4.1

The Reactive Paradigm

Chapter Objectives:

Define what the reactive paradigm is in terms of i) the three primitives
SENSE, PLAN, and ACT, and ii) sensing organization.

List the characteristics of a reactive robotic system, and discuss the con-
notations surrounding the reactive paradigm.

Describe the two dominant methods for combining behaviors in a reactive
architecture: subsumption and potential field summation.

Evaluate subsumption and potential fields architectures in terms of: sup-
port for modularity, niche targetability, ease of portability to other domains, ro-
bustness.

Be able to program a behavior using a potential field methodology.

Be able to construct a new potential field from primitive potential fields,
and sum potential fields to generate an emergent behavior.

Overview

This chapter will concentrate on an overview of the reactive paradigm and
two representative architectures. The Reactive Paradigm emerged in the late
1980’s. The Reactive Paradigm is important to study for at least two reasons.
First, robotic systems in limited task domains are still being constructed us-
ing reactive architectures. Second, the Reactive Paradigm will form the basis
for the Hybrid Reactive-Deliberative Paradigm; everything covered here will
be used (and expanded on) by the systems in Ch. 7.

106

HORIZONTAL
DECOMPOSITION

VERTICAL
DECOMPOSITION

4 The Reactive Paradigm

Combine
Extract Features Plan Task Motor
Sensors Features into Tasks Execution Control Actuators
Model

SENSE

A

PLAN > ACT

Figure 41 Horizontal decomposition of tasks into the S,P,A organization of the Hi-
erarchical Paradigm.

The Reactive Paradigm grew out of dissatisfaction with the hierarchical
paradigm and with an influx of ideas from ethology. Although various reac-
tive systems may or may not strictly adhere to principles of biological intelli-
gence, they generally mimic some aspect of biology. The dissatisfaction with
the Hierarchical Paradigm was best summarized by Rodney Brooks,?” who
characterized those systems as having a horizontal decomposition as shown in
Fig. 4.1.

Instead, an examination of the ethological literature suggests that intelli-
gence is layered in a vertical decomposition, shown in Fig. 4.2. Under a ver-
tical decomposition, an agent starts with primitive survival behaviors and
evolves new layers of behaviors which either reuse the lower, older behav-
iors, inhibit the older behaviors, or create parallel tracks of more advanced
behaviors. The parallel tracks can be thought of layers, stacked vertically.
Each layer has access to sensors and actuators independently of any other
layers. If anything happens to an advanced behavior, the lower level be-
haviors would still operate. This return to a lower level mimics degradation
of autonomous functions in the brain. Functions in the brain stem (such as
breathing) continue independently of higher order functions (such as count-
ing, face recognition, task planning), allowing a person who has brain dam-
age from a car wreck to still breathe, etc.

Work by Arkin, Brooks, and Payton focused on defining behaviors and on
mechanisms for correctly handling situations when multiple behaviors are
active simultaneously. Brooks took an approach now known as subsumption
and built insect-like robots with behaviors captured in hardware circuitry.

4.1 Overview 107

build maps —\
explore ~
sensors / actuators
wander]
avoid collisions
SENSE [+ » ACT
SENSE [+ » ACT
SENSE [+ » ACT
SENSE [+ > ACT

Figure4.2 Vertical decomposition of tasks into an S-A organization, associated with
the Reactive Paradigm.

Arkin and Payton used a potential fields methodology, favoring software
implementations. Both approaches are equivalent. The Reactive Paradigm
was initially met with stiff resistance from traditional customers of robot-
ics, particularly the military and nuclear regulatory agencies. These users of
robotic technologies were uncomfortable with the imprecise way in which
discrete behaviors combine to form a rich emergent behavior. In particular,
reactive behaviors are not amenable to mathematical proofs showing they
are sufficient and correct for a task. In the end, the rapid execution times
associated with the reflexive behaviors led to its acceptance among users,
just as researchers shifted to the Hybrid paradigm in order to fully explore
layering of intelligence.

108

4.2

BEHAVIORS

SENSE-ACT
ORGANIZATION

BEHAVIOR-SPECIFIC
(LOCAL) SENSING

4 The Reactive Paradigm

The major theme of this chapter is that all reactive systems are composed
of behaviors, though the meaning of a behavior may be slightly different in
each reactive architecture. Behaviors can execute concurrently and/or se-
quentially. The two representative architectures, subsumption and potential
fields, are compared and contrasted using the same task as an example. This
chapter will concentrate on how architecture handles concurrent behaviors
to produce an emergent behavior, deferring sequencing to the next chapter.

