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Reference materials and credits 

Most of the material presented in these lessons can be find on 
the brilliant, seminal books on robotics and image analysis 
reported hereafter: 

1. P.I. Corke, “Robotics, Vision & Control”, Springer 2011, ISBN 
978-3-642-20143-1 

2. R. Szeliski, “Computer Vision: Algorithms and Applications”, 
Springer-Verlag New York, 2010 

3. R.C. Gonzalez & R.E. Woods, “Digital Image Processing (3rd 
edition)”, Prentice-Hall, 2006 

 
Most of the images of these lessons are downloaded from RVC website 
http://www.petercorke.com/RVC/index.php and, despite they are free 
to use, they belong to the author of the book. 

http://www.petercorke.com/RVC/index.php
http://www.petercorke.com/RVC/index.php


Outline 
 Part1: Image processing 

 Digital images 
 Punctual, local, global operators 
 Morphological operations 
 Template matching 
 

 Part 2: Features extraction 
 Thresholding 
 Region features 
 Parametric features 
 Point features 



Detailed program 

 Part1: Image processing 
 Digital image 
 Colour image 
 Monadic operations 
 Gray conversion 
 Lightening, darkening 
 Histogram 
 Sigmoid, power law, piece-

wise transform 
 Histogram equalization 
 Thresholding, 

posterization 
 Diadic operations 
 Green screen and HDR 
 Background subtraction 
 Background estimation 
 Spatial operators 
 Convolution & boundary 

effect 
 Smoothing and kernel 

masks 
 Edge detection 
 Gradient (magnitude & 

direction) 
 DoG and noise 
 Canny Edge Detection 
 Laplacian mask & LoG 
 Template matching 
 Similarity measures 
 Census and rank 
 Morphological operators 
 Erosion & Dilation  
 Closing & Opening 
 Basic geometric 

manipulations 
 DLR example 

 Part 2: Features 
extraction 
 Region features 
 Otsu 
 Local thresholding 
 Niblack 
 Colour classification 
 K-mean clustering 
 Labeling 
 4- & 8-neighbourhood 

 MSA (motivated student 
algorithm) 

 Graph-based 
segmentation 

 Concise representation: 
bounding boxes 

 Moments 
 Equivalent ellipses 
 Features invariance 
 Boundary representation 
 Hough transformation 
 Accumulation matrix and 

threshold 
 Point features 
 Common interest metrics 
 Optic flow & aperture 
 Lucas-Kanade solution 
 Bee-inspired navigation 

 
 

 



Overall computer vision process and scope of the lessons 

applications 

Scope of the lessons 



Part 1 
Image processing 



The first theory on visual processing was emission (or extramission) theory which suggested that 
vision occurs when rays emanate from the eyes and are intercepted by visual objects. These rays, 
interacting with visible objects, produce the perception of the objects.  

Introduction 

Our eye is like a torch 

Sounds ridiculous? Not for half of you. 

A survey conducted by Winer et al. stated that 50% of the adults considered 
in the survey believe in extramission theory 

Gerald A. Winer 

Winer, G. A., Cottrell, J. E., Gregg, V., Fournier, J. S., & Bica, L. A. (2002). Fundamentally misunderstanding visual 
perception: Adults' beliefs in visual emissions. American Psychologist, 57, 417-424 



Introduction 

Today we consider that light from an illuminant falls on the scene, some of which is 
reflected into the eye of the observer to create a perception about the scene. The 
amount of light that reaches the eye, or the camera, is a function of the illumination 
impinging on the scene and the material property known as reflectivity. 



Introduction 

Image formation 

Perspective image model 
The points on the image plane, in our case, is a digital image 



What’s a digital image? 

Digital images are mosaics 
made of pixels 
 
 
 
 
 
 
 
Image resolution is the 
number of pieces (pixel) 
used to build the mosaic 
(image) 
 
Image depth is the number 
of colours (levels) of mosaic 
pieces 

I[600,516]=213 



Colour images 

Colour images have three channels: the most common triplet is the R-G-B 

There are other very useful common space: 
HSV, XYZ, CIE, YUY, … 



Colour images 

640x854x3 uint8 

640x854x1 uint8 

Red channel Green channel Blue channel 



Image processing 

Transform one or more input images into an output image. 

