn energy, we heat the environment;

when we drink from a cup, we reduce the amount of liquid in the
glass;

when we drop a cup it breaks;

when we talk we put pressure waves out into the air;

when we sit down in a chair it squeaks and the cushion is
squashed.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



e Properties of complete agents
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4. Agents tend to settle into attractor states.
Agents are dynamical systems, and as such they
have a tendency to settle into so-called attractor
states. Horses, for example, can walk, trot,
canter, and gallop, and we—or at least experts—
can clearly identify when the horse is in one of
these walking modes, or gaits, the more technical
word for these behaviors.

These gaits can be viewed as attractor states. The
horse is always in one of these states, except for
short periods of time when it transitions between
two of them, for example from canter to gallop. [L‘!E@@ ) (ﬁaii«ng’j ; [sk?EpinQ}
We should point out here that the attractor P 7 ,
states into which an agent settles are always the [ LM

result of the interaction of three systems: the

agent’s body, its brain (or control system), and its

environment.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



e Properties of complete agents
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5. Complete agents perform morphological computation.

By “morphological computation” we mean that certain processes are performed
by the body that otherwise would have to be performed by the brain.

An example is the fact that the human leg’s muscles and tendons are elastic so
that the knee, when the leg impacts the ground while running, performs small
adaptive movements without neural control.

The control is supplied by the muscle-tendon system itself, which is part of the
morphology of the agent.

It is interesting to note that systems that are not complete, in the sense of the
word used here, hardly ever possess all of these properties. For example, a vision
system consisting of a fixed camera and a desktop computer does not generate
sensory stimulation because it cannot produce behavior, and it influences the
environment only by emitting heat and light from the computer screen. Moreover,
it does not perform morphological computation and does not have physical

attractor states that could be useful to the system.
Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



e Morphological computation
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Controller

Central nervous system |

| —

Motor Sensory
commands feedback

Body dynamics/morphology
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. Musculoskele ,, physical |  Sensory receptors

stimulation

External
physical

Mechanical
feedback

Movement

Tghk-environment
Ecological niche

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Morphological Computation

As any transformation of information can be named as computing, Morphological
Computation endows all those behaviours where computing is mediated by the
mechanical properties of the physical body

The arrangement

of the motor, perceptive and processing
units

The shape The mechanical properties

as body structure, specifies the allow emergent behaviors and highly
behavioral response of the agent adaptive interaction with the environment

Zambrano D, Cianchetti M, Laschi C (2014) “The Morphological Computation Principles as a
New Paradigm for Robotic Design” in Opinions and Outlooks on Morphological Computation,
H. Hauser, R. M. Fuchslin, R. Pfeifer (Ed.s), pp. 214-225.




Morphological Computation ...more precisely

A) Morphology facilitating B) Morphology facilitating C) Morphological
control perception Computation

[ recurrent network of 1

onlinear springs and masses _|

—y1(t)

>0 (1)

Reservoir computing
Physical body acts as a
reservoir

Passive walker

http://www.space- Compound eyes
eight.com/walker.html Objects nearby move faster across the

visual field than objects farther away

V.C. Muller, M. Hoffmann, "What is morphological computation? On how

body contributes to congnition and control", Artificial Life 23:1-24 (2017)


https://www.google.it/search?q=passive+walker&oq=passive+walker&aqs=chrome..69i57j0l5.3758j0j7&sourceid=chrome&ie=UTF-8#q=passive+walker&tbm=vid
http://www.space-eight.com/walker.html

el Agent Design Principle 1
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The three-costituents principle:

* define the ecological niche ENVIRONMENT
e define the desired behaviour and tasks  TASK
* design the agent BODY
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Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



el Agent Design Principle 2
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The complete-agent principle:
* think about the complete agent behaving in the real
world

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



el Agent Design Principle 3
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Cheap design:

e |f agents are built to
exploit the properties of
the ecological niche and
the characteristics of the
interaction with the
environment, their
design and construction
will be much easier, or
‘cheaper’

