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Robots outside factories… 
…need to negotiate real-world environments and promptly react to 
changes and unexpected situations

Biological systems stand 
as an excellent source 

of inspiration

Space applications

Underwater applications

Search & rescue

• Unstructured environments
• Workspace shared among people 

and robots
• Perception
• Reactive behaviour



• Using principles in biology to stimulate research in non-
biological science and technology

• Otto Schmitt, an American academic and inventor, coined
the term biomimetics to describe the transfer of ideas
from biology to technology. 

• The term biomimetics only entered the Websters
Dictionary in 1974 and is defined as "the study of the 
formation, structure, or function of biologically produced
substances and materials (as enzymes or silk) and 
biological mechanisms and processes (as protein
synthesis or photosynthesis) especially for the purpose of 
synthesizing similar products by artificial mechanisms
which mimic natural ones". 

Bioinspiration and biomimetics



Interdisciplinarity: 
Bring biologists into biomimetics

“[…] Fewer than 8% of the nearly 300 studies 
on biomimetics published in the past 3 months 
and indexed in the Thomson Reuters Web of 
Science had an author working in a biology 
department — a crude proxy for 'a biologist'.”

“[…] With around 1.5 million described species, 
and probably some 9 million eukaryotic species 
in existence, researchers pursuing biomimetic 
approaches have barely scratched the surface 
of biological inspiration.”

More biology education for engineers, in 
academy and in industry

Emilie Snell-Rood, “Interdisciplinarity: Bring 
biologists into biomimetics”, Nature 529, 277–
278 (21 January 2016) doi:10.1038/529277a

“Engineers, chemists and others taking inspiration 
from biological systems for human applications must 
team up with biologists”

Bioinspiration and biomimetics



Velcro resulted in 1948 from a Swiss engineer, 
George de Mestral, seeing how the hooks of a 
plant burrs (Arctium lappa) stuck to his dog’s fur.

A gecko is the largest
animal that can produce
(dry) adhesion to support
its weight. The gecko foot
comprises of a complex
hierarchical structure of
lamellae, setae, branches,
and spatula.

M. R. Cutkosky, Climbing with adhesion: 
From bioinspiration to biounderstanding. 
Interface Focus 5, 20150015 (2015).

Examples of bioinspiration and biomimetics



The Eiffel Tower: the perfect structure of trabecular struts in the head of the human femur inspired a 
French engineer at the end of the 19th Century. He was intended to design the higher structure all the 
world. The name of this engineer is Gustave Eiffel. In 1889 the Tower is completed. 

Examples of bioinspiration and biomimetics



BIOMIMETIC 
ROBOTS

NEW TECHNOLOGY

BIOLOGICAL 
SYSTEMSNEW SCIENCE

The two-fold relation between
robotics and biology

Biomimetic robotics:
• developing robots for real-world applications
• studying biological systems by robotic platforms
Unified approach to the study of living organisms and robots

Applications



Biorobotics Science: 
using robotics to 
discover new principles…

Biorobotics Engineering:
using robotics to 
invent new solutions….

Biorobotics Science and Engineering



Result of incremental adaptations

Not optimal design

Goals of natural selection

“Simply copying a biological system is either not feasible (even a
single neuron is too complicated to be synthesized artificially in every
detail) or is of little interest (animals have to satisfy multiple
constraints that do not apply to robots, such as keeping their
metabolism running and getting rid of parasites), or the technological
solution is superior to the one found in nature (for example, the
biological equivalent of the wheel has yet to be discovered).

Rather, the goal is to work out principles of biological
systems and transfer those to robot design.”

