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Evolution of robot abilities

2.6 million industrial robots in operation in the world, with a 
growth rate of 15% per year (Source: IFR)

First industrial 
robot installed in 
GM plant in 1960

Reliability (minimal requested values):  
Mean Time Before Failure = 40,000 hrs
Efficiency η > 99.99875%        (Source: COMAU)

Video courtesy: 
COMAU

Massive introduction of robots in 
manufacturing since the ’80s Modern forms of collaborative robots

in industrial robotics



Evolution of robot abilities

in service robotics

Autonomous carsiRobot Roomba – 2.4M sold in 2015
double-digit growth of robot vacuum cleaner market

Professional service



Evolution of robot abilities

Abilities not yet reached by robots

Poor working conditions result in a total of 300,000 work-
related deaths and economic losses of 4% of the gross domestic
product of the European Region every year (Source: WHO)

Up to 50 hours per household lost 
each week to work and family life



Lessons from Nature
Bioinspiration and biomimetics in robotics



Interdisciplinarity: Bring biologists into biomimetics

“[…] Fewer than 8% of the nearly 300 studies 
on biomimetics published in the past 3 months 
and indexed in the Thomson Reuters Web of 
Science had an author working in a biology 
department — a crude proxy for 'a biologist'.”

“[…] With around 1.5 million described species, 
and probably some 9 million eukaryotic species 
in existence, researchers pursuing biomimetic 
approaches have barely scratched the surface 
of biological inspiration.”

More biology education for engineers, in 
academy and in industry

Emilie Snell-Rood, “Interdisciplinarity: Bring biologists into 
biomimetics”, Nature 529, 277–278 (21 January 2016)
doi:10.1038/529277a

“Engineers, chemists and others taking inspiration 

from biological systems for human applications 

must team up with biologists”



The Eiffel Tower: the perfect structure of trabecular
struts in the head of the human femur inspired a 
French engineer at the end of the 19th Century. He 
was intended to design the higher structure all the 
world. The name of this engineer is Gustave Eiffel. 
In 1889 the Tower is completed. 

Examples of bioinspiration and biomimetics



Velcro resulted in 1948 from a Swiss
engineer, George de Mestral, noticing how
the hooks of the plant burrs (Arctium lappa)
stuck in the fur of his dog.

A gecko is the largest animal that can produce (dry) adhesion
to support its weight. The gecko foot comprises of a complex
hierarchical structure of lamellae, setae, branches, and spatula.

Examples of bioinspiration and biomimetics

M. R. Cutkosky, Climbing with adhesion: From bioinspiration
to biounderstanding. Interface Focus 5, 20150015 (2015).



Nevertheless...
…natural selection is not engineering

They need to survive long enough to reproduce.

Models are never complete or correct: need to interpret with caution.

“Simply copying a biological system is either not feasible
(even a single neuron is too complicated to be synthesized
artificially in every detail) or is of little interest (animals have
to satisfy multiple constraints that do not apply to robots,
such as keeping their metabolism running and getting rid of
parasites), or the technological solution is superior to the
one found in nature (for example, the biological equivalent
of the wheel has yet to be discovered).

Rather, the goal is to work out principles of biological
systems and transfer those to robot design.” Rolf Pfeifer

Extract key
principles

R. Pfeifer, M. Lungarella, F. Iida, "Self-Organization, Embodiment, and Biologically Inspired Robotics", Science 318, 1088 (2007)

Bioinspiration and biomimetics

Organisms that are capable of surviving are 
not necessarily optimal for their performance. 



Lessons from Nature: 
simplifying principles

In robotics, we need simplifying principles for control and behavior

Mechatronic approach: 
integration of subsystems that are often 
already very complex (e.g. complex humanoids)

Today, more functionality means:
- more complexity, energy, computation, 
- less controllability, efficiency, robustness, safety

Studying living organisms and 
understanding what makes their 
behavior so smart and efficient 
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Simplexity

Simplexity comprises a collection of solutions that can be
observed in living organisms which, despite the complexity
of the world in which they live, allows them to act and
project the consequences of their actions into the future.
It is not a matter of simplified model adoption, but rather an
approach to using simplifying principles.
Biological systems can use:

Multiple reference frames
Anticipation and prediction
Inhibition to select and adapt
Redundancy
Biomechanics and internal models
Synergies
Laws of motion
Emotion

A. Berthoz (2012), Simplexity: Simplifying principles for a Complex World. Yale 

University Press. 

U. Alon (2207), “Simplicity in Biology”, Nature, 446(7135):497

In robots, the concept of a unified 
inertial reference frame, together 
with gaze control, can represent one 
of the basic design principles for 
simplifying the control of complex 
kinematic (human-like) structures



The human “sense of movement”

In humans the sense of 
movement is given by the 
integration of a variety of 
sensory signals, mostly 
proprioceptive.

