
Neuromorphic computing

Robotics

M.Sc. programme in Computer Science

Lorenzo Vannucci

lorenzo.vannucci@santannapisa.it

April 26th, 2018



Neuromorphic Computing

Lorenzo Vannucci

Outline

1. Introduction

2. Fundamentals of neuroscience

3. Simulating the brain

4. Software and hardware simulations

5. Robotic applications



Neuromorphic Computing

Lorenzo Vannucci

Outline

1. Introduction

2. Fundamentals of neuroscience

3. Simulating the brain

4. Software and hardware simulations

5. Robotic applications



Point neuron simulators - NEST

We don’t have to implement a whole simulator by ourselves, several already exists!

Among these, a popular choice is NEST (NEural Simulation Tool), an open source

spiking neural network simulator developed by the NEST initiative (www.nest-

simulator.org). Among its features, there are:

• over 50 neuron models (including LIAF, Hodgkin-Huxley and Izhikevich)

• over 10 synapse models (including STDP)

• minimal dependencies

• open source (GNU GPLv2)

• “easily” extendable

Neuromorphic Computing

Lorenzo Vannucci



Point neuron simulators - NEST

NEST has a simulation kernel (written in C++) and two layers of interface towards it.

Neuromorphic Computing

Lorenzo Vannucci

NEST 

Kernel
SLIPyNEST

The kernel cannot be directly accessed. In fact, the executable launches the

Simulation Language Interpreter to which one can send commands to create the

network.

/iaf_neuron Create /n Set

/poisson_generator Create /pg Set

pg << /rate 220.0 Hz >> SetStatus

pg n Connect

n = nest.Create('iaf_neuron')

pg = nest.Create('poisson_generator')

nest.SetStatus(pg, {'rate': 220.0})

nest.Connect(pg, n)

Why PyNEST? Because SLI is basically PostScript!



Point neuron simulators - NEST

PyNEST provides an usable interface towards SLI.

Neuromorphic Computing

Lorenzo Vannucci



Point neuron simulators - NEST

A NEST network is a directed weighted graph:

• Nodes

• neurons, devices, sub-networks

• have a dynamic state that changes over time and

can be influenced by or produce events

• Events

• pieces of information of a particular type (e.g.

spike, voltage or current event)

• Connections

• communication channels for the exchange of

events

• directed (pre to post)

• weighted (synaptic weights)

• delayed (delay must be greater than 0!)

Neuromorphic Computing

Lorenzo Vannucci

Node 1

Node 2

E
v
e
n
ts



Point neuron simulators - NEST

Neuromorphic Computing

Lorenzo Vannucci

The simulation is discretized into time steps of a certain duration (Δt). The simulation

loop works as follows:

1. PSC for all delivered events are computed

2. membrane potential is updated and new events are bufferized

3. new events are sent towards post-synaptic nodes

4. simulation time is increased by Δt



Point neuron simulators - NEST

Neuromorphic Computing

Lorenzo Vannucci

The simulation is discretized into time steps of a certain duration (Δt). The simulation

loop works as follows:

1. PSC for all delivered events are computed

2. membrane potential is updated and new events are bufferized

3. new events are sent towards post-synaptic nodes

4. simulation time is increased by Δt

Δt

Notes:

• actually 1 and 2 occur inside an inner loop with a time step < Δt!

• delay of connections must be >= Δt

• during the time step, the node is isolated from the rest



NEST examples – cortical microcircuit

Neuromorphic Computing

Lorenzo Vannucci

We want to simulate (a layer of) the cerebral cortex:

• 1mm2

• 0.3 billion synapses, 80000 neurons

• 6 layers

• 2 population of LIAF neurons per layer

Let’s try it out!

Potjans, Tobias C., and Diesmann, Markus. “The cell-type

specific cortical microcircuit: relating structure and activity in a

full-scale spiking network model.” Cerebral Cortex 24.3 (2014):

785-806



NEST examples – Poisson generators

Neuromorphic Computing

Lorenzo Vannucci

In order to give inputs to the system, representing activity of brain areas not modelled or

sensory information, we need to generate spikes without actually simulate neurons.

