[Ex. 1] (1st mid-term / regular exam)
Suppose one wants to insert some measure of efficiency in the operational semantics of IMP.

1. Redefine the operational semantics of IMP commands in such a way that the transition predicate takes the form

\[\langle c, \sigma \rangle \xrightarrow{n} \sigma' \]

with the meaning that “the command \(c \), when executed in the state \(\sigma \) converges to the state \(\sigma' \) by evaluating exactly \(n \) boolean guards.”

2. Prove by rule induction that for all \(c, \sigma, \sigma' \):

\[\langle c, \sigma \rangle \rightarrow \sigma' \Rightarrow \exists n \in \mathbb{N}. \langle c, \sigma \rangle \xrightarrow{n} \sigma'. \]

[Ex. 2] (1st mid-term / regular exam)
Consider the CPO \((\wp(\mathbb{N}), \subseteq) \) and the function \(f : \wp(\mathbb{N}) \rightarrow \wp(\mathbb{N}) \) defined by:

\[f(X) \overset{\text{def}}{=} \{ y \in \mathbb{N} | \exists a, b \in X. a \leq y \leq b \} \]

1. Prove that \(f \) is monotone.

2. Prove that \(f \) is continuous.

[Ex. 3] (1st mid-term)
Let us call a repetition any list where the same value occurs in all positions of the list. Write a Haskell function \texttt{decompose} that takes a list \(\texttt{xs} \) and returns the list of repetitions in \(\texttt{xs} \). For example, \texttt{decompose [1,1,1,2,2,2,1,1,3]} must return the list \([[1,1,1], [2,2,2], [1,1], [3]]\).

[Ex. 4] (1st mid-term)
Consider the HOFL terms

\[t \overset{\text{def}}{=} \text{rec } f. \lambda x. \text{if } x \text{ then } (x - 1, f (x - 1)) \text{ else } (x + 1, f (x + 1)) \]
\[s \overset{\text{def}}{=} \text{rec } g. \lambda y. \text{if } y \text{ then } g (y - 1) \text{ else } (y + 1, \text{fst}(g (y + 1))) \]

1. Find the principal type of \(t \), if it exists.

2. Find the principal type of \(s \), if it exists.