The vestibular system that 
provides perception of the 
head movements and 
postures relative to space 
plays a key role.

Berthoz A.(2002),The sense of movement. Harvard University Press



Model of fast gaze-shift control Collicular
mapping

(red point: 
stimulus

coordinates)

Mapping from the retina to the 
Superior Colliculus (SC)

C. Laschi, F. Patanè, E.S. Maini, L. Manfredi, G. Teti, L. Zollo, E. Guglielmelli, P. Dario, “An Anthropomorphic 
Robotic Head for Investigating Gaze Control”, Advanced Robotics, Vol.22, No.1, 2008, pp.57-89.

A. Berthoz (2012), Simplexity: Simplifying principles for a Complex World. Yale University Press. 

Original images



Objective: to implement on humanoid robots the principles of
the human ‘sense of movement’, i.e. unified reference
system, expected perception, and coordinated eye/head/leg
movements in following a moving visual target

A Robotic Sense of Movement
RoboSoM 2009-2013

Humanoid robotics
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Embodied Intelligence: the modern 
view of Artificial Intelligence

Classical approach
• The focus is on the brain and 

central processing

Modern approach

The focus is on interaction with the 

environment. Cognition is emergent from

system-environment interaction

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we think: a 

new view of intelligence, The MIT Press, Cambridge, MA, 2007



Embodied Intelligence 
Morphological computation

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we 

think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

1. They are subject to the laws of physics (energy dissipation, 
friction, gravity).

2. They generate sensory stimulation through motion and 
generally through interaction with the real world.

3. They affect the environment through behavior.
4. They are complex dynamical systems which, when they 

interact with the environment, have attractor states.
5. They perform morphological computation.
These properties are simply unavoidable consequences of 
embodiment. 
These are also the properties that can be exploited for 
generating behavior, and how this can be done is specified in the 
design principles. 

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

1. A complete agent is subject to the laws of physics. 
Walking requires energy, friction, and gravity in order to work. 
Because the agent is embodied, it is a physical system (biological 
or not) and thus subject to the laws of physics from which it 
cannot possibly escape; it must comply with them. If an agent 
jumps up in the air, gravity will inevitably pull it back to the 
ground.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

2. A complete agent generates sensory stimulation. 
When we walk, we generate sensory stimulation, whether we 
like it or not: when we move, objects seem to flow past us (this is 
known as optic flow); 
by moving we induce wind that we then sense with our skin and 
our hair; 
walking also produces pressure patterns on our feet; 
and we can feel the regular flexing and relaxing of our muscles as 
our legs move.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

3. A complete agent affects its environment. 
When we walk across a lawn, the grass is crushed underfoot; 
when we breathe, we blow air into the environment; 
when we walk and burn energy, we heat the environment; 
when we drink from a cup, we reduce the amount of liquid in the 
glass; 
when we drop a cup it breaks; 
when we talk we put pressure waves out into the air; 
when we sit down in a chair it squeaks and the cushion is 
squashed.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

4. Agents tend to settle into attractor states. 
Agents are dynamical systems, and as such they 
have a tendency to settle into so-called attractor 
states. Horses, for example, can walk, trot, 
canter, and gallop, and we—or at least experts—
can clearly identify when the horse is in one of 
these walking modes, or gaits, the more technical 
word for these behaviors.
These gaits can be viewed as attractor states. The 
horse is always in one of these states, except for 
short periods of time when it transitions between 
two of them, for example from canter to gallop. 
We should point out here that the attractor 
states into which an agent settles are always the 
result of the interaction of three systems: the 
agent’s body, its brain (or control system), and its 
environment. 
Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Properties of complete agents

5. Complete agents perform morphological computation. 
By “morphological computation” we mean that certain processes are performed 
by the body that otherwise would have to be performed by the brain. 
An example is the fact that the human leg’s muscles and tendons are elastic so 
that the knee, when the leg impacts the ground while running, performs small 
adaptive movements without neural control.
The control is supplied by the muscle-tendon system itself, which is part of the 
morphology of the agent. 
It is interesting to note that systems that are not complete, in the sense of the 
word used here, hardly ever possess all of these properties. For example, a vision 
system consisting of a fixed camera and a desktop computer does not generate 
sensory stimulation because it cannot produce behavior, and it influences the 
environment only by emitting heat and light from the computer screen. Moreover, 
it does not perform morphological computation and does not have physical 
attractor states that could be useful to the system.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Morphological computation

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Morphological Computation

The shape
as body structure, specifies the 
behavioral response of the agent

The arrangement
of the motor, perceptive and processing 
units 

The mechanical properties
allow emergent behaviors and highly 
adaptive interaction with the environment

As any transformation of information can be named as computing, Morphological 
Computation endows all those behaviours where computing is mediated by the 
mechanical properties of the physical body

Zambrano D, Cianchetti M, Laschi C (2014) “The Morphological Computation Principles as a 
New Paradigm for Robotic Design” in Opinions and Outlooks on Morphological Computation, 
H. Hauser, R. M. Füchslin, R. Pfeifer (Ed.s), pp. 214-225.