Rolf Pfeifer

Extract key
principles

R. Pfeifer, M. Lungarella, F. Iida (2007). "Self-Organization, Embodiment, and Biologically
Inspired Robotics", Science 318, 1088

- Survival 

- Reproduction

Bioinspiration and biomimetics



Summary of bioinspired approaches to 
robotics (in this course…)

Robot mechanics
and kinematics

Robot control

Robot vision

Robot behaviour

Robot sensors

Embodied Intelligence, 
Soft Robotics

Neurocontrollers

Predictive behaviour

Bioinspired vision
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Embodied Intelligence: the modern 
view of Artificial Intelligence

Classical approach
The focus is on the brain and 

central processing

Modern approach
The focus is on interaction with the 

environment. Cognition is emergent from
system-environment interaction

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we think: a new view of 
intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

1. They are subject to the laws of physics (energy dissipation, 
friction, gravity).

2. They generate sensory stimulation through motion and 
generally through interaction with the real world.

3. They affect the environment through behavior.
4. They are complex dynamical systems which, when they 

interact with the environment, have attractor states.
5. They perform morphological computation.
These properties are simply unavoidable consequences of 
embodiment. 
These are also the properties that can be exploited for 
generating behavior, and how this can be done is specified in the 
design principles. 

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

1. A complete agent is subject to the laws of physics. 
Walking requires energy, friction, and gravity in order to work. 
Because the agent is embodied, it is a physical system (biological 
or not) and thus subject to the laws of physics from which it 
cannot possibly escape; it must comply with them. If an agent 
jumps up in the air, gravity will inevitably pull it back to the 
ground.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

2. A complete agent generates sensory stimulation. 
When we walk, we generate sensory stimulation, whether we 
like it or not: when we move, objects seem to flow past us (this is 
known as optic flow); 
by moving we induce wind that we then sense with our skin and 
our hair; 
walking also produces pressure patterns on our feet; 
and we can feel the regular flexing and relaxing of our muscles as 
our legs move.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

3. A complete agent affects its environment. 
When we walk across a lawn, the grass is crushed underfoot; 
when we breathe, we blow air into the environment; 
when we walk and burn energy, we heat the environment; 
when we drink from a cup, we reduce the amount of liquid in the 
glass; 
when we drop a cup it breaks; 
when we talk we put pressure waves out into the air; 
when we sit down in a chair it squeaks and the cushion is 
squashed.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

4. Agents tend to settle into attractor states. 
Agents are dynamical systems, and as such they 
have a tendency to settle into so-called attractor 
states. Horses, for example, can walk, trot, 
canter, and gallop, and we—or at least experts—
can clearly identify when the horse is in one of 
these walking modes, or gaits, the more technical 
word for these behaviors.
These gaits can be viewed as attractor states. The 
horse is always in one of these states, except for 
short periods of time when it transitions between 
two of them, for example from canter to gallop. 
We should point out here that the attractor 
states into which an agent settles are always the 
result of the interaction of three systems: the 
agent’s body, its brain (or control system), and its 
environment. 
Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

5. Complete agents perform morphological computation. 
By “morphological computation” we mean that certain processes are performed 
by the body that otherwise would have to be performed by the brain. 
An example is the fact that the human leg’s muscles and tendons are elastic so 
that the knee, when the leg impacts the ground while running, performs small 
adaptive movements without neural control.
The control is supplied by the muscle-tendon system itself, which is part of the 
morphology of the agent. 
It is interesting to note that systems that are not complete, in the sense of the 
word used here, hardly ever possess all of these properties. For example, a vision 
system consisting of a fixed camera and a desktop computer does not generate 
sensory stimulation because it cannot produce behavior, and it influences the 
environment only by emitting heat and light from the computer screen. Moreover, 
it does not perform morphological computation and does not have physical 
attractor states that could be useful to the system.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Morphological computation

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Morphological Computation

The shape
as body structure, specifies the 
behavioral response of the agent

The arrangement
of the motor, perceptive and processing 
units 

The mechanical properties
allow emergent behaviors and highly 
adaptive interaction with the environment

As any transformation of information can be named as computing, Morphological 
Computation endows all those behaviours where computing is mediated by the 
mechanical properties of the physical body

Zambrano D, Cianchetti M, Laschi C (2014) “The Morphological Computation Principles as a 
New Paradigm for Robotic Design” in Opinions and Outlooks on Morphological Computation, 
H. Hauser, R. M. Füchslin, R. Pfeifer (Ed.s), pp. 214-225.