Passive

walker

http://www.space-eight.com/walker.html

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007


https://www.google.it/search?q=passive+walker&oq=passive+walker&aqs=chrome..69i57j0l5.3758j0j7&sourceid=chrome&ie=UTF-8#q=passive+walker&tbm=vid
http://www.space-eight.com/walker.html

el Agent Design Principle 4
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Redundancy:
* Intelligent agents must be designed in such a way

that

(a) their different sub-systems function on the basis
of different physical processes, and

(b) there is partial overlap of functionality between
the different sub-systems

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007
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Sensory-Motor Coordination:

e through sensory-motor
coordination, structured
sensory stimulation is
induced.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007
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Ecological balance:

1. given a certain task
environment, there has to
be a match between the
compl exities of the agent’s From Climbing Mount Improbable by Dawkins.

A snail with human-like, and human-sized, eyes.

Sensory, moto r, and nheu ra| This snail would have a hard time carrying along

these giant eyes, but more importantly, they
SyStemS would be only moderately useful, if at all: why
bother detecting fast-moving predators if you

2' there iS d Certain balance Orcannot run away from them, or detecting
task distribution between  runningprey if youare vegetarian? The

complexity, weight, and size of the human eyes

morphology’ materia |S’ would only constitute unnecessary baggage,
. an example of an entirely unbalanced system.
control, and environment.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007
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Parallel, loosely coupled processes:
intelligence is emergent from a large number of parallel

processes that are often coordinated through
embodiment, in particular via the embodied interaction

with the environment

Reactive architectures

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007
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Value:

agents are equipped with a value system which

constitutes a basic set of assumptions about what is
good for the agent

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Embodied Intelligence and
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Any cognitive activity arises from the interaction
between the body, the brain and the
environment.

Adaptive behaviour is not just control and
computation, but it emerges from the complex
and dynamic interaction between the

morphology of the body, sensory-motor control,
and environment.

Many tasks become much easier if

morphological computation is taken into

account.

=> A new soft bodyware is needed

Modern approach
The focus is on interaction with the
environment. Cognition is emergent from
system-environment interaction

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we think: a new view of

intelligence, The MIT Press, Cambridge, MA, 2007



Defining Soft Robotics:

THE BIOROBOTICS
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Variable impedance actuators and Use of soft materials in robotics

stiffness control

* mechanically (or passively) compliant  Robots made of soft materials or
joints with variable stiffness structures that undergo high
* compliance or impedance control deformations in interaction

* Soft actuators and soft components

. . . Laschi C. and Cianchetti M. (2014) “Soft Robotics: new
IEEE Robotics and Automation Magazine, perspectives for robot bodyware and control” Frontiers in

Special Issue on Soft Robotics, 2008 Bioengineering & Biotechnology, 2(3)




THE BIOROBOTICS A lSOft’ animal World
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* The vast majority of animals are soft-
bodied

* Animals with stiff exoskeletons such
as insects have long-lived life stages
wherein they are almost entirely soft
(maggots, grubs, and caterpillars).

* Animals with stiff endoskeletons are
mainly composed of soft tissues and
liquids.

-

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired
evolution in robotics, Trends in Biotechnology, April 2013.

the human skeleton typically
contributes only 11% of the body
mass of an adult male

head

elbow  forearn
: back
stomac small of the bacl
walst e hip
buttocks

thigh

knee
r':
shin f arch of the foot
' )
instep| | ball of the foot
loeﬂalli Red ank’e
- g,“ J foot
big toe| L
sole

skeletal muscle contributes an
average 42% of body mass



THE BIOROBOTICS A ‘SOft’ animal World
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e Soft animals tend to be small because
it is difficult for them to support their
own body weight without a skeleton.

e All of the extremely large soft

invertebrates are found either

* in water (squid and jellyfish) or

e underground (giant earthworms),
where their body is supported by the
surrounding medium.

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired evolution in
robotics, Trends in Biotechnology, April 2013.