Agent Design Principle 1

The three-costituents principle:
• define the ecological niche ENVIRONMENT
• define the desired behaviour and tasks TASK
• design the agent BODY

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 2

The complete-agent principle:
• think about the complete agent behaving in the real

world

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 3

Cheap design:
• If agents are built to 

exploit the properties of 
the ecological niche and 
the characteristics of the 
interaction with the 
environment, their 
design and construction 
will be much easier, or 
‘cheaper’

Passive 

walker

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007

https://www.google.it/search?q=passive+walker&oq=passive+walker&aqs=chrome..69i57j0l5.3758j0j7&sourceid=chrome&ie=UTF-8#q=passive+walker&tbm=vid


Agent Design Principle 4

Redundancy:
• Intelligent agents must be designed in such a way 

that 
(a) their different sub-systems function on the basis 

of different physical processes, and 
(b) there is partial overlap of functionality between 

the different sub-systems

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 5

Sensory-Motor Coordination:
• through sensory-motor 

coordination, structured 
sensory stimulation is 
induced.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 6

Ecological balance:
1. given a certain task 

environment, there has to 
be a match between the 
complexities of the agent’s 
sensory, motor, and neural 
systems

2. there is a certain balance or 
task distribution between 
morphology, materials, 
control, and environment.

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Agent Design Principle 7

Parallel, loosely coupled processes:
intelligence is emergent from a large number of parallel 
processes that are often coordinated through 
embodiment, in particular via the embodied interaction 
with the environment 

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007

Reactive architectures



Agent Design Principle 8

Value:
agents are equipped with a value system which 
constitutes a basic set of assumptions about what is 
good for the agent

Rolf Pfeifer & Josh C. Bongard, How the body shapes the way we think: a new view of intelligence, The MIT Press, Cambridge, MA, 2007



Embodied Intelligence and 
soft robotics

Classical approach
• The focus is on the brain and 

central processing

Modern approach
The focus is on interaction with the 

environment. Cognition is emergent from
system-environment interaction

Rolf Pfeifer and Josh C. Bongard, How the body shapes the way we think: a new view of 
intelligence, The MIT Press, Cambridge, MA, 2007

Any cognitive activity arises from the 

interaction between the body, the brain and the 

environment. 

Adaptive behaviour is not just control and 

computation, but it emerges from the complex 

and dynamic interaction between the 

morphology of the body, sensory-motor control, 

and environment.

Many tasks become much easier if 

morphological computation is taken into 

account. 

=> A new soft bodyware is needed



A ‘soft’ animal world

• The vast majority of animals are soft-
bodied

• Animals with stiff exoskeletons such 
as insects have long-lived life stages 
wherein they are almost entirely soft 
(maggots, grubs, and caterpillars).

• Animals with stiff endoskeletons are 
mainly composed of soft tissues and 
liquids. 

the human skeleton typically 
contributes only 11% of the body 
mass of an adult male

skeletal muscle contributes an 
average 42% of body mass

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired 
evolution in robotics, Trends in Biotechnology, April 2013.



A ‘soft’ animal world

• Soft animals tend to be small because 
it is difficult for them to support their 
own body weight without a skeleton. 

• All of the extremely large soft 
invertebrates are found either 
• in water (squid and jellyfish) or 

• underground (giant earthworms), 

where their body is supported by the 
surrounding medium. 

Kim S., Laschi C., and Trimmer B. (2013) Soft robotics: a bioinspired 

evolution in robotics, Trends in Biotechnology, April 2013.



Defining Soft Robotics: 
a first broad classification

Variable impedance actuators and 
stiffness control

• mechanically (or passively) compliant 
joints with variable stiffness 

• compliance or impedance control 

Use of soft materials in robotics

• Robots made of soft materials or 
structures that undergo high 
deformations in interaction

• Soft actuators and soft components

IEEE Robotics and Automation Magazine, 
Special Issue on Soft Robotics, 2008

Laschi C. and Cianchetti M. (2014) “Soft Robotics: new 
perspectives for robot bodyware and control” Frontiers in 

Bioengineering & Biotechnology, 2(3)



Low Elastic Modulus

High Elastic Modulus

Soft Robotics may exploit materials which present:

- INHERENT MATERIAL compliance: bulk material properties 
(elastomers, low elastic modulus polymers, gels…)