Morphological Computation …more precisely

Compound eyes
Objects nearby move faster across the 
visual field than objects farther away

Passive walker

http://www.space-
eight.com/walker.html

A) Morphology facilitating
control

B) Morphology facilitating
perception

C) Morphological
Computation

Reservoir computing
Physical body acts as a 
reservoir

V.C. Muller, M. Hoffmann, "What is morphological computation? On how
body contributes to congnition and control", Artificial Life 23:1-24 (2017)

https://www.google.it/search?q=passive+walker&oq=passive+walker&aqs=chrome..69i57j0l5.3758j0j7&sourceid=chrome&ie=UTF-8#q=passive+walker&tbm=vid
http://www.space-eight.com/walker.html


Agent Design Principle 1

The three-costituents principle:
• define the ecological niche ENVIRONMENT
• define the desired behaviour and tasks TASK
• design the agent BODY

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 2

The complete-agent principle:
• think about the complete agent behaving in the real

world

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 3

Cheap design:
• If agents are built to 

exploit the properties of 
the ecological niche and 
the characteristics of the 
interaction with the 
environment, their 
design and construction 
will be much easier, or 
‘cheaper’

Passive 
walker
video

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007

http://www.space-eight.com/walker.html

https://www.google.it/search?q=passive+walker&oq=passive+walker&aqs=chrome..69i57j0l5.3758j0j7&sourceid=chrome&ie=UTF-8#q=passive+walker&tbm=vid
http://www.space-eight.com/walker.html


Agent Design Principle 4

Redundancy:
• Intelligent agents must be designed in such a way 

that 
(a) their different sub-systems function on the basis 

of different physical processes, and 
(b) there is partial overlap of functionality between 

the different sub-systems

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 5

Sensory-Motor Coordination:
• through sensory-motor 

coordination, structured 
sensory stimulation is 
induced.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 6

Ecological balance:
1. given a certain task 

environment, there has to 
be a match between the 
complexities of the agent’s 
sensory, motor, and neural 
systems

2. there is a certain balance or 
task distribution between 
morphology, materials, 
control, and environment.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007

From Climbing Mount Improbable by Dawkins. 
A snail with human-like, and human-sized, eyes. 
This snail would have a hard time carrying along 
these giant eyes, but more importantly, they 
would be only moderately useful, if at all: why 
bother detecting fast-moving predators if you 
cannot run away from them, or detecting 
running prey if you are vegetarian? The 
complexity, weight, and size of the human eyes 
would only constitute unnecessary baggage,
an example of an entirely unbalanced system.



Agent Design Principle 7

Parallel, loosely coupled processes:
intelligence is emergent from a large number of parallel 
processes that are often coordinated through 
embodiment, in particular via the embodied interaction 
with the environment 

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007

Reactive architectures



Agent Design Principle 8

Value:
agents are equipped with a value system which 
constitutes a basic set of assumptions about what is 
good for the agent

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Embodied Intelligence and 
soft robotics

Classical approach
• The focus is on the brain and 

central processing

Modern approach
The focus is on interaction with the 

environment. Cognition is emergent from
system-environment interaction

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we think: a new view of 
intelligence, The MIT Press, Cambridge, MA, 2007

Any cognitive activity arises from the interaction

between the body, the brain and the 

environment. 

Adaptive behaviour is not just control and 

computation, but it emerges from the complex 

and dynamic interaction between the 

morphology of the body, sensory-motor control, 

and environment.

Many tasks become much easier if 

morphological computation is taken into 

account. 