To enhance the image  

Human interpretation Features extraction 



Monadic operations (pixel operators) 



Simple monadic operation: 

Gray-scale conversion with International 
Telecommunication Unit (ITU) recommendation 709 

Y=0,212R+
0,7152G+0
,0722B 



Lightening and darkening 

Monadic operations change 
the distribution of grey levels 
on images 



Histogram 
Is a graph representing the grey level occurrences of an image.  



Histograms and monadic operations 



Contrast enhancement 

Sigmoid function 



% lightening/darkening 

xwing_light=xwing_grey+50; 

idisp(xwing_light); 

xwing_dark=xwing_grey-50; 

idisp(xwing_dark); 

% select areas by levels 

level48 = (xwing_grey>=40) & (xwing_grey<=50) ; 

idisp(level48); 

level225 = (xwing_grey>=225) & 

(xwing_grey<=255) ; 

idisp(level225); 

% contrast enanch 

xwing_contrast=zeros(r,c); 

    for i=1:r 

       for j=1:c 

           xwing_contrast(i,j)=256./(1+1.05.^-( 

double(xwing_grey(i,j))-150));    % Sigmoid 

       end 

    end 

 idisp(xwing_contrast) 

Code sample > 
 

Monadic operations 



Common operation 



Common operation 



Pay attention 



Pay attention 



Histogram equalization 

f(l)=c(l) 
Monadic  
operation 

c(l) Cumulative distribution 

h(l) histogram 

l Grey level 



Histogram equalization 

After equalization 



Histogram equalization 

before 

after 



Thresholding and posterization  

Where t  is the threshold, and 1 
represents the maximum grey 
level value of the pixel 

Merge several adjacent 
levels together 



Code sample > 
 

 %hist equalization 

[n,v]=ihist(xwing_grey); 

plot(v,n) 

cd=zeros(length(v),1); 

cd(1)=v(1)/(r*c); 

    for l=2:length(v) 

       cd(l)=cd(l-1)+1/(r*c)*n(l); % cumulative distribution 

    end 

xwing_equalized=zeros(r,c); 

    for i=1:r 

       for j=1:c 

           xwing_equalized(i,j)=255*cd(xwing_grey(i,j)+1);    % Equalization 

       end 

    end 

 idisp(xwing_equalized) 



Diadic operations 



Green screen 

I1[u,v] I2[u,v] 

O [u,v] 



High Dynamic Range 

Power law 
γ = 4  

Power law 
γ = 0.5  

Sigmoid  



Background subtraction 

Another important diadic operation is the background subtraction to find novel elements  
(foreground) of a scene. 

background 

We can take a 
shoot when we 
know that only 
background is 
visible 

'http://wc2.dartmouth.edu‘, 05:19 p.m.,  
Rome time 



Background subtraction 

'http://wc2.dartmouth.edu‘, 05:19 p.m., Rome time 

foreground 

background 



Background subtraction 

'http://wc2.dartmouth.edu‘, 07:48 p.m., Rome time 

foreground 

background 

What went wrong? 



Background subtraction 

'http://wc2.dartmouth.edu‘, 10:55 p.m., Rome time 

foreground 

background 

What went wrong? 



Background estimation 

We require a progressive adaptation to small, persistent changes in the background. 

Rather than take a static image as background, we estimated it as follow: 



Code sample > 
 

Background subtraction 

% backgorund estimation  

sigma=0.01; 

vid = videoinput('winvideo', 1); 

bg=getsnapshot(vid); 

bg_small=idouble(imono(bg)); 

while 1 

     img=getsnapshot(vid); 

     img_small=idouble(imono(img)); 

     if isempty(img), break; end 

     d=img_small-bg_small; 

     d=max(min(d,sigma), -sigma); 

     bg_small=bg_small+d; 

     idisp(bg_small); drawnow 

end 

 



Spatial operation (local operators) 



1D Convolution 

One important local operator is the convolution: 

f 

g 

f * g 

f(t-τ) 

g(τ) 

(f * g)(t) 