Attributes of Reactive Paradigm

The fundamental attribute of the reactive paradigm is that all actions are
accomplished through behaviors. As in ethological systems, behaviors are a
direct mapping of sensory inputs to a pattern of motor actions that are then used
to achieve a task. From a mathematical perspective, behaviors are simply a
transfer function, transforming sensory inputs into actuator commands. For
the purposes of this book, a behavior will be treated as a schema, and will
consist of at least one motor schema and one perceptual schema. The mo-
tor schema contains the algorithm for generating the pattern of action in a
physical actuator and the perceptual schema contains the algorithm for ex-
tracting the percept and its strength. Keep in mind that few reactive robot
architectures describe their behaviors in terms of schemas. But in practice,
most behavioral implementations have recognizable motor and perceptual
routines, even though they are rarely referred to as schemas.

The Reactive Paradigm literally threw away the PLAN component of the
SENSE, PLAN, ACT triad, as shown in Fig. 4.3. The SENSE and ACT com-
ponents are tightly coupled into behaviors, and all robotic activities emerge
as the result of these behaviors operating either in sequence or concurrently.
The S-A organization does not specify how the behaviors are coordinated
and controlled; this is an important topic addressed by architectures.

Sensing in the Reactive Paradigm is local to each behavior, or behavior-
specific. Each behavior has its own dedicated sensing. In many cases, this is
implemented as one sensor and perceptual schema per behavior. But in other
cases, more than one behavior can take the same output from a sensor and
process it differently (via the behavior’s perceptual schema). One behavior
literally does not know what another behavior is doing or perceiving. Fig. 4.4
graphically shows the sensing style of the Reactive Paradigm.

Note that this is fundamentally opposite of the global world model used
in the hierarchical paradigm. Sensing is immediately available to the be-

4.2 Attributes of Reactive Paradigm 109

BEHAVIOR |

BEHAVIOR |

BEHAVIOR I

BEHAVIOR |

BEHAVIOR

F
v

SENSE ACT

Figure 4.3 S-A organization of the Reactive Paradigm into multiple, concurrent be-
haviors.

havior’s perceptual schema, which can do as little or as much processing
as needed to extract the relevant percept. If a computationally inexpensive
affordance is used, then the sensing portion of the behavior is nearly instan-
taneous and action is very rapid.

As can be seen from the previous chapter on the biological foundations of
the reactive paradigm, behaviors favor the use of affordances. In fact, Brooks
was fond of saying (loudly) at conferences, “we don’t need no stinking rep-
resentations.” It should be noted that often the perceptual schema portion of
the behavior has to use a behavior-specific representation or data structure
to substitute for specialized detectors capable of extracting affordances. For
example, extracting a red region in an image is non-trivial with a computer
compared with an animal seeing red. The point is that while a computer pro-
gram may have to have data structures in order to duplicate a simple neural
function, the behavior does not rely on any central representation built up
from all sensors.

In early implementations of the reactive paradigm, the idea of “one sensor,
one behavior” worked well. For more advanced behaviors, it became useful
to fuse the output of multiple sensors within one perceptual schema to have
increased precision or a better measure of the strength of the stimulus. This
type of sensor fusion is permitted within the reactive paradigm as long as
the fusion is local to the behavior. Sensor fusion will be detailed in Ch. 6.

110

4.21

4 The Reactive Paradigm

_behavior .
i | Perceptual [PPt | Motor |
il Schema | Schema [
_behavior
I | Perceptual [PeT®Pt | Motor |
=—p| Schema ”| Schema |!
behavior .. .
_>. Perceptual percept R Motor
‘| Schema ”| Schema |:

LT i iiiiiiemmemmeemeeoiiiiiiii A 2R 2

sensor 1 sensor 2 actuators

Figure4.4 Behavior-specific sensing organization in the Reactive Paradigm: sensing
is local, sensors can be shared, and sensors can be fused locally by a behavior.

Characteristics and connotations of reactive behaviors

As seen earlier, a reactive robotic system decomposes functionality into be-
haviors, which tightly couple perception to action without the use of inter-
vening abstract (global) representations. This is a broad, vague definition.
Over the years, the reactive paradigm has acquired several connotations and
characteristics from the way practitioners have used the paradigm.