THE BIOROBOTICS DEﬁning Soft Robotics
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“Soft-bodied robots”, in analogy with soft-bodied

animals

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired evolution
in robotics, Trends in Biotechnology, April 2013.

- 27
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Photo credits: Massime Brega, The Lighthouse

“Robots built with soft materials”

Laschi C. and Cianchetti M. (2014) “Soft Robotics: new perspectives for robot
bodyware and control” Frontiers in Bioengineering & Biotechnology, 2(3)
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* “systems that are capable of autonomous behavior, and that are
primarily composed of materials with moduli in the range of that of

soft biological materials”
D. Rus, M. T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467-475 (2015).
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Figure 2 | Approximate tensile modulus (Young’s modulus) of selected engineering and biological materials. Soft robots are composed primarily of
materials with moduli comparable with those of soft biological materials (muscles, skin, cartilage, and so on), or of less than around 1 gigapascal. These
materials exhibit considerable compliance under normal loading conditions.

* “soft-matter robotics”, based on the well-known concept of “soft

matter” used for materials

L. Wang, F. lida, Deformation in Soft-Matter Robotics: A Categorization and Quantitative
Characterization. IEEE Robotics & Automation Magazine 22(3), 125-139 (2015).



Defining Soft Robotics

Definition of Soft Robotics by RoboSoft Community

THE BIOROBOTICS

RoboSoft is a Coordination Action on Soft Robotics funded by the European Commission.
' The RoboSoft Community accounts for 34 member institutions for a total of 100+ scientists




“Soft robot/devices that can actively interact with the environment and can
undergo ‘large’ deformations relying on inherent or structural compliance”

Soft Robotics may exploit materials which present:

= INHERENT MATERIAL compliance: bulk material properties ‘%~ %
(elastomers, low elastic modulus polymers, gels...) T

M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides,
J.A. Lewis, R.J. Wood, An integrated design and fabrication strategy for
entirely soft, autonomous robots, Nature 536, 451-455

= STRUCTURAL compliance: geometric features or arrangement can
allow magnified strains compared with local material deformation

Low Elastic Modulus Soft Robotics
e\x\l

ceol

High Elastic Modulus > Hard Robotics

C. Laschi, B. Mazzolai, M. Cianchetti, "Soft robotics: technologies and systems

pushing the boundaries of robot abilities", Science Robotics 1(1), 2016
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Robot vision Bioinspired vision

Robot sensors Vestibular system

Robot mechanics
and kinematics

Embodied Intelligence,
Soft Robotics

Robot control

Neurocontrollers
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Octopus-inspired robot arm

e Silicone

e 9 sections of
transverse and
longitudinal
cables (coupled)

Cables pulled by
electric motors
Simple
activation
pattern:
sequential
activation of
sections, with
equal activation
of 4 longi-
transverse
cables per
section

Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.
“Design concept and validation of a robotic arm inspired by the octopus”,
/ Materials Science and Engineering C, Vol.31, 2011, pp.1230-1239.

Image: Massimo Brega »



Soft robot control

Hard Hyper redundant
[ ]
F RO M . Discrete Continuum
Joint positions Position, Non-Redundant Redundant Soft
. . » - é :
(angles) orientation, force - 9
) 1 i

TO:

Encoders, Pressure, Ex: Cable Lengths, Position, ( A
Voltage, Torque Cable Tension Arc Parameters Orientation, Force Model-based
Actuator Joluit Space Configuration Approaches
Space Space . v
Manipulator and Manipulator Manipulator 4 Model-Free )

Actuator Specilic Specific Independent .
(learning-based)

( approaches )

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control

Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)




Model-based approaches for soft robot control

/ Constant Curvature Model \ / Cosserat-Rod Model \ /

Continuous-functions
Discretized-functions
Finite Element Method

.. 5P
4 ~ for o
porting tube o
(constraing catheter)

Increasing Computational Complexity and ‘Accuracy’

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control

Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)




Encoders, Pressure, Ex: Cable Lengths, Position,

Model-based approaches for soft robot control
Based on CC modeling o T s e

; v
—»(%)—» dtniai Ty JEAS Lyt towlevel | 0 vanpuatr > Closed-loop task space controller

Optimization IK Controller

Camarillo DB, Carlson CR, Salisbury JK. Task-space control of continuum manipulators with coupled tendon drive. In: Experimental Robotics.
Springer Tracts in Advanced Robotics, vol 54. Khatib O, Kumar V, Pappas GJ (Eds). Berlin, Heidelberg; Springer: 2009, pp. 271-280.