=> A new soft bodyware is needed



Defining Soft Robotics: 
a first broad classification

Variable impedance actuators and 
stiffness control

• mechanically (or passively) compliant 
joints with variable stiffness 

• compliance or impedance control 

Use of soft materials in robotics

• Robots made of soft materials or 
structures that undergo high 
deformations in interaction

• Soft actuators and soft components

IEEE Robotics and Automation Magazine, 
Special Issue on Soft Robotics, 2008

Laschi C. and Cianchetti M. (2014) “Soft Robotics: new 
perspectives for robot bodyware and control” Frontiers in 

Bioengineering & Biotechnology, 2(3)



A ‘soft’ animal world

• The vast majority of animals are soft-
bodied

• Animals with stiff exoskeletons such 
as insects have long-lived life stages 
wherein they are almost entirely soft 
(maggots, grubs, and caterpillars).

• Animals with stiff endoskeletons are 
mainly composed of soft tissues and 
liquids. 

the human skeleton typically 
contributes only 11% of the body 
mass of an adult male

skeletal muscle contributes an 
average 42% of body mass

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired 
evolution in robotics, Trends in Biotechnology, April 2013.



A ‘soft’ animal world

• Soft animals tend to be small because 
it is difficult for them to support their 
own body weight without a skeleton. 

• All of the extremely large soft 
invertebrates are found either 
• in water (squid and jellyfish) or 
• underground (giant earthworms), 

where their body is supported by the 
surrounding medium. 

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired evolution in 
robotics, Trends in Biotechnology, April 2013.



Defining Soft Robotics

• “Soft-bodied robots”, in analogy with soft-bodied 
animals

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired evolution 
in robotics, Trends in Biotechnology, April 2013.

• “Robots built with soft materials”
Laschi C. and Cianchetti M. (2014) “Soft Robotics: new perspectives for robot 

bodyware and control” Frontiers in Bioengineering & Biotechnology, 2(3)



Defining Soft Robotics

• “systems that are capable of autonomous behavior, and that are 
primarily composed of materials with moduli in the range of that of 
soft biological materials”

D. Rus, M. T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467-475 (2015).

• “soft-matter robotics”, based on the well-known concept of “soft 
matter” used for materials

L. Wang, F. Iida, Deformation in Soft-Matter Robotics: A Categorization and Quantitative 
Characterization. IEEE Robotics & Automation Magazine 22(3), 125-139 (2015).



RoboSoft is a Coordination Action on Soft Robotics funded by the European Commission.
The RoboSoft Community accounts for 34 member institutions for a total of 100+ scientists

Defining Soft Robotics

Definition of Soft Robotics by RoboSoft Community



Low Elastic Modulus

High Elastic Modulus

Soft Robotics may exploit materials which present:

- INHERENT MATERIAL compliance: bulk material properties 
(elastomers, low elastic modulus polymers, gels…)

- STRUCTURAL compliance: geometric features or arrangement can 
allow magnified strains compared with local material deformation

Soft Robotics

Hard Robotics

M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides, 
J.A. Lewis, R.J. Wood, An integrated design and fabrication strategy for 
entirely soft, autonomous robots, Nature 536, 451–455

C. Laschi, B. Mazzolai, M. Cianchetti, "Soft robotics: technologies and systems
pushing the boundaries of robot abilities", Science Robotics 1(1), 2016



file:///C:/Users/Cecilia Laschi/Documents/Presentazioni/Videos/Science Robotics 2016 Laschi_movie S1.wmv


Summary of bioinspired approaches to 
robotics (in this course…)

Robot mechanics
and kinematics

Robot control

Robot vision

Robot behaviour

Robot sensors

Embodied Intelligence, 
Soft Robotics

Neurocontrollers

Predictive behaviour

Vestibular system

Bioinspired vision
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Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.
“Design concept and validation of a robotic arm inspired by the octopus”,
Materials Science and Engineering C, Vol.31, 2011, pp.1230-1239.