The primary connotation of a reactive robotic system is that it executes
rapidly. The tight coupling of sensing and acting permits robots to oper-
ate in real-time, moving at speeds of 1-2 cm per second. Behaviors can be
implemented directly in hardware as circuits, or with low computational
complexity algorithms (O(n)). This means that behaviors execute quickly re-
gardless of the processor. Behaviors execute not only fast in their own right,
they are particularly fast when compared to the execution times of Shakey
and the Stanford Cart. A secondary connotation is that reactive robotic sys-
tems have no memory, limiting reactive behaviors to what biologists would
call pure stimulus-response reflexes. In practice, many behaviors exhibit a

SITUATED AGENT

ECOLOGICAL ROBOTICS

EGO-CENTRIC

4.2 Attributes of Reactive Paradigm 111

fixed-action pattern type of response, where the behavior persists for a short
period of time without the direct presence of the stimulus. The main point is
that behaviors are controlled by what is happening in the world, duplicating
the spirit of innate releasing mechanisms, rather than by the program stor-
ing and remembering what the robot did last. The examples in the chapter
emphasize this point.

The five characteristics of almost all architectures that follow the Reactive
Paradigm are:

1. Robots are situated agents operating in an ecological niche. As seen earlier in
Part I, situated agent means that the robot is an integral part of the world. A
robot has its own goals and intentions. When a robot acts, it changes the
world, and receives immediate feedback about the world through sens-
ing. What the robot senses affects its goals and how it attempts to meet
them, generating a new cycle of actions. Notice that situatedness is de-
fined by Neisser’s Action-Perception Cycle. Likewise, the goals of a robot,
the world it operates in, and how it can perceive the world form the eco-
logical niche of the robot. To emphasize this, many robotic researchers say
they are working on ecological robotics.

2. Behaviors serve as the basic building blocks for robotic actions, and the overall
behavior of the robot is emergent. Behaviors are independent, computational
entities and operate concurrently. The overall behavior is emergent: there
is no explicit “controller” module which determines what will be done, or
functions which call other functions. There may be a coordinated control
program in the schema of a behavior, but there is no external controller
of all behaviors for a task. As with animals, the “intelligence” of the ro-
bot is in the eye of the beholder, rather than in a specific section of code.
Since the overall behavior of a reactive robot emerges from the way its
individual behaviors interact, the major differences between reactive ar-
chitectures is usually the specific mechanism for interaction. Recall from
Chapter 3 that these mechanisms include combination, suppression, and
cancellation.

3. Only local, behavior-specific sensing is permitted. The use of explicit abstract
representational knowledge in perceptual processing, even though it is
behavior-specific, is avoided. Any sensing which does require represen-
tation is expressed in ego-centric (robot-centric) coordinates. For example,
consider obstacle avoidance. An ego-centric representation means that it
does not matter that an obstacle is in the world at coordinates (x,y,z), only

112

4.2.2

LOW COUPLING
HIGH COHESION

4 The Reactive Paradigm

where it is relative to the robot. Sensor data, with the exception of GPS, is
inherently ego-centric (e.g., a range finder returns a distance to the nearest
object from the transducer), so this eliminates unnecessary processing to
create a world model, then extract the position of obstacles relative to the
robot.

4. These systems inherently follow good software design principles. The modular-
ity of these behaviors supports the decomposition of a task into compo-
nent behaviors. The behaviors are tested independently, and behaviors
may be assembled from primitive behaviors.

5. Animal models of behavior are often cited as a basis for these systems or a par-
ticular behavior. Unlike in the early days of Al robotics, where there was a
conscious effort to not mimic biological intelligence, it is very acceptable
under the reactive paradigm to use animals as a motivation for a collection
of behaviors.

Advantages of programming by behavior

Constructing a robotic system under the Reactive Paradigm is often referred
to as programming by behavior, since the fundamental component of any
implementation is a behavior. Programming by behavior has a number of
advantages, most of them consistent with good software engineering princi-
ples. Behaviors are inherently modular and easy to test in isolation from the
system (i.e., they support unit testing). Behaviors also support incremental
expansion of the capabilities of a robot. A robot becomes more intelligent by
having more behaviors. The behavioral decomposition results in an imple-
mentation that works in real-time and is usually computationally inexpen-
sive. Although we’ll see that sometimes duplicating specialized detectors
(like optic flow) is slow. If the behaviors are implemented poorly, then a re-
active implementation can be slow. But generally, the reaction speeds of a
reactive robot are equivalent to stimulus-response times in animals.
Behaviors support good software engineering principles through decom-
position, modularity and incremental testing. If programmed with as high
a degree of independence (also called low coupling) as possible, and high co-
hesion, the designer can build up libraries of easy to understand, maintain,
and reuse modules that minimize side effects. Low coupling means that the
modules can function independently of each other with minimal connections
or interfaces, promoting easy reuse. Cohesion means that the data and op-
erations contained by a module relate only to the purpose of that module.