τ 

τ 

t 

wikipedia 



2D Convolution 

k1 k2 k3 

k4 k5 k6 

k7 k8 k9 

Convolution mask 



21 

0 1 2 0 12 5 0 1 

5 2 6 0 0 1 1 1 

5 0 0 4 5 6 1 0 

12 25 0 24 56 8 2 3 

1 2 6 0 0 1 5 2 

1 2 0 2 1 2 1 0 

12 0 12 25 3 5 0 1 

1 1 1 35 57 5 3 1 

·1+ ·1+ ·1+ 

·1+ ·1+ ·1+ 

·1+ ·1+ ·1+   

kernel 

Input image Output image 

2D Convolution 



15 21 

0 1 2 0 12 5 0 1 

5 2 6 0 0 1 1 1 

5 0 0 4 5 6 1 0 

12 25 0 24 56 8 2 3 

1 2 6 0 0 1 5 2 

1 2 0 2 1 2 1 0 

12 0 12 25 3 5 0 1 

1 1 1 35 57 5 3 1 

·1+ ·1+ ·1+ 

·1+ ·1+ ·1+ 

·1+ ·1+ ·1+   

Input image Output image 

Convolution 



Boundary effect 

• Duplicate 
• All black 
• Reduce size 
• … 



Smoothing 



Kernel examples 

Gaussian Top hat 

Difference of Gaussian  
(DiffG) 

Derivative of Gaussian  
(DoG) 

Laplacian of Gaussian  
(LoG) 

Smoothing 

Edge detection Gradient 



Edge detection 

Horizontal profile of 
the image at v=360 



Gradient computation 

Common convolution kernel: Sobel, Prewitt, Roberts, … 

Sobel 



Direction and magnitude 



Noise amplification 

Derivative amplifies high-frequency noise. So, firstly we can smooth the image, 
after that we can take the derivative: 

Associative property: 

Derivative of Gaussian  
(DoG) 

Derivative of Gaussian  
(DoG) 

<<DoG acts as a bandpass filter!>> 



The algorithm is based on a few steps: 
1. Gaussian filtering 
2. Gradient intensity and direction 
3. non-maxima suppression (edge thinning) 
4. hysteresis threshold 

Canny edge detection 



Canny edge detection 

3. Non local maxima suppression 

Evaluation along gradient direction 

Maxima detection 



4. hysteresis threshold 

High threshold 

Low threshold 

St
ro
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g 
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Canny edge detection 



canny 

Magnitude of the gradient 

Thresholding 



Edge detection 

High 
gradient 

Local 
maxima 

Alternative approach is to use second derivative and to find where there 
is a zero 

Laplacian operator 



Noise sensitivity 

Again, derivative amplifies high-frequency noise. So firstly we can smooth the 
image, after that we take the derivative: 

Laplacian of Gaussian  
(LoG) 

Laplacian of Gaussian  
(LoG) 

Marr-Hildreth operator or the Mexican hat kernel 



Edge detection 



Gradient and Laplacian 



Gradient and Laplacian 



Gradient and Laplacian 



Gradient and Laplacian 



Gradient and Laplacian 



Code sample > 
 

% denoising/edge detection 
dx=[-1 0 1;-2 0 1; -1 0 1]; 
dy=[-1 -2 -1;0 0 0;1 2 1]; 
K=kgauss(3); 
K1=ones(19,19).*1/(19*19); 
xwingDenoisMean=iconv(K1,xwing_grey); 
idisp(xwingDenoisMean) 
xwingDenoisGaus=iconv(K,xwing_grey); 
idisp(xwingDenois) 
xwingIx=iconv(dx,xwing_grey); 
idisp(xwingIx) 
xwingIy=iconv(dy,xwing_grey); 
idisp(xwingIy) 
magnGrad=sqrt(xwingIx.^2+xwingIy.^2); 
idisp(magnGrad) 
edgeGrad=magnGrad>250; 
  
edgeLapl=iconv(klog(2),xwing_grey); 
idisp(iint(edgeLapl)>250); 
  
edgeLapl=iconv(klog(1),xwing_grey); 
idisp(iint(edgeLapl)>250); 
  
edgeLapl=iconv(klog(3),xwing_grey); 
idisp(iint(edgeLapl)>250); 



Template matching 



Similarity measures 

Sum of absolute differences 

SAD 

ZSAD 

Sum of squared differences 

SSD 

ZSSD 

Cross correlation 

NCC 

ZNCC 

Template matching 



Non-parametric similarity measures 

Census 

Rank transform = 5 

Hamming distance 

Census representation 



Rank transform is more compact but does not encode position information 

50 10 205 

1 25 2 

102 250 240 

Census: 01110101 

Rank: 5 

10 26 2 

101 25 202 

1 250 214 

Census: 10111010 

Rank: 5 

Hamming distance: 6!     

Non-parametric similarity measures 



Non-linear operators 

• Variance measure (on windows): Edge detection 

•  Median filter: noise removal 

• Rank transform: non-local maxima suppression 



Mathematical morphology 



Erosion 

Erosion is a specific procedure of the more general Morphological Image 
Processing techniques.   
 