H(?—»P*D—;(l)—ﬁ'sm“'s Ty tontee L2t wanpuaor > Closed-loop controller in task space

Bajo A, Goldman R, Simaan N. Configuration and joint feedback for enhanced performance of multi-segment continuum robots. 2011 IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011.
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* |T.8-48] |9 + + 9 |Js-As| U Low Level u ) x
" K \ PID IK Controller Menipuiney

r

Closed-loop controller in joint space

T |Ts-u8|,
K [T

PenningR, Jung J, Ferrier N, Zinn M.An evaluation of closedloop control options for continuum manipulators. 2012 IEEE International Conference
on Robotics and Automation (ICRA), Saint Paul, MN, 2012.

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control

Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)




Encoders, Pressure, Ex: Cable Lengths, ArcP Position,

Model-based approaches for soft robot control e e it AP e

Actuator
Space

Discussion: s nd
* Most widely used in quasi static conditions

 Mostly relying on CC approximation

 More complex models are computationally expensive

* Need for alternative methods, better addressing the
complexity of soft robot control, at affordable
computational cost

=> model-free approaches

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control

Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)




Model-free approaches for soft robot control
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T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control

Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)




Model-free approaches for soft robot control Mt e il hmn e

Orientation, Force

Actuator Joint Space Configuration Task
Space P Space Space

Model-free closed-loop task space controller v pihe e g
|‘ Learned . .
- L= g |JS-AS| U Low Level u . X

Rolf M, Steil JJ. Efficient exploratory learning of inverse kinematics on a bionic elephant trunk. /EEE Trans Neural Netw Learn Syst 2014;25:1147-1160.

TASK SPACE JOINT SPACE
Learning-based Control, by learning the ud .
inverse model.

udy T,
Learning by collecting points and I
exploiting the approximation capability End effect Cable
of a FNN, as for rigid robots position Tension

Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Neural network and Jacobian method for solving the inverse statics of a
cable-driven soft arm with nonconstant curvature. IEEE Trans Robot 2015;31:823—-834.

Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Learning the inverse kinetics of an octopus-like manipulator in three-
dimensional space. Bioinspir Biomim 2015; 10:035006.

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control

Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)




Comparison of a model-based and a model-free approaches

control the end effector position through the cable tension

1. Jacobian-based Inverse y
Static Controller

2. Learning-based Control, by
learning the inverse model.

Cosserat-based model

u’. | Jacobian | Y _ Soft u. g,

> > —(O—
Method Arm - JM Mean 0-27
] (351ms) Std 0.03
u’ > FNN c*t“; 2?;: - .- E"" Max 0.32
End effector NN Mean 0.73
position Tension (0.125ms) Std 0.55
Max 3.1

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and

Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant
curvature. IEEE Transactions on Robotics, 31(4), 823-834.




Comparison of a model-based and a model-free approaches

1. Jacobian-based Inverse control the end effector position through the cable tension

Static Controller
2. Learning-based Control, by
learning the inverse model.

T*l ud, Jacobian | ¥ Soft u. E,
> "Method  am [T
T,
u’, Fran LT | Sof Ui E,
i i Arm Q—
End effector

position Cable Tension

Method

Absolute (mm)

Jacobian
method

FNN

mean
sid
max

Py
mean

std
max

%

15.12
8.10
31.76

7.35
4.75
2222

Percentage (%)

54
2.89
11.34
43.18
2.62
1.7
7.94
91

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and

Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant
curvature. IEEE Transactions on Robotics, 31(4), 823-834.