4.2.3

RULE ENCODING

4.3

4.3 Subsumption Architecture 113

Higher cohesion is associated with modules that do one thing well, like the
SQRT function in C. The examples in Sec. 4.3 and 4.4 attempt to illustrate the
choices a designer has in engineering the behavioral software of a robot.

Representative architectures

In order to implement a reactive system, the designer must identify the set
of behaviors necessary for the task. The behaviors can either be new or use
existing behaviors. The overall action of the robot emerges from multiple,
concurrent behaviors. Therefore a reactive architecture must provide mecha-
nisms for 1) triggering behaviors and 2) for determining what happens when
multiple behaviors are active at the same time. Another distinguishing fea-
ture between reactive architectures is how they define a behavior and any
special use of terminology. Keep in mind that the definitions presented in
Sec. 4.2 are a generalization of the trends in reactive systems, and do not
necessarily have counterparts in all architectures.

There are many architectures which fit in the Reactive Paradigm. The two
best known and most formalized are the subsumption and potential field
methodologies. Subsumption refers to how behaviors are combined. Poten-
tial Field Methodologies require behaviors to be implemented as potential
fields, and the behaviors are combined by summation of the fields. A third
style of reactive architecture which is popular in Europe and Japan is rule
encoding, where the motor schema component of behaviors and the com-
bination mechanism are implemented as logical rules. The rules for com-
bining behaviors are often ad hoc, and so will not be covered in this book.
Other methods for combining behaviors exist, including fuzzy methods and
winner-take-all voting, but these tend to be implementation details rather
than an over-arching architecture.

Subsumption Architecture

Rodney Brooks’ subsumption architecture is the most influential of the purely
Reactive Paradigm systems. Part of the influence stems from the publicity
surrounding the very naturalistic robots built with subsumption. As seen
in Fig. 4.5, these robots actually looked like shoe-box sized insects, with
six legs and antennae. In many implementations, the behaviors are em-
bedded directly in the hardware or on small micro-processors, allowing the
robots to have all on-board computing (this was unheard of in the processor-
impoverished mid-1980’s). Furthermore, the robots were the first to be able

114

LAYERS OF
COMPETENCE

4 The Reactive Paradigm

Figure 4.5 “Veteran” robots of the MIT Al Laboratory using the subsumption archi-
tecture. (Photograph courtesy of the MIT Artificial Intelligence Laboratory.)

to walk, avoid collisions, and climb over obstacles without the “move-think-
move-think” pauses of Shakey.

The term “behavior” in the subsumption architecture has a less precise
meaning than in other architectures. A behavior is a network of sensing and
acting modules which accomplish a task. The modules are augmented finite
state machines AFSM, or finite state machines which have registers, timers,
and other enhancements to permit them to be interfaced with other modules.
An AFSM is equivalent to the interface between the schemas and the coor-
dinated control strategy in a behavioral schema. In terms of schema theory,
a subsumption behavior is actually a collection of one or more schemas into
an abstract behavior.

Behaviors are released in a stimulus-response way, without an external
program explicitly coordinating and controlling them. Four interesting as-
pects of subsumption in terms of releasing and control are:

1. Modules are grouped into layers of competence. The layers reflect a hi-
erarchy of intelligence, or competence. Lower layers encapsulate basic
survival functions such as avoiding collisions, while higher levels create

LAYERS CAN SUBSUME
LOWER LAYERS

NO INTERNAL STATE

TASKABLE

4.3.1

LEVEL 0: AvOoID

POLAR PLOT

4.3 Subsumption Architecture 115

more goal-directed actions such as mapping. Each of the layers can be
viewed as an abstract behavior for a particular task.

2. Modules in a higher layer can override, or subsume, the output from be-
haviors in the next lower layer. The behavioral layers operate concur-
rently and independently, so there needs to be a mechanism to handle
potential conflicts. The solution in subsumption is a type of winner-take-
all, where the winner is always the higher layer.