- STRUCTURAL compliance: geometric features or arrangement can 
allow magnified strains compared with local material deformation

Soft Robotics

Hard Robotics

M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides, 
J.A. Lewis, R.J. Wood, An integrated design and fabrication strategy for 
entirely soft, autonomous robots, Nature 536, 451–455

C. Laschi, B. Mazzolai, M. Cianchetti, "Soft robotics: technologies and systems
pushing the boundaries of robot abilities", Science Robotics 1(1), 2016



The octopus arm embodied intelligence

Simplifying principles in reaching

• stiffening wave from base to distal part, that can start from any part of the arm;
• movement executed in about 1 second, velocities in the range of 20–60 cm/s;
• control divided between central and peripheral: from brain: 3 parameters (yaw and pitch 

of arm base and peak velocity of bend-point); locally: propagation of stiffness

I. Zelman, M. Galun, A. Akselrod-Ballin, Y. Yekutieli, B. Hochner, and T. Flash (2009) Nearly automatic motion capture
system for tracking octopus arm movements in 3D space, Journal of Neuroscience Methods, Volume 182: 97-109
L. Zullo, G. Sumbre, C. Agnisola, T. Flash, B. Hochner (2009) Nonsomatotopic Organization of the Higher Motor Centers
in Octopus, Current Biology, 19:1632-1636. 
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Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.

“Design concept and validation of a robotic arm inspired by the octopus”,

Materials Science and Engineering C, Vol.31, 2011, pp.1230-1239.

• Silicone

• 9 sections of 
transverse and 
longitudinal 
cables (coupled)

• Simple 
activation 
pattern: 
sequential 
activation of 
sections, with 
equal activation 
of 4 longi-
transverse 
cables per 
section

Simplifying principles in reaching



Pulsed-jet swimming in cephalopods

Simplifying principles in swimming

Ejection of a discontinuos stream of fluid through a nozzle
that produces ring vortexes.
The generation of ring vortexes provides an additional
thrust to the one generated by a continuous jet, by 
generating an additional pressure at the nozzle orifice

REFILL PHASE
• mantle expansion
• refilling of the mantle
cavity through water  
inlets

JET PHASE
•mantle contraction
• expulsion of a fluid
slug through the 
funnel (siphon)

The mantle and siphon morphology and the pulsed jet frequency optimize propulsion, 
producing ring vortexes

Giorgio Serchi F., Arienti A. and Laschi C. (2013) “Biomimetic Vortex Propulsion: Toward the New 
Paradigm of Soft Unmanned Underwater Vehicles”, IEEE/ASME Transactions on Mechatronics, 
18(2), pp. 484-493



Giorgio-Serchi et al., "Underwater Soft-bodied Pulsed-Jet Thrusters: actuator, modelling and 
performance profiling«, International Journal of Robotics Research, 2016

Pulsed-jet swimming in cephalopods

Simplifying principles in swimming



The mantle and siphon morphology and the pulsed jet frequency optimize propulsion, 
producing ring vortexes (in green)

Giorgio-Serchi F., Arienti A., Laschi C. (2016 ), "Underwater Soft-bodied Pulsed-Jet Thrusters: actuator, 
modelling and performance profiling", International Journal of Robotics Research, 35 (11), 1308-1329 

Silicone and cables, 1 DOF PoseiDrone

Pulsed-jet swimming soft robot

Simplifying principles in swimming



U-SLIP model
Water drag, added mass, buoyancy and pushing 
propulsion have been added to the SLIP model

2 control parameters 4 design parameters

Punting
gait model

Morphology-Induced Stability

New concept of soft 
underwater robots

C=0.1 a=1
Streamlined
body

C=0.8

a=7

Bulky body

MIS

Body shape

Body matters: compliant legs or a soft body directly influence stability and speed 

Simplifying principles in underwater locomotion

Octopus crawling

Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, P. Dario, “An octopus-bioinspired solution to movement and manipulation for 
soft robots”, Bioinspiration and Biomimetics Vol.6, No.3, 2011, 10 pp.
Calisti, M., Corucci, F., Arienti, A., & Laschi, C. (2015). Dynamics of underwater legged locomotion: modeling and experiments on an 
octopus-inspired robot. Bioinspiration & biomimetics, 10(4), 046012.
Calisti, M., G. Picardi, and C. Laschi. "Fundamentals of soft robot locomotion." Journal of The Royal Society Interface 14.130

Locomotion is based on cyclic control of two back 
arms, while the body is raised thanks to neutral 
buoyance. Locomotion consists of 4 phases:
1.Arm shortening
2.Attaching to the floor
3.Elongation (pushing the body forward)
4.Detaching 