Comparison of a model-based and a model-free approaches

Tye =
Tie -

Rmax
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Increasing inaccuracy values

All values are expressed in millimeters.
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Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and Jacobian

method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature. IEEE
Transactions on Robotics, 31(4), 823-834.

0.25




Inverse Kinematic Controller Line Following

Kinematics: based on steady state assumptions

x=J](q)q == Ax=~](q)Aq
Learning a Differential Inverse Kinematics formulation : x = /(q°) q
This allows for redundancy resolution, robustness to modelling errors

The learned mappingis : (x;41,9i,Xi) = (qi+1)
LEARNING

OUUS SOVLTULRUNRSES SPUUUS. SO WSS WS, yopp—

* 2000 sample points divided in the ratio
70:30 for training and testing respectively

* 2 hours for data collection, training, set-up Disturbance Rejection

TESTS

25 random points selected from workspace

Mean Error  Standard

Deviation 1
Position (mm) 5.58 3.08
X- axis rotation (degrees) 2.76 5.42 J
. ion (degrees) e e I-Support Prototype |
Y- axis rotation . . ) . ney
_ ) g Six DoF Hybrid System | EE——
Z- axis rotation (degrees) 3.85 7.02 SR T e

(Pneumatic and Tendon)

George Thuruthel T, Falotico E., et al. "Learning closed loop kinematic controllers for

continuum manipulators in unstructured environments." Soft robotics 4.3 (2017): 285-296.




Encoders, Pressure, Ex: Cable Lengths, Position,

Model-free approaches for soft robot control

Discussion: e
* No need for defining the parameters of the
configuration space or joint space
* Independent from manipulator shape
* Arbitrarily complex kinematic models,
depending on sample data and sensory noise
* Better performance with highly nonlinear,
non-uniform, gravity-influenced systems
e Suitable for unstructured environments
where modelling is almost impossible

Better encoding of morphological computation?
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Dynamic Controllers —open loop — . omnewa | x . = ”

v

Controlling the soft manipulator both in Network T i

space and time 1 2= W
(T, %,%) - & ) w -
(‘t, XL, xi_l) - xitl 21_2 < - b X&m[mg{a::c wo::space

Sampling Slow circle task

Thuruthel, T. G., Manti, M., Falotico, E., Laschi, C. 2018. "Stable Open Loop Control of

Soft Robotic Manipulators." IEEE Robotics and Automation Letters 3(2):1292-1298.




Self-Stabilizing Trajectories

The unique dynamics of a soft
TE MORORR oS manlpuIaFor exhibits larger number
of dynamic attractors that can be
| Gaj Ry used for stable open loop control

Stable Open Loop Control of Soft ) : -
Robotic Manipulators I/ Cains .

Thomas George Thuruthel, Egidio Falotico, Mariangela Manti
and Cecilia Laschi, Senior Member, |IEEE

i
H
i i

’ kY
Jjumping I"*, walking | ' [E;Ipping ;"
i R
trotting
o

Thuruthel T. G., Falotico E., Manti M., Laschi C. (2018). Stable Open Loop Control of Soft Robotic

Manipulators. IEEE Robotics and Automation Letters, 3(2), 1292-1298




e SUumMmmary of bioinspired approaches to

INSTITUTE

robotics (in this course...)
e 'é \ Scuola Superiore
/ Sant’Anna

Robot vision Bioinspired vision

Robot sensors Vestibular system

Robot mechanics
and kinematics

Embodied Intelligence,
Soft Robotics

Robot control Neurocontrollers

Robot behaviour A{



Behaviour: Perception-Action loops
Robotics perception and action architectures
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Figure 1: The traditional model where cognition mediates between
perceptions and plans of actions.