3. The use of internal state is avoided. Internal state in this case means any
type of local, persistent representation which represents the state of the
world, or a model. Because the robot is a situated agent, most of its in-
formation should come directly from the world. If the robot depends on
an internal representation, what it believes may begin to dangerously di-
verge from reality. Some internal state is needed for releasing behaviors
like being scared or hungry, but good behavioral designs minimize this.

4. A task is accomplished by activating the appropriate layer, which then
activates the lower layers below it, and so on. However, in practice, sub-
sumption style systems are not easily taskable, that is, they can’t be ordered
to do another task without being reprogrammed.

Example

These aspects are best illustrated by an example, extensively modified from
Brooks’ original paper? in order to be consistent with schema theory termi-
nology and to facilitate comparison with a potential fields methodology. A
robot capable of moving forward while not colliding with anything could be
represented with a single layer, Level 0. In this example, the robot has mul-
tiple sonars (or other range sensors), each pointing in a different direction,
and two actuators, one for driving forward and one for turning.

Following Fig. 4.6, the SONAR module reads the sonar ranges, does any
filtering of noise, and produces a polar plot. A polar plot represents the range
readings in polar coordinates, (r,§), surrounding the robot. As shown in
Fig. 4.7, the polar plot can be “unwound.”

If the range reading for the sonar facing dead ahead is below a certain
threshold, the COLLIDE module declares a collision and sends the halt signal
to the FORWARD drive actuator. If the robot was moving forward, it now
stops. Meanwhile, the FEELFORCE module is receiving the same polar plot.
It treats each sonar reading as a repulsive force, which can be represented

116

4 The Reactive Paradigm

FEEL RUN
* FORCE > AWAY —>1 TURN
force heading | 1‘
SONAR:; T z Zf?r heading encoders
\ 4
.| COLLIDE »//FORWARD/
halt

Figure 4.6 Level 0 in the subsumption architecture.

0
gq
6 £
N
V
[<Yo)
N
S | ‘
01 2 3 4 5 6 17
sonar number
a b.

Figure 4.7 Polar plot of eight sonar range readings: a.) “robo-centric” view of range
readings along acoustic axes, and b.) unrolled into a plot.

as a vector. Recall that a vector is a mathematical construct that consists of
a magnitude and a direction. FEELFORCE can be thought of as summing
the vectors from each of the sonar readings. This results in a new vector.
The repulsive vector is then passed to the TURN module. The TURN module
splits off the direction to turn and passes that to the steering actuators. TURN
also passes the vector to the FORWARD module, which uses the magnitude of
the vector to determine the magnitude of the next forward motion (how far
or how fast). So the robot turns and moves a short distance away from the
obstacle.

The observable behavior is that the robot will sit still if it is in an unoccu-
pied space, until an obstacle comes near it. If the obstacle is on one side of

4.3 Subsumption Architecture 117

behavior
sonxmE=—sd RUN AWAY TURN
\‘ (steering
SONAR2 —¥] motor)
+

—>
SONAR3 behavior FORWARD

— (drive
SONAR4 / motor)

e COLLIDE

Figure 4.8 Level 0 recast as primitive behaviors.

the robot, the robot will turn 180° the other way and move forward; essen-
tially, it runs away. This allows a person to herd the robot around. The robot
can react to an obstacle if the obstacle (or robot) is motionless or moving; the
response is computed at each sensor update.

However, if part of the obstacle, or another obstacle, is dead ahead (some-
one tries to herd the robot into a wall), the robot will stop, then apply the
results of RUNAWAY. So it will stop, turn and begin to move forward again.
Stopping prevents the robot from side-swiping the obstacle while it is turn-
ing and moving forward. Level 0 shows how a fairly complex set of actions
can emerge from very simple modules.

