PSC 2022/23 (375AA, 9CFU)
Principles for Software Composition

Roberto Bruni
http:// www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start

[8a - CCS abstract semantics

http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

CCS
Graph isomorphism

P, q

CCS syntax

;= nil iInactive process
x process variable (for recursion)
p-p action prefix
p\& restricted channel
p|9] channel relabelling
p+q nondeterministic choice (sum)
plq parallel composition
rec x. p recursion

(operators are listed in order of precedence)

CCS op. semantics

pq g {a,al P q
P\a = g\a plg] 2 qlg)

Act) Res)

7
p.p—p

A A v
1 P1—>41 P2 — QG2 P2 — g2

q Com) - ParR) 7
q1|p2 p1lpe — q1lqe p1lpe — p1lge

p[rec x. p/a:] ﬁ q

recx.pﬁq

4

Rec)

Isomorphic LTS

syntactically different processes
can exhibit exactly the same behaviour

nil nil\a nil¢ p p+nil p+p pnil
p+a q+p plq alp

their LTS are different (states syntactically different)

graph isomorphism abstracts away from states

Graph isomorphism

G=(V,FE) G'= (V' E")
0w e) 5 Fw) f:V—=V" bijective

- -
.....
. ~
--- -

‘‘‘‘‘‘‘‘‘‘
- = -)
.....
¢¢¢¢
~ - T

Q + ni
a + nil a+ « a|nil
O‘\L o Q0
(8%
nil v'l ; X
ni nil nil|nil

~
~
~
s)
-~ - h
-
------_—_— s - hh
i . —" e
-.-- _—‘ -
-~ -
-- -

Graph isomorphism

f:V —=V" bijective

- -

- S
* ~
-

5 5
Y Y
o) Y Y o

~
S e
~ o -
-~ -

- -

Graph isomorphism

f:V —=V" bijective

Graph isomorphism

Equivalent or not?

By B;| By
out out

By By | By Bs| By
out out

B Bi|B;

intuitively equivalent, but not isomorphic!

|0

Iso I1s too strict

If two processes have isomorphic LTS,
then they must be considered as equivalent

graph isomorphism captures some interesting equivalences

but is it enough?

P=aP Q= a.a.Q a.P
rec r. &.xr rec r. o..c..xr a.rec r. o.xr
O o o Qo
- Y
a.rec r. o.o.xr rec r. &.xr

@)

intuitively equivalent, but not isomorphic! -

CCS
Trace equivalence

Trace equivalence

In automata theory: language equivalence

notion of (finite) trace AL RN

P=1po = p1 — - 5 pp=gq

(finite) trace semantics of a process

T(p) = {papo - e | 3¢ p BLE2E5 @)

two processes are trace equivalent = q it T(p) = T
if they have the same trace semantics P=w ¢ iff T(p) (9)

IS trace equivalent a good notion for concurrent systems?

13

Trace equivalence

graph isomorphism implies trace equivalence

we preserves all the useful equivalences seen before
P =¢ p+nil =, p+p =, pnil

P+q =tr ¢t 0P

plg =t qlp

trace semantics is prefix closed
(if a trace is present, all its prefixes are also present)

| 4

Trace equivalence

rec r. o.xr rec r. ... ao.rec r. o.xr
U (87 (87 (87
. Y
ao.rec r. oo.o...r rec r. o.xr

@)

84

T (rec z. a.x) = {a" | n €N}
T(rec z. a.a.x) = {a™ | n € N}

T(a.rec z. a.x) = {a" | n € N}

Trace equivalence

B; B; | By
out out

B BB By B!
out out

B; By |Bj

2\ 1 pl tentative description:
T(B0) = T(BolBo) ' in - #out< 2 (for any prefix)

Two Vending Machines

coin.(coffee + tea) coin.coffee + coin.tea

coin.(coffee + tea) coin.coffee + coin.tea

, CoO1M con
coin

coffee + tea coffee

tea
coffee g)taz \ /
coffee tea
nil

not iIsomorphic, but trace equivalent

|7

Customer's view

which vending machine would you prefer?

coin.(coffee + tea)

coimn

Y
coffee + tea

coffee ()taz

insert a coin, then choose the drink

|18

Customer's view

which vending machine would you prefer?

coin.coffee + coin.tea

/ \
m /

insert a coin, then get the drink chosen by the machine

EQ

19

Recursive Machines

M., MY
My = coin. coffee. Mo +coin. tea. Mo

My
—T N tea

M = coin. (coffee. My + tea.M;) V/_\

M, My = Mo Mo > MY

con
coffee | coin tea coffee | coin
Y Y
/ /
M; M,

20

System View

M, = coin. (coffee. My + tea. M) M, %
—— —
My = Mo Ms = coin. coffee. Mo +coin. tea.Ms
C/
A ! X A :
C' = coin. coffee.C S = {coin, coffee, tea}

SCIMNS P=4Q Q2 (CIM)\S

1) TN ek

(C"|M{)\S (C"|M)\S (C"|MI\S

21

Coming next: bisimilarity
graph isomorphism distinguishes too many processes

trace equivalence identifies too many processes

we need some notion of equivalence in between the two

we introduce the notion of strong bisimilarity

as a game
as a fixpoint

as a logical equivalence

to keep in mind: two processes are equivalent unless we
have some good reasons to distinguish them

22