R. Brooks, Cambrian Intelligence, MIT Press, 2000




Behaviour: Perception-Action loops
Natural perception and action pathways

from Kandel et al., Principles of Neuroscience, McGraw-Hill




Natural perception and action pathways

Perception and action not so different...

from Kandel et al., Principles of Neuroscience, McGraw-Hill




Delays in the human nervous system

“In motor control delays arise in sensory transduction, central processing, and in the motor output.
Sensor transduction latencies are most noticeable in the visual system where the retina introduces a delay
of 30-60 ms, but sensory conduction delays can also be appreciable. Central delays are also present due
to such ill-defined events such as neural computation, decision making and the bottlenecks in processing
command. Delays in the motor output result from motorneuronal axonal conduction delays, muscle
eX|ctat|on contraction delays, and phase Iags due to the intertia of the system. These delays combine to

R.C. Miall, D.J. Weir, D.M. Wolpert, J.F. Stein, “Is the cerebellum a Smith predictor?”,
Journal of Motor Behavior, vol. 25, no. 3, pp. 203-216, 1993

“Fast and coordinated arm movements cannot be executed under pure
feedback control because biological feedback loops are both too slow and
have small gains”

M. Kawato, Internal models for motor control and trajectory planning. Current Opinion in

Neurobiology, 9, 718-727(1999). Elsevier Science Ltd.

A. Berthoz, Le sens du mouvement. Odile Jacob, Paris, 1997

R.S. Johansson, “Sensory input and control of grip”, in M. Glickstein (Ed.),
Sensory Guidance of Movements. John Wiley, Chichester, UK, pp. 45-59,1998

: navoidable feedback dela he negative feedback control Ioop, and can lie between e
about 30 ms fgr a spinal reflex up t©0 200-300 ms jor a visually guided response.” .




Prediction and anticipation strategies

in the human brain

In humans, perception is not just the interpretation of sensory
signals, but a prediction of consequences of actions

“Perception can be defined as a simulated action:
perceptual activity is not confined to the
interpretation of sensory information but it
anticipates the consequences of action, so it is an
internal simulation of action.

Each time it is engaged in an action, the brain
constructs hypotheses about the state of a
variegated group of sensory parameters
throughout the movement.”

lllllllllllllllllllllllllllllllllll




From hierarchical to reactive
architectures in robotics

WorLd Weoa Ly

L

{ _Fjan.:.wmu L&cﬂa«q TPTION Action

Figure 1: The traditional model where cognition mediates between = S
perceptions and plans of actions.

Figure 2: The new model, where the perceptual and action subsystems
are all there really is. Cognition is only in the eye of an observer.

R. Brooks, Cambrian Intelligence” MIT Press, 2000




Predictive architectures
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Sensory prediction in grasping tasks

“Because of the long time delays with feedback control, the swift coordination of fingertip
forces during self-paced everyday manipulation of ordinary ‘passive’ objects must be explained
by other mechanisms.

Indeed, the brain relies on feedforward control mechanisms and takes advantage of the stable
and predictable physical properties of these objects by parametrically adapting force motor
commands to the relevant physical properties of the target object.”

SELEGTIONM 'SENSORIEMOTOR =
gy S
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i Paramsater
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Visior —J
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| .

R.S. Johansson, “Sensory input and control of grip”. In Sensory Guidance of
Movements, John Wiley, Chichester, UK, pp. 45-59, 1998



Preshaping Module

Object geometric features y \
POS - [X, Y, Z] THC - [a, B, 7, 6]
biv - [amx.amy,aimz] | Neuro-fuzzy Network
CC1-[cc1g, ... CoTg] SAN FIS I TAC - [x, Y, z, roll, pitch, yaw]
CC2-[cC-2y, ... Cc-2,] TM — type of grasping

o )

6 - Joint 1 Middl } Hand/Arm configurations
. and Type of grasping

o

v - Joint 1 Index o - Joint 1 Thumb

f - Thumb Abduction/Adduction

Self-Adaptive Neuro-Fuzzy Inference System (SANFIS |)

eCombine advantages NN and Fuzzy Logic
el earning, adaptation, and connectionist structure
e Ability to exact explicit IF-THEN rules from training data