It is helpful to recast the subsumption architecture in the terms used in this
book, as shown in Fig. 4.8. Note how this looks like the vertical decompo-
sition in Fig. 4.2: the sensor data flows through the concurrent behaviors to
the actuators, and the independent behaviors cause the robot to do the right
thing. The SONAR module would be considered a global interface to the sen-
sors, while the TURN and FORWARD modules would be considered part of
the actuators (an interface). For the purposes of this book, a behavior must
consist of a perceptual schema and a motor schema. Perceptual schemas are
connected to a sensor, while motor schemas are connected to actuators. For
Level 0, the perceptual schemas would be contained in the FEELFORCE and
COLLIDE modules. The motor schemas are RUNAWAY and COLLIDE mod-
ules. COLLIDE combines both perceptual processing (extracts the vector for
the sonar facing directly ahead) and the pattern of action (halt if there is a

118

LEVEL 1: WANDER

4 The Reactive Paradigm

heading R
WANDER | AvoID
> modified
force heading
FEEL RUN
7| FORCE [~ "] AWAY —(&—/TURN
orce
heading | T
SONAR/— P olar heading encoders
plot
A
| COLLIDE »/"FORWARD

halt

Figure 4.9 Level1: wander.

reading). The primitive behaviors reflect the two paths through the layer.
One might be called the runaway behavior and the other the collide behav-
ior. Together, the two behaviors create a rich obstacle avoidance behavior, or
a layer of competence.

It should also be noticed that the behaviors used direct perception, or af-
fordances. The presence of a range reading indicated there was an obstacle;
the robot did not have to know what the obstacle was.

Consider building a robot which actually wandered around instead of sit-
ting motionless, but was still able to avoid obstacles. Under subsumption, a
second layer of competence (Level 1) would be added, shown in Fig. 4.9. In
this case, Level 1 consists of a WANDER module which computes a random
heading every n seconds. The random heading can be thought of as a vector.
It needs to pass this heading to the TURN and FORWARD modules. But it can’t
be passed to the TURN module directly. That would sacrifice obstacle avoid-
ance, because TURN only accepts one input. One solution is to add another
module in Level 1, AVOID, which combines the FEELFORCE vector with the
WANDER vector. Adding a new avoid module offers an opportunity to create
a more sophisticated response to obstacles. AVOID combines the direction of
the force of avoidance with the desired heading. This results in the actual
heading being mostly in the right direction rather than having the robot turn

INHIBITION

SUPPRESSION

4.3 Subsumption Architecture 119

safe heading

SONAR1—P TUR.N
(steering
SONAR2 —¥] motor)
RUN AWAY
— [RUN AWAY |
SONARS FORWARD

SONAR4 —>] (drive
/ motor)
COLLIDE T

Figure 410 Level 1 recast as primitive behaviors.

around and lose forward progress. (Notice also that the AVOID module was
able to “eavesdrop” on components of the next lower layer.) The heading
output from AVOID has the same representation as the output of RUNAWAY,
so TURN can accept from either source.

The issue now appears to be when to accept the heading vector from which
layer. Subsumption makes it simple: the output from the higher level sub-
sumes the output from the lower level. Subsumption is done in one of two
ways:

1. inhibition. In inhibition, the output of the subsuming module is connected
to the output of another module. If the output of the subsuming module
is “on” or has any value, the output of the subsumed module is blocked
or turned “off.” Inhibition acts like a faucet, turning an output stream on
and off.

2. suppression. In suppression, the output of of the subsuming module is
connected to the input of another module. If the output of the subsum-
ing module is on, it replaces the normal input to the subsumed module.
Suppression acts like a switch, swapping one input stream for another.

In this case, the AVOID module suppresses (marked in the diagram with
a 8) the output from RUNAWAY. RUNAWAY is still executing, but its output
doesn’t go anywhere. Instead, the output from AVOID goes to TURN.

120

LEVEL 2: FOLLOW
CORRIDORS

4 The Reactive Paradigm

The use of layers and subsumption allows new layers to be built on top
of less competent layers, without modifying the lower layers. This is good
software engineering, facilitating modularity and simplifying testing. It also
adds some robustness in that if something should disable the Level 1 behav-
iors, Level 0 might remain intact. The robot would at least be able to preserve
its self-defense mechanism of fleeing from approaching obstacles.

Fig. 4.10 shows Level 1 recast as behaviors. Note that FEELFORCE was
used by both RUNAWAY and AVOID. FEELFORCE is the perceptual component
(or schema) of both behaviors, with the AVOID and RUNAWAY modules being
the motor component (or schema). As is often the case, behaviors are usu-
ally named after the observable action. This means that the behavior (which
consists of perception and action) and the action component have the same
name. The figure does not show that the AVOID and RUNAWAY behaviors
share the same FEELFORCE perceptual schema. As will be seen in the next
chapter, the object-oriented properties of schema theory facilitate the reuse
and sharing of perceptual and motor components.

