Principles of software composition 2017/18
 Mid-term exam - April 5, 2018

[Ex. 1] Let us extend the syntax of arithmetic expressions with the term a^{\times}, whose operational semantics is defined by the rules

$$
\frac{\langle a, \sigma\rangle \rightarrow n}{\left\langle a^{\times}, \sigma\right\rangle \rightarrow n} \quad \frac{\langle a, \sigma\rangle \rightarrow n \quad\left\langle a^{\times}, \sigma\right\rangle \rightarrow m}{\left\langle a^{\times}, \sigma\right\rangle \rightarrow n \times m}
$$

1. Prove termination of extended expressions by structural induction.
2. Prove by rule induction that $\forall \sigma, n . P\left(\left\langle 1^{\times}, \sigma\right\rangle \rightarrow n\right)$, where

$$
P\left(\left\langle 1^{\times}, \sigma\right\rangle \rightarrow n\right) \stackrel{\text { def }}{=} n=1
$$

[Ex. 2] Let w be the command:

$$
w \stackrel{\text { def }}{=} \text { while } x \times x=y \text { do }(x:=x \times x ; y:=x \times y)
$$

Find the set of memories S such that $\forall \sigma \in S .\langle w, \sigma\rangle \nrightarrow$.
[Ex. 3] Let (D, \preceq) be the CPO with bottom such that $D=\mathbb{N} \cup\left\{\infty_{1}, \infty_{2}\right\}$ and $\preceq \cap(\mathbb{N} \times \mathbb{N})=\leq, \infty_{2}$ is the top element and $x \preceq \infty_{1}$ iff $x \neq \infty_{2}$.

1. Consider the function succ : $D \rightarrow D$ such that $\forall n \in \mathbb{N} . \operatorname{succ}(n)=n+1$ and $\operatorname{succ}\left(\infty_{1}\right)=\operatorname{succ}\left(\infty_{2}\right)=\infty_{2}$.
Prove that the function succ is monotone but not continuous.
2. [Optional] Let $\left\{d_{i}\right\}_{i \in \mathbb{N}}$ be a chain.

Prove that if $\bigsqcup_{i \in \mathbb{N}} d_{i}=\infty_{2}$ then the chain is finite.
Hint: Note that if ∞_{1} or ∞_{2} belong to the chain then it is finite.
[Ex. 4] Let Pf be the domain of partial functions over positive natural numbers (ordered as usual and whose bottom element $\perp_{\mathbf{P f}}$ is the always undefined function). Let $\Gamma: \mathbf{P f} \rightarrow \mathbf{P f}$ the continuous function defined by

$$
\Gamma \stackrel{\text { def }}{=} \lambda \varphi . \lambda m .(m=1) \rightarrow 2,2 m+\varphi(m-1) .
$$

Take $\varphi_{n} \stackrel{\text { def }}{=} \Gamma^{n}\left(\perp_{\mathbf{P f}}\right)$ and $f \stackrel{\text { def }}{=}$ fix $\Gamma=\bigsqcup_{n \in \mathbb{N}} \varphi_{n}$.
Prove that $\forall n>0 . \varphi_{n}(n)=n(n+1)$ to conclude that $\forall n>0 . f(n)=n(n+1)$.
[Ex. 5] Consider the Haskell types Arc $a=(a, a)$, Graph $a=[\operatorname{Arc} a]$ and Nodes $a=[a]$. Implement a function

$$
\text { nodes :: }(\operatorname{Eq} a) \Rightarrow \operatorname{Graph} a \rightarrow \text { Nodes } a
$$

that returns the list of nodes of a graph, without repetead elements.

