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Robot mechanics and kinematics 

• Introduction to robot mechanics 
• Definition of degree of freedom (DOF) 
• Definition of robot manipulator 
• Joint types 
• Manipulator types 

• Definitions of joint space and Cartesian space 
• Robot position in joint space 
• Robot position in Cartesian space 
• Definition of workspace 

• Direct and inverse kinematics 
• Kinematics transformations 
• Concept of kinematic redundancy 
• Concept of kinematic singularity 
• Recall of transformation matrices 

• Denavit-Hartenberg representation 
• Algorithm  
• Examples 

 

References: Bajd, Mihelj, Lenarcic, Stanovnik, Munih, Robotics, Springer, 2010: Chapters 1-2 



Degree of Freedom (DOF) 

1 DOF 

2 DOFs 3 DOFs 



DOFs of a rigid body 

A single mass particle has three degrees of freedom, described by three rectangular displacements along a line 
called translations (T).  
We add another mass particle to the first one in such a way that there is constant distance between them. The 
second particle is restricted to move on the surface of a sphere surrounding the first particle. 
Its position on the sphere can be described by two circles reminding us of meridians and latitudes on a globe. 
The displacement along a circular line is called rotation (R).  
The third mass particle is added in such a way that the distances with respect to the first two particles are kept 
constant. In this way the third particle may move along a circle, a kind of equator, around the axis determined by 
the first two particles.  
A rigid body therefore has six degrees of freedom: three translations and three rotations. The first three degrees 
of freedom describe the position of the body, while the other three degrees of freedom determine its orientation. 
The term pose is used to include both position and orientation. 



Robot manipulator 

• Definition: open kinematic chain 
• Sequence of rigid segments, or links,  

connected through revolute or translational joints, 
actuated by a motor 

• One extremity is connected to a support base, the 
other one is free and equipped with a tool, named 
end effector 



Joints and DOFs 

• Joint = set of two surfaces that can slide, keeping 
contact to one another 
 

• Couple joint-link = robot degree of freedom (DOF) 
 

• Link 0 = support base and origin of the reference 
coordinate frame for robot motion 
 



Robot manipulator 

A robot manipulator consists of a 
robot arm, wrist, and gripper.  
The task of the robot 
manipulator is to place an object 
grasped by the gripper into an 
arbitrary pose. In this way also 
the industrial robot needs to 
have six degrees of 
freedom.  

Chain of 3 links 
2 adjacent links are connected by 1 joint 
Each joint gives 1 DOF, either rotational 
or translational 

The segments of the robot arm are 
relatively long. The task of the 
robot arm is to provide the desired 
position of the robot end point.  
The segments of the robot wrist 
are rather short. The task of the 
robot wrist is to enable the 
required orientation of the object 
grasped by the robot gripper. 



Joint types 

Rotational Joint  Translational Joint 
(revolute)  (prismatic) 

The relative 
position of 2 
links is 
expressed by 
an angle  

The relative 
position of 2 links 
is expressed by a 
distance d 



Manipulator types 

Fundamental categories: 
 

• Rotational (3 or more rotational joints) – RRR  
 (also named anthropomorphic) 
• Spherical (2 rotational joints and 1 translational joint) – RRT  
• SCARA (2 rotational joints and 1 translational joint) – RRT 
 (with 3 parallel axes) 
• Cilindrical (1 rotational joint and 2 translational joints) – RTT  
• Cartesian (3 translational joints) – TTT  



   Anthropomorfic  Spherical   SCARA 

Cilindrical    Cartesian 



Robot manipulator 

PUMA 560 



Joint space and Cartesian space 

• Joint space (or configuration space) is the space in 
which the q vector of joint variables are defined.  
Its dimension is indicated with N  
(N = number of joints in the robot). 
 

• Cartesian space (or operational space) is the space in 
which the x = (p, )T vector of the end-effector 
position is defined.  
Its dimension is indicated with M (M=6). 



Robot position in joint space and in 
Cartesian space 

• q is the vector of the robot position in joint space. 
It contains the joint variables,  
it has dimension N x 1,  
it is expressed in degrees. 
 

• x = (p, )T is the vector of the robot position in  
Cartesian space.  
It contains: 
• p, vector of Cartesian coordinates of the end effector, 

which has dimension 3x1 (x,y,z coordinates). 
• , vector of orientation of the end effector,  

which has dimension 3x1 (roll, pitch, yaw angles). 