New abilities that robots have reached

Lessons from Nature: 
simplifying principles for a complex world

Stretching & shortening

Growing Self-healing Being squashed

SqueezingDeforming

C. Laschi, B. Mazzolai, M. Cianchetti, "Soft robotics: technologies and systems pushing the boundaries of robot abilities", Science Robotics 1(1), 2016



file:///C:/Users/Cecilia Laschi/Documents/Presentazioni/Videos/Science Robotics 2016 Laschi_movie S1.wmv
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Model-based closed-loop 
schemes for controlling arm 

position and orientation

• A priori knowledge on the 
geometry, kinematics and 
dynamics of the robot is 
required

• High computational 
complexity

• Little flexibility and 
generalization

• High accuracy

Target  Position

ARM

Sensory

feedback 

(e.g. vision)

{(J0i
, …,J7i

)}

Neuro-

controller

Current End-Effector

Position

Motor 

Commandand Orientation

(Xt, Yt, Zt)

(rollt, pitcht, yawt)

(Xc, Yc, Zc)and Orientation

(rollc, pitchc, yawc)

Controller



Learning motor control: 
neurocontroller for controlling 
arm position and orientation

• No a priori knowledge on 
the geometry, kinematics 
and dynamics of the robot 
is required

• learning capability, to 
develop an internal model 
that builds such 
knowledge 

• low computational 
complexity

• human-like flexibility, 
robustness, generalization

Target  Position

ARM

Sensory

feedback 

(e.g. vision)

{(J0i
, …,J7i

)}

Neuro-

controller

Current End-Effector

Position

Motor 

Commandand Orientation

(Xt, Yt, Zt)

(rollt, pitcht, yawt)

(Xc, Yc, Zc)and Orientation

(rollc, pitchc, yawc)



Application of the same approach to

different robotic systems

G. Asuni, Leoni F., Starita A., Guglielmelli E., Dario P., “A Neuro-controller for

Robot Arms Based on Biologically-Inspired Visuo-Motor Coordination Neural

Models”, The 1st International IEEE EMBS Conference on Neural Engineering, 20

- 22 March, 2003, Capri Island, Italy.

G. Asuni, G. Teti, C. Laschi, E. Guglielmelli, P. Dario, “A Robotic Head Neuro-

controller on Biologically-Inspired Neural Models”, IEEE International Conference 

on Robotics and Automation April 18-22, 2005, Barcelona, Spain

E.Guglielmelli G. Asuni, F. Leoni, A. Starita, P. Dario, “A Neuro-controller for Robot 

Arms Based on Biologically-Inspired Visuo-Motor Co-ordination Neural Models”, 

IEEE Handbook of Neural Engineering, M. Akay (Ed.), IEEE Press, 2007. 



Comparison of a model-based and a model-free approaches

Cable 
Tension

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and
Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant
curvature. IEEE Transactions on Robotics, 31(4), 823-834.

control the end effector position through the cable tension1. Jacobian-based Inverse Static Controller
2. Learning-based Control, by learning the

inverse model.
Learning by collecting points and
exploiting the approximation capability
of a FNN, as for rigid robots

End effector
position

In simulation



Comparison of a model-based and a model-free approaches

Cable Tension

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and
Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant
curvature. IEEE Transactions on Robotics, 31(4), 823-834.

control the end effector position through the cable tension1. Jacobian-based Inverse Static Controller
2. Learning-based Control, by learning the

inverse model.
Learning by collecting points and
exploiting the approximation capability
of a FNN, as for rigid robots

End effector
position



Tip 
Position

Cable 
Forces

2-D Space
2 Cables
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Inaccuracies Jacobian FNN

Inaccuracy

Inaccuracy

1.7 mm

Comparison of model-based and model-free approaches

Giorelli, M., Renda, F., Calisti, M., Arienti, A., Ferri, G., & Laschi, C. (2015). Neural network and
Jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant
curvature. IEEE Transactions on Robotics, 31(4), 823-834.

Simulated Defective Model



Inverse Kinematic Controller

I-Support Prototype

Six DoF Hybrid System 
(Pneumatic and Tendon) 

Mean Error Standard 
Deviation

Position (mm) 5.58 3.08

X- axis rotation (degrees) 2.76 5.42

Y- axis rotation (degrees) 1.84 1.83

Z- axis rotation (degrees) 3.85 7.02

25 random points selected from workspace

• 2000 sample points divided in the ratio 
70:30 for training and testing respectively

• 2 hours for data collection, training, set-up

LEARNING

TESTS

Kinematics: based on steady state assumptions

Learning a  Differential Inverse Kinematics formulation : ሶ𝒙 = 𝐽 𝒒𝒐 ሶ𝒒
This allows for redundancy resolution, robustness to modelling errors
The learned mapping is :  (𝒙𝑖+1,𝒒𝒊 , 𝒙𝑖) → (𝒒𝑖+1) 

George Thuruthel T, Falotico E., et al. "Learning closed loop kinematic controllers for 
continuum manipulators in unstructured environments." Soft robotics 4.3 (2017): 285-296.