It has been observed that most of the times (excluding when time encoding mechanisms

are in action) the timing of successive action potential is highly irregular, probably

because of stochastic forces.

Thus, when generating spikes, we want to avoid generating uniformly spaced action

potentials.

Bad Good



NEST examples – Poisson generators

Neuromorphic Computing

Lorenzo Vannucci

To generate irregular spikes we can assume that every spike is independent from the

previous one and that the generation depends solely on the instantaneous firing rate.

Upon this hypothesis we can generate spikes using a Poisson process:

𝑃 𝑛 𝑠𝑝𝑖𝑘𝑒𝑠 𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡 = 𝑒−𝑟∆𝑡
(𝑟∆𝑡)𝑛

𝑛!

𝑃 1 𝑠𝑝𝑖𝑘𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 ∆𝑡 ≈ 𝑟∆𝑡 ∗

* For a sufficiently short Δt



NEST examples – STDP

Neuromorphic Computing

Lorenzo Vannucci

Let’s see an example of synaptic plasticity.

• two populations, connected with STDP-enabled

synapses

• external spike sources that trigger activity

• execution phases and expected results:

1. only pre stimulation  no post activity

2. pre and post stimulation  plasticity

3. only pre stimulation  also post activity

Let’s try it out!

pre post

spike

source

spike 

source

STDP



NEST examples

Neuromorphic Computing

Lorenzo Vannucci

What did we learn from these example?

• using nest is very easy to set up neural simulation

• nice syntactic sugar for randomized connection and weights

• useful spike recording utilities

• but it can take more than 10 seconds to simulate 1!

We need to find a way to speed up the simulation.



NEST – parallel simulations

Neuromorphic Computing

Lorenzo Vannucci

Let’s recall the kernel simulation loop:

1. PSP for all delivered events are computed

2. membrane potential is updated and new events are bufferized

3. new events are sent towards post-synaptic nodes

4. simulation time is increased by Δt

Inside a single time step, each neuron is decoupled from the others, thus the

simulation of a single time step is an embarrassingly parallel problem.

In fact, NEST natively supports MPI and the parallelization of the loop.

Moreover, MPI is supported on High Performance Computing platforms!

MPI thread

MPI process



NEST – HPC

Neuromorphic Computing

Lorenzo Vannucci

How well does nest perform on supercomputers?

Legend:

K - RIKEN, Japan

663,552 nodes, 4th

JUQUEEN - Jülich, Germany

229,376, 11th

Largest network simulation performed to date (2015):

1.86x109 neurons, 6000 synapses each

1.08x109 neurons, 6000 synapses each



NEST – HPC

Neuromorphic Computing

Lorenzo Vannucci

How well does nest perform on supercomputers?

Legend:

K - RIKEN, Japan

663,552 nodes, 4th

JUQUEEN - Jülich, Germany

229,376, 11th

Simulation time of 1 second of real time varies between:

between 6 and 42 minutes

between 8 and 41 minutes



NEST – Final Remarks

Neuromorphic Computing

Lorenzo Vannucci

Is this a viable solution for physical robotics? Not really.

• even if we would like to simulate smaller networks, simulations will not be real-time

• usually robotics labs do not have supercomputers

• supercomputers work with job systems and as of today no interactive job

mechanism exists

• latencies between the supercomputer and the robot

• power consumption (9.89 MW for K supercomp.)

However, NEST can be coupled with robotics simulations (more on this later).



Neuromorphic hardware

Neuromorphic Computing

Lorenzo Vannucci

A new kind of processors, specifically designed to compute neural dynamics, have

been developed in the last few years. This is what is called neuromorphic hardware.

