University of Pisa Master of Science in Computer Science **Course of Robotics (ROB)** Scuola Superiore A.Y. 2018/19

Robot Sensors

THE BIOROBOTICS

INSTITUTE

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant'Anna, Pisa

cecilia.laschi@santannapisa.it

http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start

A *robot* is an autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals

Maja J Mataric, The Robotics Primer, The MIT Press, 2007

Maja J Mataric, The Robotics Primer, The MIT Press, 2007

Outline of the lesson

- Definitions of sensor and transducer
- Classification of transducers
- Fundamental properties of sensors
- Position sensors: switches, encoders, potentiometers, Halleffect sensors
- Range/Distance sensors: ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

Outline of the lesson

- Definitions of sensor and transducer
- Classification of transducers
- Fundamental properties of sensors
- Position sensors: switches, encoders, potentiometers, Halleffect sensors
- Range/Distance sensors: ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

Definitions of sensor and transducer

• SENSOR:

device sensitive to a physical quantity and able to transform it in a measurable and transferable signal

• TRANSDUCER:

device receiving in input a kind of energy and producing in output energy of a different kind, according to a known relation between input and output, not necessarily for measurement purposes

Outline of the lesson

- Definitions of sensor and transducer
- Classification of transducers
- Fundamental properties of sensors
- Position sensors: switches, encoders, potentiometers, Halleffect sensors
- Range/Distance sensors: ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

First classification:

- Passive sensors:
 - convert directly input energy in output, without external energy sources
- Active sensors:
 - require external energy (excitation) for energy conversion

Classification of transducers

based on the kind of input energy, output energy, or external energy

- Radiant electromagnetic waves:
 - intensity, frequency, polarization and phase
- Mechanical external parameter of materials:
 - position, velocity, dimension, compliance, force
- Thermal:
 - temperature, gradient of temperature, heat
- Electrical:
 - voltage, current, resistivity, capacity
- Magnetic:
 - field intensity, flow density, permeability
- Chemical internal structure of materials:
 - concentrations, crystal structure, aggregation state

Trasformations of energy in a transducer

INPUT ENERGY AUSILIARY ENERGY OUTPUT ENERGY

CHEMICAL MAGNETIC ELECTRICAL THERMAL MECHANICAL RADIANT CHEMICAL MAGNETIC ELECTRICAL THERMAL MECHANICAL RADIANT NONE CHEMICAL MAGNETIC ELECTRICAL THERMAL MECHANICAL RADIANT

Trasformations of energy in a transducer

INPUT ENERGY AUSILIARY ENERGY OUTPUT ENERGY

CHEMICAL CHEMICAL MAGNETIC MAGNETIC ELECTRICAL ELECTRICAL THERMAL THERMAL MECHANICAL MECHANICAL RADIANT RADIANT NONE CHEMICAL MAGNETIC ELECTRICAL THERMAL MECHANICAL RADIANT

Outline of the lesson

- Definitions of sensor and transducer
- Classification of transducers
- Fundamental properties of sensors
- Position sensors: switches, encoders, potentiometers, Halleffect sensors
- Range/Distance sensors: ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

Fundamental properties of a sensor

- TRANSFER FUNCTION
- CALIBRATION
- LINEARITY
- HYSTERESIS
- ACCURACY
- REPEATABILITY
- RESOLUTION
- SENSITIVENESS
- SENSITIVENESS TO NOISE
- LIFETIME
- STABILITY

Transfer function

The *transfer function* (or *characteristic function*) is the relation between the quantity to measure (input to the sensor) and the output of the sensor

Calibration

The *calibration* procedure consists of measuring the output of the sensor for known quantities

Calibration cycle means a trial that covers the whole working range of the sensor; the trial is divided in two parts, one with increasing values and the other with decreasing values

Linearity

If the transfer function of a sensor is represented in a linear plot, *linearity* is a measure of the deviation of the transfer function from a line.

The line can be chosen in two ways:

- 1) the line between the output of the sensor for the input values corresponding to 0% and 100% of its working range
- 2) the line that best fits the sensor transfer function, with the minimum squares method

Linearity is measured as the maximum difference, expressed in % of the maximum value of the transfer function, between the transfer function and the reference line

Hysteresis

If a sensor has *hysteresis*, for a same input value, the output may vary, depending on the fact that the input values are increasing or decreasing.