∆𝒙 ≈ 𝐽 𝒒 ∆𝒒ሶ𝒙 = 𝐽(𝒒) ሶ𝒒



Only Position Control Position and Orientation Control

Varying Orientation

Green 
Point is 

the target 
position

Target 
Orientation: the 
vector from the 
red point to the 
green point , i,.e 
parallel to X axis

In this case, some of the target orientations are 
impossible to reach, however  we can still see 

stable behavior of the solver

180° rotation of the 
manipulator without changing 

the position

Behavior at unreachable ‘points’

T. G. Thuruthel, E. Falotico, M.Cianchetti, F. Renda, C. Laschi, (2016). “ Learning Global Inverse 

Statics Solution for a Redundant Soft Robot”, In Proceedings of the13th International Conference on 

Informatics in Control, Automation and Robotics (ICINCO 2016), pp 303-310 

Inverse Kinematic Controller – results in simulation



Inverse Kinematic Controller – results on the robot

George Thuruthel T, Falotico E., et al. "Learning closed loop kinematic controllers for 
continuum manipulators in unstructured environments." Soft robotics 4.3 (2017): 285-296.

Line Following Disturbance Rejection

Line Following with obstacles Line Following with fixed Orientation (Parallel to Z axis) 



Outline of the lesson

• Scientific motivations to bioinspired robotics
• Bioinspired principles: simplexity and 

embodied intelligence
• Bioinspired control: neurocontrollers
• Bioinspired behaviour: predictive 

architectures
• Bioinspired perception



R. Brooks, Cambrian Intelligence” 
MIT Press, 2000

From hierarchical to reactive
architectures in robotics



Delays in the human nervous system

A. Berthoz, Le sens du mouvement. Odile Jacob, Paris, 1997
R.S. Johansson, “Sensory input and control of grip”, in M. Glickstein (Ed.), 

Sensory Guidance of Movements. John Wiley, Chichester, UK, pp. 45-59,1998

“In motor control delays arise in sensory transduction, central processing, and in the motor output.
Sensor transduction latencies are most noticeable in the visual system where the retina introduces a delay
of 30-60 ms, but sensory conduction delays can also be appreciable. Central delays are also present due
to such ill-defined events such as neural computation, decision making and the bottlenecks in processing
command. Delays in the motor output result from motorneuronal axonal conduction delays, muscle
exictation-contraction delays, and phase lags due to the intertia of the system. These delays combine to
give an unavoidable feedback delay within the negative feedback control loop, and can lie between
about 30 ms for a spinal reflex up to 200-300 ms for a visually guided response.”

R.C. Miall, D.J. Weir, D.M. Wolpert, J.F. Stein, “Is the cerebellum a Smith predictor?”, 
Journal of Motor Behavior, vol. 25, no. 3, pp. 203-216, 1993

“Fast and coordinated arm movements cannot be executed under pure 
feedback control because biological feedback loops are both too slow and 

have small gains” 
M. Kawato, Internal models for motor control and trajectory planning. Current Opinion in 

Neurobiology, 9, 718-727(1999). Elsevier Science Ltd.



Prediction and anticipation strategies
in the human brain

In humans, perception is not just the interpretation of sensory 
signals, but a prediction of consequences of actions

“Perception can be defined as a simulated action:
perceptual activity is not confined to the
interpretation of sensory information but it
anticipates the consequences of action, so it is an
internal simulation of action.
Each time it is engaged in an action, the brain
constructs hypotheses about the state of a
variegated group of sensory parameters
throughout the movement.”

Berthoz A. (2002), The brain’s sense of movement. Harvard University Press



…to predictive architectures

If mismatch



Sensory prediction proposed by R. Johansson

“Because of the long time delays with feedback control the swift coordination of fingertip forces during 
self-paced everyday manipulation of ordinary ‘passive’ objects must be explained by other mechanisms. 
Indeed, the brain relies on feedforward control mechanisms and takes advantage of the stable and 
predictable physical properties of these objects by parametrically adapting force motor commands 
to the relevant physical properties of the target object.”