Usually, these kind of processors have these characteristics:

• massively parallel computation

• energy efficiency

• fault tolerance

• self organization of the network

• fast simulation times

• compactness



Neuromorphic hardware – SpiNNaker

Neuromorphic Computing

Lorenzo Vannucci

SpiNNaker is a neuromorphic hardware platform developed by the University of

Manchester.

• 1W chip

• 18 ARM-968 cores

• 1Gbit DDR-2 SDRAM

• 240MHz

• 6 bi-directional links

• optimized for 10million 32-bit packets/s



Neuromorphic hardware – SpiNNaker

Neuromorphic Computing

Lorenzo Vannucci

SpiNNaker cores are arranged on 48 chips boards.

• 1000 neurons per core

• 18000 neurons per chip

• 864000 neurons per board

• 3.1Gbps SATA connections for

connecting to other boards

• two 100Mbps Ethernet for control

• max 70W consumption, low temp



Neuromorphic hardware – SpiNNaker

Neuromorphic Computing

Lorenzo Vannucci

Multiple boards can be connected through SATA to allow further parallel processing

exploitation.

Current largest setup:

• 120 boards per cabinet

• ~500000 cores

• 50 kW peak consumption

• 2.5 million neurons

simulated in real-time



Neuromorphic hardware – SpiNNaker

Neuromorphic Computing

Lorenzo Vannucci

In order to provide fast spike transmission between cores, a proper connectivity

method must be exploited.

Toroidal connectivity ensures fast spike delivery among chips.



Neuromorphic hardware – SpiNNaker

Neuromorphic Computing

Lorenzo Vannucci

How do one use these boards? There is a Python library that we can use to set up the

network on the SpiNNaker cores: PyNN.

PyNN is a frontend for 

different neural simulators 

(including SpiNNaker and 

NEST)

neuralensemble.org/PyNN



Neuromorphic hardware

Neuromorphic Computing

Lorenzo Vannucci

SpiNNaker is not the only neuromorphic hardware platform:

Name Developer Features

TrueNorth IBM Custom processor, 4096 cores with 256 neurons each

BrainScaleS Heidelberg Physical model, accelerated simulation time

Brainstorm Stanford Physical model, real time

Zeroth Qualcomm Deep learning on Snapdragon



Neuromorphic hardware – Final remarks

Neuromorphic Computing

Lorenzo Vannucci

Pros:

• real time neural simulation

• low power consumption

• portable (can be embedded on

robots)

Cons:

• cost, availability

• limited number of neurons and

connections by design

• still in development

• can lose spikes if firing rates are too

high

Suitable to be embedded on a physical robotic platform.



Neuromorphic Computing

Lorenzo Vannucci

Outline

1. Introduction

2. Fundamentals of neuroscience

3. Simulating the brain

4. Software and hardware simulations

5. Robotic applications



Robotic applications

Neuromorphic Computing

Lorenzo Vannucci

How can we integrate brain models with robotic platforms?

• spiking neural network can be integrated alongside classic robot controllers,

relieving them of some computation

• bio-inspired brain models works well for processing of data coming from bio-inspired

sensors

• bio-inspired brain models works well for bio-inspired actuators (tendon driven

robots, muscle like actuators)

• if connected to a robot, the neural simulation must run in real-time

• if real-time neural simulation is not possible we have to simulate also the robot



The Neurorobotic Closed Loop

One way of integrating neuromorphic computing and robotics is implementing a closed 

loop, a complete action-perception mechanism that involves exchanging information 

between a robot and a brain model. Information between the two must be properly 

processed and converted.

Neuromorphic Computing

Lorenzo Vannucci

Closed 
Loop

Sense

Robot

Action

Brain 
Model



The Neurorobotic Closed Loop

Information between the robot and the brain model must be properly converted and 

exchanged.