• Silicone

• 9 sections of 
transverse and 
longitudinal 
cables (coupled)

• Cables pulled by 
electric motors

• Simple 
activation 
pattern: 
sequential 
activation of 
sections, with 
equal activation 
of 4 longi-
transverse 
cables per 
section

Octopus-inspired robot arm



Soft robot control

Model–Free  
(learning-based) 

approaches

Model–based 
Approaches 

Joint positions 
(angles)

Joint space Task space

Position, 
orientation, force

FROM:

TO:

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-based approaches for soft robot control

Fi
n

it
e 

El
em

en
t 

M
et

h
o

d

Increasing Computational Complexity and ‘Accuracy’

Cosserat-Rod Model

Lumped-Parameter Model

D
is

cr
et

iz
ed

-f
u

n
ct

io
n

s

Constant Curvature Model

Piecewise Constant Curvature

C
o

n
ti

n
u

o
u

s-
fu

n
ct

io
n

s

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-based approaches for soft robot control

Based on CC modeling

Closed-loop task space controller

Closed-loop controller in task space

Closed-loop controller in joint space

Camarillo DB, Carlson CR, Salisbury JK. Task-space control of continuum manipulators with coupled tendon drive. In: Experimental Robotics. 
Springer Tracts in Advanced Robotics, vol 54. Khatib O, Kumar V, Pappas GJ (Eds). Berlin, Heidelberg; Springer: 2009, pp. 271–280.

Bajo A, Goldman R, Simaan N. Configuration and joint feedback for enhanced performance of multi-segment continuum robots. 2011 IEEE 
International Conference on Robotics and Automation (ICRA), Shanghai, China, 2011.

PenningR, Jung J, Ferrier N, Zinn M.An evaluation of closedloop control options for continuum manipulators. 2012 IEEE International Conference 
on Robotics and Automation (ICRA), Saint Paul, MN, 2012.

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-based approaches for soft robot control

Discussion:
• Most widely used in quasi static conditions
• Mostly relying on CC approximation
• More complex models are computationally expensive

• Need for alternative methods, better addressing the 
complexity of soft robot control, at affordable
computational cost

=> model-free approaches

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-free approaches for soft robot control
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T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Model-free approaches for soft robot control

Model-free closed-loop task space controller

Cable 
Tension

Learning-based Control, by learning the
inverse model.

Learning by collecting points and
exploiting the approximation capability
of a FNN, as for rigid robots

End effector
position

Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Neural network and Jacobian method for solving the inverse statics of a 
cable-driven soft arm with nonconstant curvature. IEEE Trans Robot 2015;31:823–834.
Giorelli M, Renda F, Calisti M, Arienti A, Ferri G, Laschi C. Learning the inverse kinetics of an octopus-like manipulator in three-
dimensional space. Bioinspir Biomim 2015; 10:035006.

Rolf M, Steil JJ. Efficient exploratory learning of inverse kinematics on a bionic elephant trunk. IEEE Trans Neural Netw Learn Syst 2014;25:1147–1160.

JOINT SPACETASK SPACE

T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi (2018) “Control
Strategies for soft robotic manipulators: a survey”, Soft Robotics 5(2)



Comparison of a model-based and a model-free approaches

Cable 
Tension

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and
Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant
curvature. IEEE Transactions on Robotics, 31(4), 823-834.

control the end effector position through the cable tension1. Jacobian-based Inverse 
Static Controller

2. Learning-based Control, by 
learning the inverse model.

End effector
position

In simulation

Cosserat-based model



Comparison of a model-based and a model-free approaches

Cable Tension

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and
Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant
curvature. IEEE Transactions on Robotics, 31(4), 823-834.

control the end effector position through the cable tension1. Jacobian-based Inverse 
Static Controller

2. Learning-based Control, by 
learning the inverse model.

End effector
position
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Inaccuracies Jacobian FNN

Inaccuracy

Inaccuracy

1.7 mm

Comparison of a model-based and a model-free approaches

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and Jacobian
method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature. IEEE
Transactions on Robotics, 31(4), 823-834.