EP Generator (preshaping) Module

Object geometric features

POS - [X, Y, Z] =/ \

DIM - [dimx,dimy,dimz]

CC1-[cc-1y, ... Co-1g] /

cc2- o2, ... ce-2 | Neuro-fuzzy Network 'gﬂ -Target Tactile Image

TAC - [x, Y, z, roll, pm*h,ya}) SAN FlS Il [ttty .., th]
where:
THC - [o, B, 7, 6] m=9
//\ tt, = £th value for the tactile
sensor € {0,1
Hand/Arm / 0.1
configurations

SANFIS 11

eCombine advantages NN and Fuzzy Logic
el earning, adaptation, and connectionist
structure

e Ability to exact explicit IF-THEN rules from
training data

e Output space not very complex

EP in grasping



EP-based Grasping Module

AHC — Actual Hand Configuration / \

[o, B, v, 6]

THC -Target Hand Configuration

pe ATI - Actual Tactile Image Neural Network (o, ', 7, O]

L) TTI -TargetTactiIeImagfz GNG \ f
L ) '

Growing Neural Gas + Grossberg’s Outstars

eUnsupervised learning paradigm

eCompetitive learning methods (winner-takes-all)
3 eGeneration of a topology-preserving mapping from the input space onto a

topological structure of equal or lower dimension
eNetwork topology is unconstrained
eUses growth mechanism (the network size does not need be predefined)




Learning ofrasping module
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Learning phase: L
About 40000 random movements (e



Grasping the bottle

C. Laschi, G. Asuni, E. Guglielmelli, G. Teti, R. Johansson, M.C. Carrozza, P. Dario, “A Bio-
inspired Neural Sensory-Motor Coordination Scheme for Robot Reaching and Preshaping”,
Autonomous Robots, Vol.5, 2008, pp.85-101.




Expected Perception in the visual space
EP architecture applied to 3D reconstruction of the environment

Task: free walking in an unknown room
with obstacles

Classical approach:

= 3D reconstruction of the
environment

= path planning for collision-free
walking

-> large computational burden

09ar0078cl [RF] © www.visualphotos.com

In a Visual EP architecture, after a first 3D reconstruction of the environment, images
can be predicted, based on internal models and on the ongoing movement.

Predicted images are compared with actual ones and in case of unexpected
obstacles a mismatch occurs and the motor action is re-planned




Visual EP scheme
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poses Network Structure ———» Network Parameter A synthetic visual difference
Identification preliminary |ldentification 3D image
A fuzzy rules Computation of
new association | fuzzy rules Estimated Efl'lor
I .
|
! | Learning |— if error < threshold | |
1 | (neural-fuzzy net) (€€ * if error > threshold :
| I 1 jmm——————- -t — %
\ | : . i
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I I relevant features . | Determination of
¥ ¥ ! | Error Cause
3D Reconstruction I 1 Permanence :
) I I
of Environment 1 1 if change is permanent, |
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I
Identification of ! ¥
relevant features :
(goal, obstacles) : TRAJECTORY PLANNING CONTROLLER
poses of : -
relevant features @ > Generation of « Generation of Robot Actuators
l Walking Path Motor Commands cufrent Moo commands (head / legs)
sequence of (head pose, legs linear /
VISUAL PROCESS'NG robot poses T angular moving displacement)

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism underlying robot

locomotion “ IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN,
USA, September 2010, pp.3206-3209




AVP architecture (1)

- Visual Processing module takes as input current images from both robot cameras to
reconstruct the environment producing the relevant feature position.