It belongs to the concept of mathematical morphology and it is strictly related 
to the set theory. 
 
Here the concept is roughly introduced to understand the basis of erosion. 



Notation 

Let consider A as a set in Z2 

a = (a1,a2) belongs to A   

a = (a1,a2) does not belong to A   

We write: 

We write: 



A set is represented by the parenthesis{·}.  
 
In our case, the elements of a set are the pixels belonging to a certain area or object of an 
image. When we write: 

This means that C is composed by all the elements w which are obtained by scalar product 
of the elements of D and the value -1. 
 

When all elements of A are also elements of  B, we say that A is 
a subset of B. 

 



The translation of a set A by an element z, is represented as (A)z and is 
defined by: 



The verbose definition is: the erosion of A through B is the set of all the points z 
whom the translation of B by z is a subset of A.    

This definition represents an: 
erosion 

Now we can write the morphological operation which interest us, thus: 



z=0 

z=b/2 

It’s simple to see that graphically: 

b/2 



In this case the eroded set will be; 

We can figure the erosion as a “shape-cutting” of the most external part of the set. 
 
Dilation is the «opposite» operation, but formally they are related by:  

Which means that eroding the white pixels is the same as dilating the dark pixels, 
and vice versa. 



1) Original image 
2) Erosion by the element B 
3) Dilatation (the opposite procedure of the Erosion) 



Example: opening 



Example: closing 



Noise removal & boundary detection 

? 

Matlab sample of 
buondary 
detection 



Shape changing 

• Cropping 

• Reisizing 

• Rotating 

• … 



Example DLR 

Oliver Birbach, Udo Frese and Berthold Bauml, (2011) ‘Realtime Perception for Catching a Flying Ball with a Mobile Humanoid’  



Example DLR 



Part 2 

Feature extraction 



Image feature extraction 

We need to be able to answer pithy questions such as what is the pose 
of the object? what type of object is it? how fast is it moving? how fast am 
I moving? and so on. The answers to such questions are measurements 
obtained from the image and which we call image features. Features are 
the gist of the scene and the raw material that we need for robot control. 

The image processing operations from the last chapter operated on 
one or more input images and returned another image. In contrast feature 
extraction operates on an image and returns one or more image features. 

 Image feature extraction is a necessary first step in using image data to control 
a robot. It is an information concentration step that reduces the data rate from 
10 6 −10 8  bytes s –1  at the output of a camera to something of the order of tens of 
features per frame that can be used as input to a robot’s control system. 



Region-features classification 

Thresholding 

t = 0.65 

How we select this value? 



Otsu 

Background and object can be described as classes of the image histogram 
 
Otsu thresholding method maximize the variance between classes. 

One implementation can be defined as follow: 
1. Obtaining the image histogram 
2. For each threshold value, t = 0, ..., L − 1 the following 

variables should be derived 
3. Compute: 

 
 
 
 
 
 
 
 

4. Maximum σ2
b (t) defines the correct threshold t. 



Otsu 



Code sample > 
 

%OTSU 
street=iread('street.png'); 
idisp(street); 
idisp(street>t); 
[rig,col]=size(street); 
[n,v]=ihist(street); 
plot(v,n) 
  
max=0; 
occ=n; 
for t=1:256 
sum_tmp=0; 
sum_sf=0; 
media_sf=0; 
sum_ogg=0; 
media_ogg=0; 
peso_sf=0; 
peso_ogg=0; 
  

 for i=1:t 
        sum_tmp=occ(i)*i+sum_tmp; 
        sum_sf=occ(i)+sum_sf; 
    end 
     
    media_sf=sum_tmp/sum_sf; 
    sum_tmp=0; 
     
    for j=t+1:256 
       sum_tmp=occ(j)*j+sum_tmp; 
       sum_ogg=occ(j)+sum_ogg; 
    end 
    media_ogg=sum_tmp/sum_ogg; 
     
    peso_sf=sum_sf/(sum_ogg+sum_sf); 
    peso_ogg=sum_ogg/(sum_ogg+sum_sf); 
     
    var=peso_sf*peso_ogg*(media_sf-media_ogg)^2; 
     
    if var>max 
        max=var; 
        soglia=t; 
    end 
     
end 



Illumination problem 



Local thresholding 

We can split the image in smaller ones, and thresholding locally the various portions. 