Simulated Defective Model



Inverse Kinematic Controller

I-Support Prototype

Six DoF Hybrid System 
(Pneumatic and Tendon) 

Mean Error Standard 
Deviation

Position (mm) 5.58 3.08

X- axis rotation (degrees) 2.76 5.42

Y- axis rotation (degrees) 1.84 1.83

Z- axis rotation (degrees) 3.85 7.02

25 random points selected from workspace

• 2000 sample points divided in the ratio 
70:30 for training and testing respectively

• 2 hours for data collection, training, set-up

LEARNING

TESTS

Kinematics: based on steady state assumptions

Learning a  Differential Inverse Kinematics formulation : ሶ𝒙 = 𝐽 𝒒𝒐 ሶ𝒒
This allows for redundancy resolution, robustness to modelling errors
The learned mapping is :  (𝒙𝑖+1,𝒒𝒊 , 𝒙𝑖) → (𝒒𝑖+1) 

George Thuruthel T, Falotico E., et al. "Learning closed loop kinematic controllers for 
continuum manipulators in unstructured environments." Soft robotics 4.3 (2017): 285-296.

Line Following

Disturbance Rejection

∆𝒙 ≈ 𝐽 𝒒 ∆𝒒ሶ𝒙 = 𝐽(𝒒) ሶ𝒒



Model-free approaches for soft robot control

Discussion:
• No need for defining the parameters of the 

configuration space or joint space
• Independent from manipulator shape
• Arbitrarily complex kinematic models, 

depending on sample data and sensory noise
• Better performance with highly nonlinear, 

non-uniform, gravity-influenced systems
• Suitable for unstructured environments

where modelling is almost impossible

Better encoding of morphological computation?



Dynamic Controllers – open loop

Thuruthel, T. G., Manti, M., Falotico, E., Laschi, C. 2018. "Stable Open Loop Control of 
Soft Robotic Manipulators." IEEE Robotics and Automation Letters 3(2):1292-1298.

Controlling the soft manipulator both in 
space and time

Sampling Slow circle task Fast circle task

(𝝉, 𝒙, ሶ𝒙) → ሷ𝒙

𝝉, 𝒙𝒊, 𝒙𝒊−𝟏 → 𝒙𝒊+𝟏



Self-Stabilizing Trajectories
The unique dynamics of a soft 
manipulator exhibits larger number 
of dynamic attractors that can be 
used for stable open loop control

Thuruthel T. G., Falotico E., Manti M.,  Laschi C. (2018). Stable Open Loop Control of Soft Robotic 
Manipulators. IEEE Robotics and Automation Letters, 3(2), 1292-1298.



Summary of bioinspired approaches to 
robotics (in this course…)

Robot mechanics
and kinematics

Robot control

Robot vision

Robot behaviour

Robot sensors

Embodied Intelligence, 
Soft Robotics

Neurocontrollers

Predictive behaviour

Vestibular system

Bioinspired vision



R. Brooks, Cambrian Intelligence, MIT Press, 2000

Behaviour: Perception-Action loops
Robotics perception and action architectures



Behaviour: Perception-Action loops
Natural perception and action pathways

WORLD

EFFECTORS
SENSORS

from Kandel et al., Principles of Neuroscience, McGraw-Hill



Natural perception and action pathways

SENSORS

from Kandel et al., Principles of Neuroscience, McGraw-Hill

Perception and action not so different…

WORLD

EFFECTORS



Delays in the human nervous system

A. Berthoz, Le sens du mouvement. Odile Jacob, Paris, 1997
R.S. Johansson, “Sensory input and control of grip”, in M. Glickstein (Ed.), 
Sensory Guidance of Movements. John Wiley, Chichester, UK, pp. 45-59,1998

“In motor control delays arise in sensory transduction, central processing, and in the motor output.
Sensor transduction latencies are most noticeable in the visual system where the retina introduces a delay
of 30-60 ms, but sensory conduction delays can also be appreciable. Central delays are also present due
to such ill-defined events such as neural computation, decision making and the bottlenecks in processing
command. Delays in the motor output result from motorneuronal axonal conduction delays, muscle
exictation-contraction delays, and phase lags due to the intertia of the system. These delays combine to
give an unavoidable feedback delay within the negative feedback control loop, and can lie between
about 30 ms for a spinal reflex up to 200-300 ms for a visually guided response.”