P 

O 

Robot manipulator 

x = (p, ) = (x,y,z,roll,pitch,yaw) 

Ex. (0.7m,0.1m,0.5m,10°,-45°,5°) 



Tipically: 
 
Main subgroups =  
Supporting structure + wrist 
 
The supporting structure tunes 
the position of the end effector 
 
The wrist tunes the orientation 
of the end effector 

Robot manipulator 



Workspace 

Robot workspace = region described by the origin of the end 
effector when the robot joints execute all possible motions 

 



file:///C:/Users/Cecilia/Documents/Didattica/Videos/Video Robotica/Comau_6-axis.mp4


Workspace 

• Reachable workspace = region of the space that the end 
effector can reach with at least one orientation. 
 

• Dextrous workspace = region of the space that the end 
effector can reach with more than one orientation. 
 



Workspace 

It depends on 
• Link lengths 
• Joint ranges of 

motion 

 



Robot arm kinematics 

• Analytical study of the geometry of the arm motion, 
with respect to a steady Cartesian reference frame, 
without considering forces and torques which 
generate motion (actuation, inertia, friction, 
gravity, etc.). 
 

• Analytical description of the relations between joint 
positions and the robot end effector position and 
orientation. 



Kinematics transformations 

Direct kinematics:  
• Computing the end-effector position in the 

Cartesian space, given the robot position in 
the joint space 
 

Inverse kinematics: 
• Computing the joint positions for obtaining a 

desired position of the end effector in the 
Cartesian space 



Direct and inverse kinematics 

Direct kinematics 

Link 

parameters 

Joint angles 

(q1,…qn) 

End effector 

position and 

orientation 

Inverse kinematics 

Link 

parameters 

Joint angles 

(q1,…qn) 



Direct kinematics problem 

• For a given robot arm, given the vector of joint 
angles q and given the link geometric parameters, 
find the position and orientation of the end effector, 
with respect to a reference coordinate frame 

• Find the vectorial non-linear function 
 

x = K(q)     x unknown, q known 
 

Ex. PUMA (x,y,z, roll,pitch,yaw) = K(q1,….,q6) 



Inverse kinematics problem 

• For a given robot arm, given a desired position and 
orientation of the end effector, with respect to a 
reference coordinate frame, find the corresponding 
joint variables 

• Find the vectorial non-linear function 
 

q = K-1(x)  q unknown, x known 
 

Ex. PUMA (q1,….,q6)=  K-1 (x,y,z,roll,pitch,yaw) 



Kinematics redundancy 

Number of degrees of freedom higher than the number of 
variables needed for characterizing a task  The operational 
space size is smaller that the joint space size 

The number of redundancy degrees is R=N-M  

Advantages: multiple solutions 

Disadvantages: computing and control complexity 



  

Inverse kinematics problem 

• The equations to solve are generally non linear 
• It is not always possible to find an analytical solution 
• There can be multiple solutions 
• There can be infinite solutions (redundant robots) 
• There may not be possible solutions, for given arm kinematic 

structures 
• The existence of a solution is guaranteed if the desired 

position and the orientation belong to the robot dextrous 
workspace 



Recall of transformation matrices 

Matrices for translations and rotations of 
reference coordinate frames 



Rotation matrices 

A rotation matrix operates on a position vector in a 3D space. 

A rotation matrix transforms the coordinates of the vector 
expressed in a reference system OUVW in the coordinates 
expressed in a reference system OXYZ. 

OXYZ is the reference system in the 3D space. 

OUVW is the reference system of the rigid body which moves 
together with it. 



Rotation matrices 

is the relation transforming 
the coordinates of the vector puvw expressed in the reference system OUVW  
in the coordinates of the vector pxyz expressed in the reference system OXYZ. 
 
R is the 3x3 rotation matrix between the two frames OUVW and OXYZ 

uvwxyz Rpp 



Rotation matrices 



Rotation matrices 



Fundamental rotation matrices 

1 0 0 

0 cos  -sin  

0 sin  cos  

Rx, = 

cos  0 sin  

0 1 

-sin  0 cos  

Ry, = 

cos  -sin  0 

sin  cos  0 

0 0 1 

Rz, = 

Rotation around the X axis 

Rotation around the Z axis 

Rotation around the Y axis 



Composed rotation matrices 

• The fundamental rotation matrices can be multiplied to 
represent a sequence of rotations around the main axes of 
the reference frame: 
    

R = Rx, Ry, Rz, 

 
 
 
 
 
 
 

• Please note: matrix product is not commutative 

uvwxyz Rpp 



 
Representation of a position vector of size N 
with a vector of size (N+1) 
 
P = (px, py, pz)

T    P^ = (wpx, wpy, wpz, w)T  
 
w = scaling factor 
 
In robotics w = 1. 
 
