Principles of software composition 2017/18

Mid-term exam – April 5, 2018

[Ex. 1] Let us extend the syntax of arithmetic expressions with the term a^{\times} , whose operational semantics is defined by the rules

$$\frac{\langle a, \sigma \rangle \to n}{\langle a^{\times}, \sigma \rangle \to n} \qquad \frac{\langle a, \sigma \rangle \to n \quad \langle a^{\times}, \sigma \rangle \to m}{\langle a^{\times}, \sigma \rangle \to n \times m}$$

- 1. Prove termination of extended expressions by structural induction.
- 2. Prove by rule induction that $\forall \sigma, n. \ P(\langle 1^{\times}, \sigma \rangle \to n)$, where

$$P(\langle 1^{\times}, \sigma \rangle \to n) \stackrel{\text{\tiny def}}{=} n = 1$$

[Ex. 2] Let w be the command:

$$w \stackrel{\text{\tiny def}}{=} \mathbf{while} \ x \times x = y \ \mathbf{do} \ (x := x \times x \ ; \ y := x \times y)$$

Find the set of memories S such that $\forall \sigma \in S. \langle w, \sigma \rangle \not\rightarrow$.

[Ex. 3] Let (D, \preceq) be the CPO with bottom such that $D = \mathbb{N} \cup \{\infty_1, \infty_2\}$ and $\leq \cap (\mathbb{N} \times \mathbb{N}) = \leq$, ∞_2 is the top element and $x \leq \infty_1$ iff $x \neq \infty_2$.

- 1. Consider the function $succ: D \to D$ such that $\forall n \in \mathbb{N}. succ(n) = n+1$ and $succ(\infty_1) = succ(\infty_2) = \infty_2$. Prove that the function *succ* is monotone but not continuous.
- 2. [Optional] Let $\{d_i\}_{i \in \mathbb{N}}$ be a chain. Prove that if $\bigsqcup_{i \in \mathbb{N}} d_i = \infty_2$ then the chain is finite. *Hint:* Note that if ∞_1 or ∞_2 belong to the chain then it is finite.

[Ex. 4] Let **Pf** be the domain of partial functions over positive natural numbers (ordered as usual and whose bottom element $\perp_{\mathbf{Pf}}$ is the always undefined function). Let $\Gamma : \mathbf{Pf} \to \mathbf{Pf}$ the continuous function defined by

$$\Gamma \stackrel{\text{\tiny def}}{=} \lambda \varphi. \ \lambda m. \ (m=1) \to 2, \ 2m + \varphi(m-1).$$

Take $\varphi_n \stackrel{\text{\tiny def}}{=} \Gamma^n(\perp_{\mathbf{Pf}})$ and $f \stackrel{\text{\tiny def}}{=} \text{fix } \Gamma = \bigsqcup_{n \in \mathbb{N}} \varphi_n$. Prove that $\forall n > 0$. $\varphi_n(n) = n(n+1)$ to conclude that $\forall n > 0$. f(n) = n(n+1).

[Ex. 5] Consider the Haskell types Arc a = (a, a), Graph a = [Arc a] and Nodes a = [a]. Implement a function

nodes :: (Eq
$$a$$
) \Rightarrow Graph $a \rightarrow$ Nodes a

that returns the list of nodes of a graph, without repetead elements.