• robot to neuron: translate sensory 

information into spikes and current 

amplitudes, performing some enconding

• neuron to robot: take measurements on 

the neural network (spike rate, 

membrane potential) and transform them 

into robot commands, thus performing 

some decoding

Neuromorphic Computing

Lorenzo Vannucci



Neurorobotic Closed Loop example

Describe the behaviour of the network below (i.e. what is computed by neuron 5 with 

respect to neurons 1 and 2). How can such a network be used to implement a low level 

controller for a motor-actuated robot joint?

Neuromorphic Computing

Lorenzo Vannucci



Neurorobotic Closed Loop example

Solution: a PI controller.

Neuromorphic Computing

Lorenzo Vannucci

Kp

Ki

reference

encoder

motor 

command



Neurorobotic Closed Loop example

Solution: a PI controller.

Neuromorphic Computing

Lorenzo Vannucci

rate encoding

reference

rate encoding

rate decoding

motor 

command

encoder



The Neurorobotic Closed Loop

Can we find some general methods to translate information between the two worlds?

Perhaps we could use biological models to do so.

Neuromorphic Computing

Lorenzo Vannucci



Retinal visual tracking

Neuromorphic Computing

Lorenzo Vannucci

In this work we integrated bio-inspired sensing with spiking neural network in order to

perform a visual tracking task.

We used the same setup as before where we also integrated a retina simulation as a

robot to neuron transfer function.

COREM simulator, developed by

University of Granada.

• custom retina models

• based on linear/non-linear

analysis

• produces an output compatible

with NEST, but not spiking

Ambrosano, Alessandro, Lorenzo Vannucci, Ugo Albanese, Murat Kirtay, Egidio Falotico, Georg Hinkel, Jacques Kaiser et al. "Retina 

color-opponency based pursuit implemented through spiking neural networks in the neurorobotics platform." In Conference on 

Biomimetic and Biohybrid Systems, pp. 16-27. Springer International Publishing, 2016.



Retinal visual tracking

Neuromorphic Computing

Lorenzo Vannucci

At first we performed a target detection via retinal image processing.

We used a complete retina model, but

only with the pathway coming from M-

cones (more sensitive to green).

Analogue output from the ganglion cells

is sent to a LIAF neuron layer via current

generators devices.

current generators LIAF neurons



Retinal visual tracking

Neuromorphic Computing

Lorenzo Vannucci

Then, we switched to a more sophisticated retina model, based on red-green

opponency.

The output value of this retina

model is higher for edges of

the target.



Retinal visual tracking

Neuromorphic Computing

Lorenzo Vannucci

In order to filter out the noise from the ganglion output and retain only the target

information, a two layer spiking neural network was used.

The first layer is a current to spike converter. Neurons

in the second layer receives spikes from a receptive

field of 7 neurons (pixels).



Retinal visual tracking

Neuromorphic Computing

Lorenzo Vannucci

Using output of the neural network we can estimate the target centroid and use this

information to generate motor commands for the robot eye.

The robot is able to follow the target thanks to the neural filtering of the retinal output.



Visual tracking with SpiNNaker

Neuromorphic Computing

Lorenzo Vannucci

The same controller was also implemented on the real iCub robotic platform, using

neuromorphic hardware for real-time neural simulation.

Real iCub robot, 

accessed via YARP

Same transfer function

Same PyNN brain 

model

Retrieval of spikes from 

SpiNNaker receiver 

devices



Visual tracking with SpiNNaker

Neuromorphic Computing

Lorenzo Vannucci

The same controller was also implemented on the real iCub robotic platform, using

neuromorphic hardware for real-time neural simulation.

COREM framework for 

simulating retinal 

computation.

Processing 320x240 images 

up to 20Hz.

Simulation of DC generator + 

IAF neuron dynamics for the 

generation of spikes times 

that are sent through a 

SpiNNaker SpikeInjector.



Retina as a generic translation mechanism

Neuromorphic Computing

Lorenzo Vannucci

This kind of translation is actually generic and in fact it was employed with a more

complex visual cortex model.



In order to translate information coming from inertial sensors, we developed a

neuromorphic model of vestibular afferents that comprises of both regular and

irregular afferents.