Corrections are generated when expected sensory inputs do not match the actual ones

R.S. Johansson, “Sensory input and control of grip”. In Sensory 

Guidance of Movements, John Wiley, Chichester, UK, pp. 45-59, 

1998



Preshaping Module

Neuro-fuzzy Network
SANFIS I

THC – [, , , ] POS - [x, y, z]

CC1 - [cc-10, ….. Cc-19] 

DIM  - [dimx,dimy,dimz]

CC2 - [cc-20, ….. Cc-29]

TAC – [x, y, z, roll, pitch, yaw]

 - Thumb Abduction/Adduction

 - Joint 1 Index

 - Joint 1 Middle

 - Joint 1 Thumb

TM – type of grasping

Self-Adaptive Neuro-Fuzzy Inference System (SANFIS I)
•Combine advantages NN and Fuzzy Logic
•Learning, adaptation, and connectionist structure
•Ability to exact explicit IF-THEN rules from training data

Object geometric features

Hand/Arm configurations
and Type of grasping

EP in grasping



EP Generator (preshaping) Module

Neuro-fuzzy Network
SANFIS II

THC – [, , , ] 

POS - [x, y, z]

CC1 - [cc-10, ….. Cc-19] 

DIM  - [dimx,dimy,dimz]

CC2 - [cc-20, ….. Cc-29]

TAC – [x, y, z, roll, pitch, yaw]

TTI  -Target Tactile Image

[ tt1, tt2, …, ttm] 

where:

m=9 

tti = i-th value for the tactile 

sensor  {0,1}

Object geometric features

Hand/Arm 
configurations

SANFIS II
•Combine advantages NN and Fuzzy Logic
•Learning, adaptation, and connectionist structure
•Ability to exact explicit IF-THEN rules from training 
data
•Output space not very complex

EP in grasping



EP-based Grasping Module

Neural Network
GNG

AHC – Actual Hand Configuration
[, , , ] 

ATI - Actual Tactile Image

Growing Neural Gas + Grossberg’s Outstars
•Unsupervised learning paradigm

•Competitive learning methods (winner-takes-all)

•Generation of a topology-preserving mapping from the input space onto a 

topological structure of equal or lower dimension

•Network topology is unconstrained

•Uses growth mechanism (the network size does not need be predefined) 

TTI  - Target Tactile Image

THC –Target Hand Configuration
[’, ’, ’, ’] 

EP in grasping



Building the Preshaping Module and the EP Generator 
Module
Collection of training data

• Large ball in 12 positions

• Bottle in 12 positions in standing position

• Bottle in 12 positions lying with 5 different  
orientations for each position

• Cassette in 12 positions with 3 different  
orientations for each position



Learning of grasping module

Learning phase:
About 40000 random  movements



Grasping the bottle

C. Laschi, G. Asuni, E. Guglielmelli, G. Teti, R. Johansson, M.C. Carrozza, P. Dario, “A Bio-
inspired Neural Sensory-Motor Coordination Scheme for Robot Reaching and Preshaping”,
Autonomous Robots, Vol.5, 2008, pp.85-101.



Expected Perception in the visual space
EP architecture applied to 3D reconstruction of the environment

Task: free walking in an unknown 

room with obstacles

Classical approach:

- 3D reconstruction of the 

environment 

- path planning for collision-free 

walking

-> large computational burden

In a Visual EP architecture, after a first 3D reconstruction of the environment,

images can be predicted, based on internal models and on the ongoing

movement.

Predicted images are compared with actual ones and in case of unexpected

obstacles a mismatch occurs and the motor action is re-planned



Visual EP scheme

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying 

robot locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), 

Minneapolis, MN, USA, September 2010, pp.3206-3209



AVP architecture (I)

- Visual Processing module takes as input current images from both robot
cameras to reconstruct the environment producing the relevant feature position.

- The poses of relevant features are sent to a Trajectory Planning module to
generate the walking path

- The Controller module then takes the first robot pose from the sequence of
poses planned by the Trajectory Planning module and produces the
corresponding motor commands

-This cycle continues until the robot reaches the target.

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying 

robot locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), 

Minneapolis, MN, USA, September 2010, pp.3206-3209



- Internal Models of 
the environment and of 

the task to be 
performed are 

necessary to predict
future visual 
perceptions. 

- Images of different 
features relevant to the 

locomotion task are 
captured and 

memorized

AVP architecture (II)

Barrera, A. & Laschi, C. “Anticipatory visual perception as a bio-inspired mechanism  underlying 

robot locomotion “, IEEE Int. Conf. on Engineering in Medicine and Biology Society (EMBC), 

Minneapolis, MN, USA, September 2010, pp.3206-3209



Visual EP System (implementation)

The system performs a real time 3D 

reconstruction of the environment (30fps) 

used to generate an expected synthetic  

camera image. The cloud of 3D points is 

updated using an image sensory-motor 

prediction.

At each step:

● the next predicted image (EP) is 

calculated.

● the predicted and actual cameras 

images are compared.

