University of Pisa Master of Science in Computer Science **Course of Robotics (ROB)** Scuola Superiore A.Y. 2018/19

Robot Control

THE BIOROBOTICS

INSTITUTE

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant'Anna, Pisa

cecilia.laschi@santannapisa.it

http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start

Robot Control

- Control of one joint motion:
 - PID controller
- Control of the manipulator motion:
 - Trajectory planning
 - Motion control in joint space
 - Motion control in operational space
- The Dexter Arm example:
 - Mechanics, Kinematics, Control, Software interfaces

Scheme of a control system

Scheme of a control system

Scheme of a control system

- Encoder: sensor measuring joint rotations, either as an absolute or a relative value. The measurement is given in "encoder steps"
- Reducer: mechanism reducing the motor rotations with respect to the rotations of the axis mounted on the motor (ex. 1:k reduction)
- Power amplifier: it amplifies a reference signal into a power signal for moving the joint
- Control unit: unit producing the reference signal for the motor

Relations between joint position and encoder position

- q: joint angular position (in degrees)
- θ : joint position in encoder steps
- k: motor reduction ratio
- R: encoder resolution (number of steps per turn)

$$q = \frac{\theta \times 360^{\circ}}{R \times k}$$

Control of one joint motion

- Objective: move the joint from the current position \boldsymbol{q}_{i} (in degrees) to the desired position \boldsymbol{q}_{f} , in a time interval t :
 - $q_i \Rightarrow q_f$

Closed-loop (feedback) control

- The variable to control is measured and compared with the desired value
- The difference, or error, is processed by an algorithm
- The result of processing is the input value for the actuator

(Proportional, Integral, Derivative)

- It is a closed-loop control in which the error is processed with an algorithm including Proportional, Integral and Derivative components.
- The algorithm processes the error and provides an input to the actuator, with 3 components:
 - **Proportional**, producing a correction proportional to the error;
 - Integral, producing a correction given by the error integral in time;
 - **Derivative**, producing a correction which is a function of the error first derivative.
- Not all closed-loop control systems use a PID algorithm

PID control (Proportional, Integral, Derivative)

 In a PID control system, the error is given to the control algorithm, which calculates the derivative and integral terms and the output signal V

PID control (Proportional, Integral, Derivative)

$$V = K_p e_q + K_d \dot{e_q} + K_i \int e_q(t) dt$$
$$e_q = q_d - q_a$$
$$\dot{e_q} = \frac{de_q}{dt}$$

K_p is the *proportional* gain or constant

K_i is the *integral* gain or constant

K_d is the *derivative* gain or constant

 e_q is the error, i.e. the difference between the desired position and the current (or actual) position

Proportional term

• The voltageV given to the motor is proportional to the difference between the actual position measured by the sensor and the desired position

Proportional term:

• The voltage V given to the motor is proportional to the difference between the actual position measured by the sensor and the desired position

$$V = K_p e_q$$

$$e_q = q_d - q_a$$

 K_P : proportional constant

Proportional term: system behaviour

Derivative term:

$$V = K_p e_q + K_d \dot{e_q}$$
$$\dot{e_q} = \frac{de_q}{dt}$$
Error derivative in time

$$e_q = q_d - q_a$$

 K_d : derivative constant

Proportional and derivative terms:

- Oscillation reductions
- Reduction of settlement time
- The system may settle without cancelling the error

Integral terms:

$$K_i \int e_q(t) dt$$
 Error integral in time

$$V = K_p e_q + K_i \int e_q(t) dt$$

$$e_q = q_d - q_a$$

 K_i : integral constant

Proportional and integral terms:

Proportional, Integral and Derivative terms:

$$V = K_p e_q + K_d \dot{e_q} + K_i \int e_q(t) dt$$
$$e_q = q_d - q_a$$
$$\dot{e_q} = \frac{de_q}{dt}$$

Proportional, Integral and Derivative terms:

Video: https://www.youtube.com/watch?v=wkfEZmsQqiA