Neurophysiological

recordings

NEST

implementation

𝐼 𝑡 = 𝐺𝐻 ∙ 𝐻𝑉 𝑡 − 𝐺𝐴 ∙ 𝑋𝐴 𝑡 + 𝐼𝑏𝑖𝑎𝑠 + 𝜎𝜖(𝑡)

𝑑𝑉

𝑑𝑡
=

𝑉(𝑡) + 𝐼(𝑡)

𝜏𝑉

Neuromorphic model of vestibular afferents

Neuromorphic Computing

Lorenzo Vannucci



To test the effectiveness of the model, a complete spiking network implementing the

VOR circuit was for the iCub robot.

30X

Neuromorphic model of vestibular afferents

Neuromorphic Computing

Lorenzo Vannucci



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

In most animals, motor commands from the brain cortex are not directly sent to the

muscles, but they are transmitted through a series of hierarchically organized neural

circuits. At the lowest level of this hierarchy lies the spinal cord.

Therefore, we can think of implementing a spinal cord model that performs the 

translation of proprioceptive feedback and the generation of motor commands.



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

The spinal cord contains α-motoneurons that directly activate the muscle fibres, as well

as sensory feedback endings such as Ia and II afferents from muscle spindles.



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

The spinal cord is not only responsible for the activation of muscles and for the

forwarding of proprioceptive information, but it also includes many local circuits for the

generation of reflexes.



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

We started by implementing in NEST (and on SpiNNaker) a bioinspired model of

muscle spindle that simulates Ia and II afferent activities during a muscle stretch.

Vannucci, Lorenzo, Egidio Falotico, and Cecilia Laschi. "Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model." 

Frontiers in Neuroscience 11 (2017): 341.

𝑑𝑇

𝑑𝑡
= f L,

𝑑𝐿

𝑑𝑡
, 𝛾𝑠𝑡 , 𝛾𝑑𝑦𝑛

𝑟𝑎𝑡𝑒 ∝ 𝑇



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

We then implemented in NEST a muscle activation model that includes motoneurons

recruitment and twitches integration.

• motoneurons are activated from the weakest to

the strongest

• each activation produces a twitch of some fibres

• all the twitches are summed up to compute the

total muscle activation

• output can be normalized between 0 and 1



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

Once we have the basic components we can assemble a fairly complete spinal cord

model.

But we don’t know yet how to connect it to a robot…



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

In order to connect it to a robot, the more natural way is to add musculoskeletal system

to the robot. Let’s consider a single joint of the robot (elbow joint).



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

In order to connect it to a robot, the more natural way is to add musculoskeletal system

to the robot. Let’s consider a single joint of the robot (elbow joint).

• joint torque

from muscle

forces

• muscle lengths

from joint angle

• muscle forces

computed from

activations via

a Hill model

• muscle lengths

sent to spindles



Robot-brain connection through a spinal cord model

Neuromorphic Computing

Lorenzo Vannucci

If the robot has already muscle like-actuators, we do not need to employ the

musculoskeletal simulation.



Spinal cord model as a general translation mechanism

Neuromorphic Computing

Lorenzo Vannucci

The spinal cord model has been employed for (partially) reproducing real

neuroscientific experiments.

Motor rehabilitation experiment

Reaching experiment



Learning of a forelimb pulling task, then

study of motor task re-training in rodent

model after induction of photothrombotic

stroke with simultaneous intracranial

recording.

Reproduction in silico:

Recorded cortical 
activity

Post-stroke rehabilitation simulation

Neuromorphic Computing

Lorenzo Vannucci



Neuromorphic computing resources

Neuromorphic Computing

Lorenzo Vannucci

NEST:

• www.nest-simulator.org

SpiNNaker:

• spinnakermanchester.github.io

• apt.cs.manchester.ac.uk/projects/SpiNNaker

Other info (related):

• lorenzo.vannucci@santannapisa.it