R.C. Miall, D.J. Weir, D.M. Wolpert, J.F. Stein, “Is the cerebellum a Smith predictor?”, 
Journal of Motor Behavior, vol. 25, no. 3, pp. 203-216, 1993

“Fast and coordinated arm movements cannot be executed under pure 
feedback control because biological feedback loops are both too slow and 

have small gains” 
M. Kawato, Internal models for motor control and trajectory planning. Current Opinion in 

Neurobiology, 9, 718-727(1999). Elsevier Science Ltd.



Prediction and anticipation strategies
in the human brain

In humans, perception is not just the interpretation of sensory 
signals, but a prediction of consequences of actions

“Perception can be defined as a simulated action:
perceptual activity is not confined to the
interpretation of sensory information but it
anticipates the consequences of action, so it is an
internal simulation of action.
Each time it is engaged in an action, the brain
constructs hypotheses about the state of a
variegated group of sensory parameters
throughout the movement.”

Berthoz A. (2002), The brain’s sense of movement. Harvard University Press



R. Brooks, Cambrian Intelligence” MIT Press, 2000

From hierarchical to reactive
architectures in robotics



Predictive architectures

If mismatch



Sensory prediction in grasping tasks
“Because of the long time delays with feedback control, the swift coordination of fingertip 
forces during self-paced everyday manipulation of ordinary ‘passive’ objects must be explained 
by other mechanisms. 
Indeed, the brain relies on feedforward control mechanisms and takes advantage of the stable
and predictable physical properties of these objects by parametrically adapting force motor 
commands to the relevant physical properties of the target object.”

Corrections are generated when expected sensory inputs do not match the actual ones

R.S. Johansson, “Sensory input and control of grip”. In Sensory Guidance of 
Movements, John Wiley, Chichester, UK, pp. 45-59, 1998



Preshaping Module

Self-Adaptive Neuro-Fuzzy Inference System (SANFIS I)
•Combine advantages NN and Fuzzy Logic
•Learning, adaptation, and connectionist structure
•Ability to exact explicit IF-THEN rules from training data



EP Generator (preshaping) Module

SANFIS II
•Combine advantages NN and Fuzzy Logic
•Learning, adaptation, and connectionist 
structure
•Ability to exact explicit IF-THEN rules from 
training data
•Output space not very complex

EP in grasping



EP-based Grasping Module

Growing Neural Gas + Grossberg’s Outstars
•Unsupervised learning paradigm

•Competitive learning methods (winner-takes-all)

•Generation of a topology-preserving mapping from the input space onto a 

topological structure of equal or lower dimension

•Network topology is unconstrained

•Uses growth mechanism (the network size does not need be predefined) 



Learning of grasping module

Learning phase:
About 40000 random  movements



Grasping the bottle

C. Laschi, G. Asuni, E. Guglielmelli, G. Teti, R. Johansson, M.C. Carrozza, P. Dario, “A Bio-
inspired Neural Sensory-Motor Coordination Scheme for Robot Reaching and Preshaping”,
Autonomous Robots, Vol.5, 2008, pp.85-101.



Expected Perception in the visual space
EP architecture applied to 3D reconstruction of the environment

Task: free walking in an unknown room 
with obstacles

Classical approach:

- 3D reconstruction of the 
environment 

- path planning for collision-free 
walking

-> large computational burden

In a Visual EP architecture, after a first 3D reconstruction of the environment, images
can be predicted, based on internal models and on the ongoing movement.

