PSC 2022/23 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http:// www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start

19 - Hennessy-Milner Logic

http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

P, q

CCS syntax

;= nil iInactive process
x process variable (for recursion)
p-p action prefix
p\& restricted channel
p|9] channel relabelling
p+q nondeterministic choice (sum)
plq parallel composition
rec x. p recursion

(operators are listed in order of precedence)

CCS op. semantics

pq g {a,al P q
P\a = g\a plg] 2 qlg)

Act) Res)

7
p.p—p

A A v
1 P1—>41 P2 — QG2 P2 — g2

q Com) - ParR) 7
q1|p2 p1lpe — q1lqe p1lpe — p1lge

p[rec x. p/a:] ﬁ q

recx.pﬁq

3

Rec)

HML
Hennessy-Milner Logic

From your forms

® Sstelle ® 4stelle © 3stelle @ 2stelle @ 1stella

Modal and temporal logics

(over 15 answers)

Logical equivalence

Let us take another approach to equivalence

we define some logic (set of formulas)
a process may or may not satisfy a formula
two processes are (logically) equivalent
when they satisfy exactly the same formulas

formulas must describe behavioural properties of processes

the ability / inability to perform transitions
(modal logic: possibly, necessarily)

then, we can compose formulas with usual operators

Hennessy-Milner Logic

We present the core operators

multi-modal:
modal operators are parameterised by actions

no negation:
the converse of a formula can also be written as a formula

NO recursion:
each formula express properties about finite steps ahead

denotational semantics of a formula (postponed):
set of processes that satisfy the formula

F,G

HML: syntax

tt true

ff false

N;,e; Fi conjunction

Vier Fi disjunction

O F diamond operator (i
W F box operator L

L set of all formulas

)
|

F
F

HML: semantics

pE I reads “ p satisfies F*

defined inductively on the structure of the formula

p =tt any process satisfies true
(no process satisfies false)

pE \F iff Viel pEF, p satisfies all F;
€1

pE\F iff JicelpEF, p satisfies one of the F;
el

p can make one u-step

and then satisfy F

pECOF it I .p LAY EF

pEOF iff Vp.p5p =9 EF Fissatisfied after any
u-step of p

9

Examples

Ottt satisfied by any process that can make an a-step

gff satisfied by any process that cannot make a -step

& same as ff
if a process cannot do a the modality is missed
If a process can do a its continuation cannot satisfy ff

Btt same as tt
if a process cannot do B the modality holds trivially
If a process does f its continuation will satisfy tt

Ca(Cptt A O) satisfied by any process the can do a
and reach a process that can do G but not y

|0

Examples

Oatt

2O ptt

o (Cptt Vv O tt)

A (Optt A O tt)

?
I¢
7
p = <4 Bff AN g
7
7
7

Ou(Optt A O tt)

2
=R

QOO0

Negation

not present in the syntax, but not needed

any formula F has a converse formula Fc such that

F

Vp. p

iff p

£

Fc can be defined by structural induction

tt¢ = ff
(N\F) &\ Ff
1€1 1€1
(O F)°=0,F°

(Oatt)® = O, tt°

ffc = tt
(\/ F) & N\ Ff
1€1 el
(O,F) & O, F°

example

ot

12

(can do q)¢ = cannot do a

Extended syntax

A= {:uh ey :un}

OopF 2 fF o F = tt

HML: logical equivalence

two processes are equivalent iff they satisfy the same formulas

P =HM (¢

7N

ifft VF eL. (p

F 2 30,(0ptt A, tt

p

Al

?
—HM (¢

Q

SV

| 4

— " & ¢

:F)

7N

+fE)

N A
) q = F

q

_ [c

Strong bis as logic equiv

TH. for any finitely branching processes p,q
p~q it p=npmg

(proof omitted)

consequences.

to show that two processes are strong bisimilar:
exhibit a strong bisimulation relation that relates them

to show that two processes are not strong bisimilar:
exhibit a HML formula that distinguishes between them

+ Exercise

find a HML formula that distinguishes the two processes

Py — > nil Py # Ry Ry —" > il
i {7

P R,
o) ()

O .

Py=F F£30,0,0,tt Ry £ F

k Exercise

find a HML formula that distinguishes the two processes
p .
Py > nil Py % Qo Qo —-— nil

Py EF Féoa aatt QO#F