The final image is the collection of the 
smaller ones. 



Local thresholding 

Niblack algorithm used a local threshold 

k=-2 



Colour classification 



K-means classification 

To begin with, k-centre points (which define k clusters) are randomly initialized into 
a n-dimensional points space. Each unknown point is assigned to the closest centre 
point (thus to belong to the corresponding cluster), then the centre point positions 
are updated to be the mean of all points assigned to the cluster 

Original image 
Cluster after k-
means iterations 



Connected components 

5 labels 
4 - neighbourhood   8 - neighbourhood   



4 - neighbourhood   

Connected components 

9 clusters 



8 - neighbourhood   

Connected components 



The motivated student algorithm 

To compute the connected components of an image, we first (conceptually) 
split the image into horizontal runs of adjacent pixels, and then color the 
runs with unique labels, re-using the labels of vertically adjacent runs 
whenever possible. In a second phase, adjacent runs of different colors are 
then merged. 



The motivated student algorithm 

To compute the connected components of an image, we first (conceptually) 
split the image into horizontal runs of adjacent pixels, and then color the 
runs with unique labels, re-using the labels of vertically adjacent runs 
whenever possible. In a second phase, adjacent runs of different colors are 
then merged. 

1 1 1 1 1 1 

2 3 3 4 4 4 

5 6 6 7 7 7 

8 8 8 8 9 10 

11 11 11 12 12 13 

14 14 14 14 14 15 

16 17 20 23 26 29 

16 18 21 23 26 29 

16 18 21 23 26 29 

16 19 22 23 27 29 

16 19 22 24 27 29 

16 19 22 25 28 29 



The motivated student algorithm 

3 -18 6 -18 3 -21 6 -21 18 = 3 

3 -3 6 -3 3 -21 6 -21 6 = 3 

3 -3 3 -3 3 -21 3 -21 21 = 3 

3 -3 3 -3 3 -3 3 -3 No more merges required 



The motivated student algorithm 

1 1 1 1 1 1 

2 3 3 4 4 4 

5 3 3 7 7 7 

8 8 8 8 9 10 

11 11 11 12 12 13 

14 14 14 14 14 15 

16 17 20 23 26 29 

16 3 3 23 26 29 

16 3 3 23 26 29 

16 19 22 23 27 29 

16 19 22 24 27 29 

16 19 22 25 28 29 

9-27 12-27 12-24 

9-27 12-27 12-24 

9-9 12-9 12-24 

9-9 12-9 12-12 

9-9 9-9 9-9 



Graph-based segmentation 

Nodes vn 

Edge eq 



Graph-based segmentation 

Pedro F. Felzenszwalb, Daniel P. Huttenlocher, International Journal of Computer Vision , September 2004, 
Volume 59, Issue 2, pp 167-181 
 

http://link.springer.com/journal/11263
http://link.springer.com/journal/11263
http://link.springer.com/journal/11263


c1 c2 c3 

c4 c5 c6 

c7 c8 c9 

c1 c2 c3 

c4 c2 c6 

c7 c8 c9 

c1 c2 c2 

c4 c2 c6 

c7 c8 c9 

ev
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u
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u
at
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group group 



c1 c2 c2 

c2 c2 c2 

c2 c2 c9 

c1 c2 c3 

c4 c2 c6 

c7 c8 c3 

ev
al

u
at

e
 

Do nothing 

Final labelling  



Concise description: 

Bounding boxes 

umin umax 

vmin 

vmax 



Moments 

Where (p+q) is the order of the moment 

is the area of a region 

Centroid of the region is located in: 

Concise description: 



Central moments  µpq are computed with respect to the centroid 

Central moments are related to moments mpq by: 



By using a thin plate analogy we can write the inertia matrix: 

About axis parallel to u-v-axes and intersecting the 
centroid 

Computing eigenvalues λ1, λ2 , we can compute an equivalent ellipse 
from J: 

Principal axis with λ2 > λ1  

Eigenvectors 

Orientation 



Features invariance 

Some region features are invariant with respect to certain transformations. 

Translation Rotation Scale 

Area Y Y N 

Centroid N Y Y 

Aspect ratio Y Y Y 

Orientation Y N Y 

Circularity Y Y Y 

Hu moments Y Y Y 

With normalized moments: 



Boundary representation 

Chain code 4 direction Chain code 8 direction Crack code 

The region is described by the shape of its perimeter 

A chain code is a list of the outermost pixels linked by short line segments, with 
different orientations depending on the chain code used. 