Unified representation of translation, rotation, 
perspective and scaling. 

Homogeneous coordinates 



Homogeneous rotation matrices 

1 0 0 0 

0 cos  -sin  0 

0 sin  cos  0 

0 0 0 1 

Rx, = 

cos  0 sin  0 

0 1 0 0 

-sin  0 cos  0 

0 0 0 1 

Ry, = 

cos  -sin  0 0 

sin  cos  0 0 

0 0 1 0 

0 0 0 1 

Rz, = 

Rotation around the X axis 

Rotation around the Z axis 

Rotation around the Y axis 



Fundamental homogeneous translation 
matrix 

1 0 0 dx 

0 1 0 dy 

0 0 1 dz 

0 0 0 1 

Ttran= 

x 

z 

y 

u 

v 

w P 

Pxyz = Ttran Pvuw 



Homogeneous transformation 
matrix: rotation and translation 

R3x3 p3x1 

f1x3 11x1 

T= 

x 

z 

y 

u 

v 

w P 

pxyz = T pvuw 

nx sx ax dx 

ny sy ay dy 

nz sz az dz 

0 0 0 1 

= 



Geometric interpretation of 
tranformation matrices 

T= 

nx sx ax dx 

ny sy ay dy 

nz sz az dz 

0 0 0 1 

x 

z 

y 

u 

v 

w 

P 

n s a p 

0 0 0 1 = 

p = origin of OUVW with respect to OXYZ 

 

 

n,s,a representation of the orientation of 
the frame OUVW with respect to OXYZ 



Composite homogeneous 
tranformation matrices 

 Homogeneous matrices for rotation and translation 
can be multiplied to obtain a composite matrix (T) 

 
T = T0

1T1
2 …. Tn-1

n 

 

p0 = T0
1T1

2 …. Tn-1
n pn = T pn  



Example of transformation of a 
reference frame 



Example of transformation of an 
object position 



Generic manipulator model 

Our final goal is the geometrical model of a robot manipulator. A geometrical robot model is 
given by the description of the pose of the last segment of the robot (end effector) expressed in 
the reference (base) frame. The knowledge how to describe the pose of an object by the use of 
homogenous transformation matrices will be first applied to the process of assembly. For this 
purpose a mechanical assembly consisting of four blocks will be considered. 
A plate with dimensions (5×15×1) is placed over a block (5×4×10). Another plate (8×4×1) is 
positioned perpendicularly to the first one, holding another small block (1×1×5). 
A frame is attached to each of the four blocks. Our task will be to calculate the pose of the O3 
frame with respect to the reference frame O0. 



Geometric manipulator model 





Direct kinematics 
Denavit-Hartenberg (D-H) representation 

• Matrix-based method for describing 
the relations (rotations and 
translations) between adjacent links. 

• D-H representation consists of 
homogeneous 4x4 transformation 
matrices, which represent each link 
reference frame with respect to the 
previous link. 

• Through a sequence of 
transformations, the position of the 
end effector can be expressed in the 
base frame coordinates 

P 



Link coordinate frames and their 
geometric parameters 

• 4 geometric parameters are associated to each link:  
• 2 of them describe the relative position of adjacent link 

(joint parameters) 
• 2 of them describe the link structure 

• The homogeneous transformation matrices depend 
on such geometric parameters, of which only one is 
unknown 



Link coordinate frames and their 
geometric parameters 



Link coordinate frames and their 
geometric parameters 

• The joint rotation axis is 
defined at the connection 
between the 2 links that the 
joint connects. 

• For each axes, 2 normal lines 
are defined, one for each link. 

• 4 parameters are associated to 
each link: 2 describe the 
adjacent links relative position 
(joint parameters) and 2 
describe the link structure. 



Link coordinate frames and their 
geometric parameters 

• From the kinematics viewpoint, 
a link keeps a fixed 
configuration between 2 joints 
(link structure). 

• The structure of link i can be 
characterized through the 
length and the angle of the 
rotation axis of joint i.  