Predicted images are compared with actual ones and in case of unexpected
obstacles a mismatch occurs and the motor action is re-planned



Visual EP scheme

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying robot 
locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, 
USA, September 2010, pp.3206-3209



AVP architecture (I)

- Visual Processing module takes as input current images from both robot cameras to
reconstruct the environment producing the relevant feature position.

- The poses of relevant features are sent to a Trajectory Planning module to generate the
walking path

- The Controller module then takes the first robot pose from the sequence of poses
planned by the Trajectory Planning module and produces the corresponding motor
commands

-This cycle continues until the robot reaches the target.

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying robot 
locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, 
USA, September 2010, pp.3206-3209



- Internal Models of the 

environment and of the 
task to be performed are 
necessary to predict
future visual perceptions. 

- Images of different 
features relevant to the 
locomotion task are 

captured and memorized

AVP architecture (II)

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying robot 
locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, 
USA, September 2010, pp.3206-3209



Visual EP System (implementation)
The system performs a real time 3D 
reconstruction of the environment (30fps) 
used to generate an expected synthetic  
camera image. The cloud of 3D points is 
updated using an image sensory-motor 
prediction.

At each step:

● the next predicted image (EP) is 
calculated.

● the predicted and actual cameras images 
are compared.

● the 3D reconstruction of the visible 
environment is updated based on the 
prediction error

The system has 2 advantages:

● A faster real-time 3D reconstruction

● Recognition of the unexpected objects in 
the  scene

Moutinho, N.; Cauli, N.; Falotico, E.; Ferreira, R.; Gaspar, J.; Bernardino, A.; Santos-Victor, J.; Dario, P.; Laschi, C.;
2011. "An expected perception architecture using visual 3D reconstruction for a humanoid robot,“ IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems - IROS, San Francisco, CA, USA, 25-30 Sept. 2011 , pp.4826-4831.

Left camera image
Right camera image

Predicted image
Prediction error (unexpected 
perception)



This circuit is based on Shibata and Schaal’s model (Shibata 2005) of smooth pursuit and consists of
three subsystems:
1. a recurrent neural network (RNN) mapped onto medial superior temporal area (MST), which

receives the retinal slip with delays and predicts the current target motion,
2. an inverse dynamics controller (IDC) of the oculomotor system, mapped onto the cerebellum and

the brainstem,
3. and a memory block that recognizes the target dynamics and provides the correct weights values

before the RNN.

A predictive model for smooth pursuit

Zambrano D, Falotico E, Manfredi L, and Laschi C. (2010). “A model of the smooth 
pursuit eye movement with prediction and learning”. Applied Bionics and Biomechanics



Predictive smooth pursuit on a robot head

Sinusoidal dynamics:
a) angular frequency: 

1 rad/s, amplitude: 
10 rad, phase: π/2

b) angular frequency: 
1 rad/s, amplitude: 
15 rad, phase of ¾ π0.8s 0.8s

The retinal slip (target velocity onto the retina) reaches zero after that the algorithm converges.
When the target is unexpectedly stopped, the system goes on tracking the target for a short time.

iCub platform
head, 6 dof:
3 for the eyes
3 for the neck

In collaboration with Istituto Superior Tecnico, Lisbon, Portugal



Punching a moving target - robot experiments

The prediction is iterated ahead 0.5 seconds 

As the predicted target is inside the arm workspace, the robot executes a 

movement to punch the ball in the predicted position 

N. Cauli, E. Falotico, A. Bernardino, J. Santos-Victor, C. Laschi, “Correcting for Changes: 
Expected Perception-Based Control for Reaching a Moving Target”, IEEE Robotics and 
Automation Magazine, 23 (1), pp.63-70, 2016.



Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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Embodied Intelligence & Morphological Computation



Robot low-level control
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Hierarchical
architectures

Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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Architectures for robot sensory-motor behaviour
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