Note that chain codes representations underestimate the actual perimeter. 

The crack code has its segment between the region and the pixels outside. 



Line features 

It transforms the original image in an accumulation matrix in the 
parameters plane. 
 
Every points that belong to the researched function (line, 
circle,. . . ) increase the accumulation value. 

Hough transformation 



Line in parameters plane 

  y = a · x + b → b = −xi · a + yi 

The linear function b = −xi · a + yi in the parameters plane 
represents all the linear functions that belong to the generic 
point (xi , yi ). 

Each point of the same function increase the accumulation (a’, b’). 



Polar parametrization 

• The line shown can be described by the function 

 

 and identified by the couple of parameters: 

   (a,b)=(-0.5,0.5) 

• or by the function  

 

• and identified by the couple: 

   (ρ,ϑ)=(0.447,1.107) 

 

y=ax+b 

        ρ = x cosϑ + y sin ϑ 



Transformation of the plane 



• In the image plane, one 
point is identified by the 
intersection of lines. 
 

• Each point P corresponds, 
in the parameter plane, to 
the curve given by the 
image points of the lines 
passing through P 
 



Transformation of a point 



Detection of a lines on the transformed plane 



Hough’s method with the polar representation of the 
line 

 = x cos  + y sin  



Hough’s algorithm 

1. Quantize the parameter space between appropriate 
minimum and maximum values 

2. Create an accumulation array with size equal to the number 
of parameters, initialized to 0 

3. For each edge in the image, increment of the element of the 
accumulation array corresponding to the parameter values 
of the curves on which the edge lays 

4. The local maxima in the accumulation array represent the 
parameter values of the curves that better approximate the 
boundary 



Example of accumulation matrix 



Example of the Hough’s method to a rectangle 



The problem of selecting the ‘right’ curves 







Tracking 

Matlab: Jtracking example 



Point features 

They are often called interest points, salient points, keypoints or corner points (even they not 
necessarily belong to corner of the image or the scene). 

Since interest points are quite distinct from the other points in a local neighbourhood, they can be 
reliably find in different views of the same scene. 

The maximum of the interest measure: 

Define the interest point. 



Point features 

Maravec detector is non-isotropic, so strong responses generate also from point on a 
line (which is not desired). 

To provide a rotationally invariant description of the neighbourhood and capturing the 
intensity structure, a symmetric 2x2 matrix is derived. This matrix is often referred to 
as structure tensor, auto-correlation matrix or second moment matrix. It form is the 
following: 



Common evaluations 

Shi- Tomasi 

Harris 

Noble 

Based on the auto-correlation matrix, it is possible to obtain different corner strength: 
the more common are reported hereafter.  



Corners by Harris 



Example use on tracking 

Code sample > 

test_tracker_lesson2015 



Optic flow 

The motion is a significant part of our visual process, and it is used for several 
purposes: 

 to recognize tridimensional shapes 
 to control the body by the oculomotor control 
 to organize perception 
 to recognize object 
 to predict actions 
 … 



A surface or object moving in the space projects in the image plane a bidimensional 
path of speeds, dx/dt and dy/dt that is often referred to as bidimensional motor field. 

The aim of the optic flow is to approximate the variation over time of the intensity 
levels of the image. 

Optic flow 



We consider that the intensity I of a pixel (x, y) at the instant t, moves to a neighbor 
pixel in the instant t+dt, thus:  

Expanding in Taylor serie: 

and taking as a reference (7) : 



This is the gradient constraint equation : 

That can be rewritten as: 

with 

Since the gradient constraint equation has two variables, it cannot be solved 
directly. This is called the aperture problem. 



Lucas-Kanade hypothesis 

To solve the aperture problem, they hypothesize: 
 the motion of the intensity of pixel among two subsequent frames is small 
 the motion in a small local neighbor of the pixel is constant 

 
This is equivalent to say that the optical flow is constant for each pixel centered in p, 
thus: 

Where q1, …, qn are pixel of the window centered in p and Ix,y,t are the derivative with 
respect to x,y,t 



By writing the equations in vectorial form A·v = b where: 

This system can be solved with the least square method: 



Bee-inspired navigation control 

The optic flow provides 
information for wall following 
and landing 

The difference is inversely proportional to 
the distance from an obstacle 

The absolute difference defines the 
turning behaviour 