• ai = minimum distance along the 
common normal line between 
the two joint axes 

• i = angle between the two joint 
axes on a plane normal to ai 



 
 
 

Link coordinate frames and their 
geometric parameters 

• the position of the i-th link 
with respect to the (i-1)-th 
link can be expressed by 
measuring the distance and 
the angle between 2 
adjcent links 

• di = distance between 
normal lines, along the i-th 
joint axis 

• i = angle between two 
normal lines, on a plane 
normal to the axis 



 
 

Denavit-Hartenberg (D-H) 
representation 

For a 6-DOF arm = 7 coordinate frames 
zi-1 axis = motion axis of joint i 
zi axis = motion axis of joint i+1 
xi axis = normal to zi-1 axis and zi axis  
yi axis = completes the frame with the right-hand rule 
 

The end-effector position expressed in 
the end-effector frame can be expresses 
in the base frame, through a sequence 
of transformations. 
 



  

Denavit-Hartenberg (D-H) 
representation 

Algorithm: 
 
1. Fix a base coordinate frame (0) 
2. For each joint (1 a 5, for a 6-DOF robot), set: 
 the joint axis,  
 the origin of the coordinate frame,  
 the x axis,  
 the y axis. 
3. Fix the end-effector coordinate frame. 
4. For each joint and for each link, set: 
 the joint parameters 
 the link parameters. 

 



Denavit-Hartenberg (D-H) 
representation 



D-H for PUMA 560 



 
 
 

Denavit-Hartenberg (D-H) 
representation 

 

• The matrix is built through rotations and translations: 
• Rotate around xi for an angle i, in order to align the z axes 

• Translate of ai along xi  

• Translate of di along zi-1 in order to overlap the 2 origins 

• Rotate around zi-1 for an angle i, in order to align the x axes 

 Once fixed the coordinate frames for each link, a homogenous transformation 

matrix can be built, describing the relations between adjacent frames. 



cosi  - cosi sini  sini sini  aicosi  

sini  cosi cosi  -sinicosi  - aisini 

0 sini cosi - di 

0 0 0 1 

ri-1=
i-1Ai pi  = 

Denavit-Hartenberg (D-H) 
representation 

• The D-H transformation can be expressed with a 
homogeneous transformation matrix: 

i-1Ai=Tz, Tz,d Tx,a Tx, 



 
 
 

 
 

Denavit-Hartenberg (D-H) 
representation 

The D-H representation only depends on the 4 parameters 
associated to each link, which completely describe all joints, either 
revolute or prismatic. 
 
 
For a revolute joint, di , ai , i are the joint parameters, constant for 
a given robot. Only i varies. 
 
For a prismatic joint, i , ai , i are the joint parameters, constant 
for a given robot.  Only di varies  



The homogeneous matrix T describing the n-th frame with respect to the base frame is 
the product of the sequence of transformation matrices i-1Ai, expressed as: 
 
   0Tn = 0A1 1A2 ........ n-1An  

Xi  Yi  Zi  
pi  

0 0 0 1 
0Tn = 

0Rn 
0pn 

 

0 1 

0Tn = 

where [ Xi  Yi  Zi ] is the matrix describing the orientation of the n-th frame with respect to 
the base frame 

Pi is the position vector pointing from the origin of the base frame to the origin of the n-
th frame 

R is the matrix describing the roll, pitch and yaw angles 

Denavit-Hartenberg (D-H) 

representation 



0Rn 
0pn 

 

0 1 

0Tn = 
n s a p0 

0 0 0 1 
= 

Denavit-Hartenberg (D-H) 
representation 



The direct kinematics of a 6-link manipulator can be solved by 
calculating T = 0A6  by multiplying the 6 matrices 
 
For revolute-joints manipulators, the parameters to set for 
finding the end-effector final position in the Cartesian space are 
the joint angles i  = qi 
 
For a given q = (q0, q1, q2, q3, q4, q5)  it is possible to find 
(x,y,z,roll, pitch, yaw) 
 

x = K(q)= T(q) 

Denavit-Hartenberg (D-H) 
representation 



Planar 3-link manipulator 



Spherical manipulator 



Anthropomorphic manipulator 



Spherical wrist 



Stanford manipulator 



Anthropomorphic manipulator with 
spherical wrist 



Kinematic model of the human arm 



Kinematic model of 
the human hand 



Kinematic model of the human thumb 



Kinematic model of the human body 