Now consider adding a third layer to permit the robot to move down cor-
ridors, as shown in Fig. 4.11. (The third layer in Brooks’ original paper is
“explore,” because he was considering a mapping task.) The LOOK mod-
ule examines the sonar polar plot and identifies a corridor. (Note that this
is another example of behaviors sharing the same sensor data but using it
locally for different purposes.) Because identifying a corridor is more com-
putationally expensive than just extracting range data, LOOK may take longer
to run than behaviors at lower levels. LOOK passes the vector representing
the direction to the middle of the corridor to the STAYINMIDDLE module.
STAYINMIDDLE subsumes the WANDER module and delivers its output to
the AVOID module which can then swerve around obstacles.

But how does the robot get back on course if the LOOK module has not
computed a new direction? In this case, the INTEGRATE module has been
observing the robots actual motions from shaft encoders in the actuators.
This gives an estimate of how far off course the robot has traveled since the
last update by LOOK. STAYINMIDDLE can use the dead reckoning data with
the intended course to compute the new course vector. It serves to fill in
the gaps in mismatches between updates rates of the different modules. No-
tice that LOOK and STAYINMIDDLE are quite sophisticated from a software
perspective.

INTEGRATE is an example of a module which is supplying a dangerous
internal state: it is actually substituting for feedback from the real world. If
for some reason, the LOOK module never updates, then the robot could op-

4.3.2

4.3 Subsumption Architecture 121

STAYIN distance, direction traveled INTEGRAT
LOOK —> MIDDLE
corridor
b heading
to middle
WANDER C AVOID
> modified
force heading
FEEL RUN
FORCE [~ away —(&—TUBN 71—
orce
heading | T
SONAR:T ﬁ%?r heading encoders
COLLIDE FORWARD//

halt

Figure 411 Level 2: follow corridors.

erate without any sensor data forever. Or at least until it crashed! Therefore,
subsumption style systems include time constants on suppression and inhi-
bition. If the suppression from STAYINMIDDLE ran for longer than n seconds
with out a new update, the suppression would cease. The robot would then
begin to wander, and hopefully whatever problem (like the corridor being
totally blocked) that had led to the loss of signal would fix itself.

Of course, a new problem is how does the robot know that it hasn’t started
going down the hallway it just came up? Answer: it doesn’t. The design
assumes that that a corridor will always be present in the robot’s ecological
niche. If it’s not, the robot does not behave as intended. This is an example
of the connotation that reactive systems are “memory-less.”

Subsumption summary

To summarize subsumption:

¢ Subsumption has a loose definition of behavior as a tight coupling of sens-
ing and acting. Although it is not a schema-theoretic architecture, it can

122

44

4 The Reactive Paradigm

be described in those terms. It groups schema-like modules into layers of
competence, or abstract behaviors.

e Higher layers may subsume and inhibit behaviors in lower layers, but be-
haviors in lower layers are never rewritten or replaced. From a program-
ming standpoint, this may seem strange. However, it mimics biological
evolution. Recall that the fleeing behavior in frogs (Ch. 3) was actually the
result of two behaviors, one which always moved toward moving objects
and the other which actually suppressed that behavior when the object
was large.

o The design of layers and component behaviors for a subsumption imple-
mentation, as with all behavioral design, is hard; it is more of an art than
a science. This is also true for all reactive architectures.

o There is nothing resembling a STRIPS-like plan in subsumption. Instead,
behaviors are released by the presence of stimulus in the environment.

e Subsumption solves the frame problem by eliminating the need to model
the world. It also doesn’t have to worry about the open world being
non-monotonic and having some sort of truth maintenance mechanism,
because the behaviors do not remember the past. There may be some
perceptual persistence leading to a fixed-action pattern type of behavior
(e.g., corridor following), but there is no mechanism which monitors for
changes in the environment. The behaviors simply respond to whatever
stimulus is in the environment.

o Perception is largely direct, using affordances. The releaser for a behavior
is almost always the percept for guiding the motor schema.

e Perception is ego-centric and distributed. In the wander (layer 2) exam-
ple, the sonar polar plot was relative to the robot. A new polar plot was
created with each update of the sensors. The polar plot was also avail-
able to any process which needed it (shared global memory), allowing
user modules to be distributed. Output from perceptual schemas can be
shared with other layers.

Potential Fields Methodologies

Another style of reactive architecture is based on potential fields. The spe-
cific architectures that use some type of potential fields are too numerous to