● the 3D reconstruction of the visible 

environment is updated based on the 

prediction error

The system has 2 advantages:

● A faster real-time 3D reconstruction

● Recognition of the unexpected 

objects in the  scene

Moutinho, N.; Cauli, N.; Falotico, E.; Ferreira, R.; Gaspar, J.; Bernardino, A.; Santos-Victor, J.; Dario, P.;

Laschi, C.; 2011. "An expected perception architecture using visual 3D reconstruction for a humanoid

robot,“ IEEE/RSJ Int. Conf. on Intelligent Robots and Systems - IROS, San Francisco, CA, USA, 25-30

Sept. 2011 , pp.4826-4831.

Left camera image

Right camera image

Predicted image

Prediction error (unexpected 

perception)



EP of external moving objects
Prediction of movements of other agents

- The Expected Perception is not 
only generated by self motion

- Movements of other agents can be 
predicted, when their motion 
dynamics follows rules that can be 
learnt
(e.g. laws of physics)

- In this case the planning is based 
on a long term prediction (more 
than one step ahead) of the object 
trajectory

Applications: avoiding, reaching, hitting 
or caching moving objects



This circuit is based on Shibata and Schaal’s model (Shibata 2005) of smooth pursuit and consists of
three subsystems:
1. a recurrent neural network (RNN) mapped onto medial superior temporal area (MST), which

receives the retinal slip with delays and predicts the current target motion,
2. an inverse dynamics controller (IDC) of the oculomotor system, mapped onto the cerebellum and

the brainstem,
3. and a memory block that recognizes the target dynamics and provides the correct weights values

before the RNN.

A predictive model for smooth pursuit

Zambrano D, Falotico E, Manfredi L, and Laschi C. (2010). “A model of the smooth 
pursuit eye movement with prediction and learning”. Applied Bionics and 
Biomechanics



Predictive smooth pursuit on a robot head

Sinusoidal dynamics:
a) angular frequency: 

1 rad/s, amplitude: 
10 rad, phase: π/2

b) angular frequency: 
1 rad/s, amplitude: 
15 rad, phase of ¾ π0.8s 0.8s

The retinal slip (target velocity onto the retina) reaches zero after that the algorithm converges.
When the target is unexpectedly stopped, the system goes on tracking the target for a short time.

iCub platform
head, 6 dof:
3 for the eyes
3 for the neck



The robot punches a target oscillating in front of it 
with a predictable dynamics (pendulum)

An internal model is used to predict the dynamics 
of the moving target

The prediction allows to anticipate the movement 
of the arm and hit the ball

Punching a moving target

EP of external moving objects
Prediction of movements of other agents



Punching a moving target
Experiment on Simulation/Robot

Experiment environment:

• A pendulum oscillates in front of 
the robot

Goal:

• Punching a predictable moving 
target when it reaches the robot 
arm workspace

Solution:

• External model used to predict the  
trajectory of the target (position 
through time) using a Kalman Filter

• Arm controller used to move the 
hand towards the desired position 
with a fixed time delay



Punching a moving target - robot experiments

The prediction is iterated ahead 0.5 seconds 
As the predicted target is inside the arm workspace, the robot executes a 

movement to punch the ball in the predicted position 

N. Cauli, E. Falotico, A. Bernardino, J. Santos-Victor, C. Laschi, “Correcting for Changes: 
Expected Perception-Based Control for Reaching a Moving Target”, IEEE Robotics and 
Automation Magazine, 23 (1), pp.63-70, 2016.



Summary
Bioinspired simplifying principles

• Simplexity (and humanoid robotics)

• Embodied Intelligence (and soft robotics)

• Neuro-controllers

• Predictive architectures



Journal Club

Group (2 students) assignment:
Read one the following papers:
1. M.O. Franz, H.A. Mallot, “Biomimetic robot navigation”, Robotics and Autonomous 

Systems, 30, 2000.
2. D. Floreano, A. Ijspeert, S. Schaal, “Robotics and Neuroscience”, Current Biology, 24, 

2014
3. T. George Thuruthel, Y. Ansari, E. Falotico, C. Laschi, “Control Strategies for Soft Robotic 

Manipulators: A Survey”, Soft Robotics 5(2), 2018, pp.149-163.
4. N. Cauli, E. Falotico, A. Bernardino, J. Santos-Victor, C. Laschi, “Correcting for Changes: 

Expected Perception-Based Control for Reaching a Moving Target”, IEEE Robotics and 
Automation Magazine, 23 (1), pp.63-70, 2016.

@ class of April 29:
• Present the bioinspired approach described in the paper
• Explain how it responds to our bioinspiration definition
• Show main simplifying principles, if any

../LM Bionics 2018/Biomimetic Robot Navigation paper.pdf
../../Papers/Floreano et al. CB-neuroscience-robotics.pdf
../../Papers/Thuruthel soro.2017.0007.pdf
../../Papers/RAM 2015 Cauli 15-0028_03_MS.pdf