- The poses of relevant features are sent to a Trajectory Planning module to generate the
walking path

- The Controller module then takes the first robot pose from the sequence of poses
planned by the Trajectory Planning module and produces the corresponding motor
commands

-This cycle continues until the robot reaches the target.

| ]
3D Reconstruction

of Envirconmant

l current 30 image

ldentification of
relevant features

(goal, obstacles) TRAJECTORY PLANNING CONTROLLER
poses of = ;
relesvant features eneration o Generation of v Robot Actuators
#: r -« * -
Walking Path r Motor Commands cUFFENt Mo commands {head [ legs)
SEQLENCE O Thead asss, lans lnear S
VISUAL PROCESSING robol poses T angular mawing displacemant)

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism underlying robot

locomotion “ IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN,
USA, September 2010, pp.3206-3209




AVP architecture (ll)
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Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism underlying robot

locomotion “ IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN,
USA, September 2010, pp.3206-3209




Visual EP System (implementation

The system performs a real time 3D
reconstruction of the environment (30fps)
used to generate an expected synthetic
camera image. The cloud of 3D points is
updated using an image sensory-motor
prediction.

At each step:

. the next predicted image (EP) is
calculated.

. the predicted and actual cameras images
are compared.

. the 3D reconstruction of the visible
environment is updated based on the
prediction error

The system has 2 advantages:
. A faster real-time 3D reconstruction

. Recognition of the unexpected objects in
the scene

a I
3D
reconstruct lo/
Il-am

l-m

-
-

Prediction error (unexpected

Pl e
(™Bredicte limage perceptint)

Moutinho, N.; Cauli, N.; Falotico, E.; Ferreira, R.; Gaspar, J.; Bernardino, A.; Santos-Victor, J.; Dario, P.; Laschi, C,;

2011. "An expected perception architecture using visual 3D reconstruction for a humanoid robot,” IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems - IROS, San Francisco, CA, USA, 25-30 Sept. 2011, pp.4826-4831.




A predictive model for smooth pursuit

F._HST Te(t-dy) T Teltrdy)

e(t) g 3 o Vizual X State T (t-d,) K Predictor

Processing ® Slimator \>é'
—
- .-". f;‘ :-Hdz.}

SeNsory
inputs :

Ilr_,_h\ | o (t+45)

Target + Internal

.L +"x_ _/l_ - . Madel o Selector
Tty Cercghellum, Brainstem

= ™
Eve Inverse T (t+43)
Plant 4 Dynamics =
Controller

This circuit is based on Shibata and Schaal’s model (Shibata 2005) of smooth pursuit and consists of
three subsystems:
1.

a recurrent neural network (RNN) mapped onto medial superior temporal area (MST), which
receives the retinal slip with delays and predicts the current target motion,

an inverse dynamics controller (IDC) of the oculomotor system, mapped onto the cerebellum and
the brainstem,

and a memory block that recognizes the target dynamics and provides the correct weights values
before the RNN.

Zambrano D, Falotico E, Manfredi L, and Laschi C. (2010). “A model of the smooth

pursuit eye movement with prediction and learning”. Applied Bionics and Biomechanics




iCub platform
1 head, 6 dof:

3 for the eyes
3 for the neck

The retinal slip (target velocity onto the retina) reaches zero after that the algorithm converges.
When the target is unexpectedly stopped, the system goes on tracking the target for a short time.

>

Velocity (rad/sec)

Target Velocity (a)
Eye Velocity (a)
Target Velocity (b)
Eye Velocity (b)

1 15

O_ SSTima (sec)

2 25

Retinal Slipe (sec)

10

B Sinusoidal dynamics:
a) angular frequency:

Retinal Slip (a)
Retinal Slip (b)

1 rad/s, amplitude:
10 rad, phase: /2
b) angular frequency:

1 15

O_ 8Tsimo (sec)

2
<

1 rad/s, amplitude:
15 rad, phase of %4 it




Punching a moving target - robot experiments

"
e
The prediction is iterated ahead 0.5 seconds
As the predicted target is inside the arm workspace, the robot executes a
movement to punch the ball in the predicted position

N. Cauli, E. Falotico, A. Bernardino, J. Santos-Victor, C. Laschi, “Correcting for Changes:

Expected Perception-Based Control for Reaching a Moving Target”, IEEE Robotics and
Automation Magazine, 23 (1), pp.63-70, 2016.




Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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Embodied Intelligence & Morphological Computation
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Robot low-level control
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Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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