Hysteresis is measured as the maximum difference between the two output curves of the sensor during the calibration cycle.

It is expressed as a % of the maximum value for the transfer function

Example of hysteresis in a tactile sensor

Accuracy represents the maximum error between the actual value and the value measured by the sensor.

Repeatability

When a same input value is applies to a sensor, *repeatability* is a measure of the variability of the output of the sensor.

Accuracy and Repeatability

- accuracy
 - 100 $(x_m x_v) / x_v$
 - x_m = average value
 - $x_v = actual value$
- repeatability
 - dispersion of measures

	XO	ole ate
measure	Repea	ACCUIC
	YES	NO
	NO	YES
	YES	YES

Resolution is the mimimum variation of the input which gives a variation of the output of the sensor.

Sensitiveness

A small variation of the input causes a corresponding small variation of the output values.

Sensitiveness is the ratio between the output variation and the input variation.

Noise is the amount of signal in the sensor output which is not given by the input.

Stability is the capability of the sensor to keep its working characteristics for a given time (short, medium, long).

Other static parameters

- Response time
- Input range
- Cost, size, weight
- Response in frequency
- Environmental factors
- Maximum/minimum temperature
- Warm-up time
- Presence of smoke, gas, ...
- ...

Dynamic parameters

- zero drift
 - For instance, due to temperature
- sensitiveness drift

Role of sensors in a robot

 Perception of the <u>external state</u>: measurement of variables characterizing the working environment. For instance, distance, proximity, force.

Role of sensors in a robot

 Perception of the <u>internal state</u>: measurement of variables internal to the system that are used to control the robot. For instance, joint position.

Role of sensors in a robot

- Sensing the <u>external state</u>
 (exteroception): measurement
 of variables characterizing the
 working environment.
- Examples:

Physical Property	\rightarrow	Sensing Technology
Contact	\rightarrow	bump, switch
Distance	\rightarrow	ultrasound, radar, infra red
Light level	\rightarrow	photocells, cameras
Sound level	\rightarrow	microphones
Strain	\rightarrow	strain gauges
Rotation	\rightarrow	encoders and potentiometers
Acceleration	\rightarrow	accelerometers and gyroscopes
Magnetism	\rightarrow	compasses
Smell	\rightarrow	chemical sensors
Temperature	\rightarrow	thermal, infra red
Inclination	\rightarrow	inclinometers, gyroscopes
Pressure	\rightarrow	pressure gauges
Altitude	\rightarrow	altimeters

- Sensing the <u>internal state</u> (proprioception): measurement of variables internal to the system that are used to control the robot.
- Examples:
 - Joint position / encoders
 - Battery level

Outline of the lesson

- Definitions of sensor and transducer
- Classification of transducers
- Fundamental properties of sensors
- Position sensors: switches, encoders, potentiometers, Halleffect sensors
- Range/Distance sensors: ultrasound sensors and laser range finders
- Proximity sensors: Hall-effect and infrared sensors
- Force sensors: strain gauges and force/torque sensors
- Inertial sensors

Position sensors

- Switches
- Optical encoders
- Potentiometers
- Hall-effect sensors

Mechanical switches

- Simplest contact sensors
- Provide binary data: contact / no contact
- Applications in robotics:
 - impact sensors on mobile robots
 - whiskers
 - endstop sensors for manipulator joints

Optical encoders

• Measurement of angular rotation of a shaft or an axle

Placement of position sensors

After reducer

$$\theta = \frac{\theta_m}{k}$$
$$\frac{d\theta}{d\theta_m} = \frac{1}{k} \Longrightarrow d\theta = \frac{1}{k} d\theta_m$$

Before reducer

 $\begin{array}{l} \theta \text{: joint angular position} \\ \theta_{m} \text{: motor angular position} \\ \text{k: motor reduction ratio} \end{array}$

=> The sensor error is reduced of a factor k

Optical encoders

Rotation is measured by counting the **pulses** and by knowing the number of the disk **steps**

$$q = \frac{\theta \times 360^{\circ}}{R \times k}$$

q: joint angular position (in degrees)
θ: joint position in encoder steps
k: motor reduction ratio
R: encoder resolution (number of steps per turn)

The **frequency** of the pulse train is proportional to **angular velocity**

Incremental encoders

By using 2 photo-switches it is possible to detect the rotation direction, by means of the relation between the phases of their pulse trains

A and B are out of phase of ¼ of cycle An increase of A with B=0 corresponds to a clockwise rotation An increase of A with B=1 corresponds to a counterclockwise rotation

Absolute encoder

k photo-switches k code tracks Binary word of k bits, representing 2^k different disk orientations Angular resolution of 360° /2^k

- It gives the absolute rotation angle
- Each position is uniquely determined

Absolute encoder

Absolute encoder

Fig 3 4-Bit binary code absolute encoder disk track patterns

Absolute encoder - Gray Code

Single transition

Optical encoder in an electric motor

Potentiometers

Hall-Effect sensors

In a conductor where a current i flows, immersed in a magnetic field of intensity B, a voltage V originates in the direction normal both to the current and to the magnetic field.

Voltage is proportional to:

- intensity of the current i
- intensity of the magnetic field B, while it is inversely proportional to:
- material thickness d:

$$V = R i B / d$$

where R = Hall constant or coefficient

Hall-effect sensors

A permanent magnet generates a magnetic field.

The contact with a ferromagnetic object modifies the magnetic field.

The Hall effect measures this variation as a voltage

Hall-effect sensors as position sensors in robotics

15 Embedded Joint Angle Sensors (Hall effect)

(Operational range: 0 – 90 degrees, Resolution: <5 degrees).

HUMANGLOVE MOTION Studia la postura della mano

Patent IT/PI1997A000026

Humanglove è un guanto sensorizzato a 22 gradi di libertà in grado di rilevare in tempo reale i movimenti della mano durante qualsiasi attività. Può essere utilizzato per applicazioni in Medicina, Neuro-Riabilitazione, Telerobotica e Realta Virtriale

HumanGlove è compatibile con lo standard di trasmissione dati Bluetooth. In questo modo, do-

po averlo indossato è possibile muoversi liberamente, anche in ambienti esterni.

Il guanto è realizzato in materiale elastico e può essere indossato da utenti con mani di Modulo sensore (brevettato

taolia diversa. Grazie ad una rapida operazione di calibrazione è possibile adattare le letture dei sensori per un nuovo utente

ed i parametri di calibrazione possono essere salvati e riutilizzati successivamente. Il software mostra i dati in formato numerico, ana-

logico e grafico.

INDOSSABILITÀ

- Il dispositivo offre un elevato comfort grazie all'impiego di tessuti sintetici leggeri ed elastici e all'ingombro molto ridotto dei componenti.
- Il peso complessivo è ca. 290g
- · Il sistema può anche lavorare in un ambiente non dedicato (ad es. all'aperto) perche non necessita di collegamento via cavo.

HumanGlove fa uso di ventidue sensori:

- · tre sensori di flessione-estensione ed un sensore di abduzione-adduzione per ciascun dito (pollice compreso)
- un sensore di flessione-estensione ed un sensore di abduzione-adduzione per il polso

L'utilizzo di sensori ad effetto Hall garantisce una risposta lineare ed un elevato grado di robustezza e affidabilità.

CARATTERISTICHE DEL SISTEMA

- Accuratezza dei sensori: 0.1V / 2.5V Linearità del sensori: < 2.0% > 110° Range dei sensori:
 - 12 bit A/D Converter: Alimentazione: 4 hatterie AAA
 - Trasmissione dati: Bluetooth
- Freq. campionamento: max 100 Hz.

La connessione Bluetooth concede all'utente ampia libertà di movimento. La connessione alla periferica avviene attraverso una porta seriale virtuale RS-232 su USB; in questo modo essa può essere collegata a gualsiasi tipo di workstation.

Concession of the local division of the loca	And a state of the set	
10.00	1 1 1	
100 C # 100 C	n 11 n - 2	
and the second second second		
And Address of the		
Carl Carl 1 and		
and search the		-
Contraction of the local division of the loc	COLUMN TO A DESCRIPTION OF TAXABLE	
North Line 1		
100 24 1101	1 6 3 6 4	
tioner at the state of the		
the second se		
10000	[14] [M]	
1998 V	UN-	
	MAL	

Humanware è una società costituita da specialisti in varie discipline, dall'ingegneria meccanica all'informatica ed è una spin off della Scuola Superiore Sant'Anna di Pisa.

Example of application LINE of Hall-effect sensors

Sensorized glove for detecting finger movements

Modulo sensore chrevettain

