PSC 2022/23 (375AA, 9CFU)

Principles for Software Composition

Roberto Bruni
http://www.di.unipi.it/~bruni/

http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

17a - CCS syntax & op. semantics
CCS
Calculus of Communicating Systems
Sequential vs concurrent
Concurrency

IMP/HOFL (sequential paradigms)
- determinacy
- any two non-terminating programs are equivalent

concurrent paradigms
- exhibit intrinsic nondeterminism to external observers
- nontermination can be a desirable feature (e.g. servers)
- not all nonterminating processes are equivalent
- interaction is a primary issue
- new notions of behaviour / equivalence are needed
CCS: basics

Process algebra
- focus on few primitive operators (essential features)
- concise syntax to construct and compose processes
- not a full-fledged programming language
- full computational power (Turing equivalent)

Communication
- binary, message-passing over channels

Structural Operational Semantics
- small-step style (Labelled Transition System)
- processes as states
- ongoing interactions as labels
- defined by inference rules
- defined by induction on the structure of processes
From your forms

(over 15 answers)
Labelled transitions

ongoing interaction with the environment (with other processes)

\[p \xrightarrow{\mu} q \]

- a process in its current state
- the process state after the interaction
- number of states/transitions can be infinite
Example: counter

\[A_0 \rightarrow \ldots \rightarrow A_n \overset{\text{val}}{\rightarrow} A_{n+1} \rightarrow \ldots \]

\[\overset{\text{inc}}{\rightarrow} \]

\[\overset{\text{reset}}{\rightarrow} \]

\[\text{Nil} \]

\[\overset{\text{stop}}{\rightarrow} \]
LTS: Labelled Transition System
CCS: states and labels

What is a process p?

- a sequential agent
- a system where many sequential agents interact

What is a label μ?

- an action (e.g. an output)
- a dual action (e.g. an input)
- an internal action (silent action)
 (no interaction with the environment)

send v on channel α

$\alpha!v$

receive v on channel α

$\alpha?v$

concluded communication

τ
We can be even more abstract than that without losing computational expressiveness.

We disregard communicated values (imagine there is a dedicated channel for each value).

\(\alpha!v \) becomes just \(\overline{\alpha}_v \) or just \(\overline{\alpha} \)

\(\alpha?v \) becomes just \(\alpha_v \) or just \(\alpha \)

\(\lambda \) denotes either \(\alpha \), \(\overline{\alpha} \)

\(\overline{\lambda} \) denotes its dual (assume \(\overline{\overline{\alpha}} = \alpha \))
CCS: communication

$p_1 | p_2 \xrightarrow{\tau} q_1 | q_2$

$p_1 \xrightarrow{\lambda} q_1$

$p_2 \xrightarrow{\bar{\lambda}} q_2$
Example: vending machine

Student ← [drink] HoldCup ← [coffee] Select

Tired

[study] coin

VendMach

coint

cappuccino

tea

Serve₁

Serve₂
CCS syntax
From your forms

(over 15 answers)
CCS: syntax

\(p, q ::= \text{nil} \) inactive process
\(x \) process variable (for recursion)
\(\mu.p \) action prefix
\(p\\setminus\alpha \) restricted channel
\(p[\phi] \) channel relabelling
\(p + q \) nondeterministic choice (sum)
\(p|q \) parallel composition
\(\text{rec } x. \ p \) recursion

(operators are listed in order of precedence)
CCS: syntax

\[p, q ::= \begin{align*}
\text{nil} \\
\begin{split}x \\
\mu.p \\
p\backslash\alpha \\
p[\phi] \\
p+q \\
p|q \\
\text{rec } x. p
\end{split}
\end{align*} \]

\textbf{rec } x. \textbf{coffee.}x + \textbf{tea.nil} | \textbf{water.nil}

to be read as

\textbf{rec } x. (((\textbf{coffee.}x) + \textbf{tea.nil}) | \textbf{water.nil})

(operators are listed in order of precedence)
CCS: syntax

the only binder is the recursion operator

\[\text{rec } x. \ p \]

the notion of free (process) variable is defined as usual

\[\text{fv}(p) \]

a process is called *closed* if it has no free variables

the notion of capture avoiding substitution is defined as usual

\[p[q/x] \]

processes are taken up-to alpha-renaming of bound vars

\[\text{rec } x. \ \text{coin}.x = \text{rec } y. \ \text{coin}.y \]
CCS operational semantics
CCS: labels

\[\mathcal{C} \] set of (input) actions, ranged by \(\alpha \)

\[\overline{\mathcal{C}} \] set of (output) co-actions, ranged by \(\overline{\alpha} \)

\[\Lambda = \mathcal{C} \cup \overline{\mathcal{C}} \] set of observable actions, ranged by \(\lambda \)

\[\tau \notin \Lambda \] a distinguished silent action

\[\mathcal{L} = \Lambda \cup \{\tau\} \] set of actions, ranged by \(\mu \)
LTS of a process

the LTS of CCS is infinite (one state for each process)

starting from \(p \), consider all reachable states:
the LTS of a process can be finite/infinite
Nil process

\[\text{nil} \not\rightarrow \]

the inactive process does nothing
no interaction is possible with the environment
represents a terminated agent
no operational semantics rule associated with \text{nil}
LTS of a process

nil
Action prefix

\[
\text{Act}) \quad \mu. p \xrightarrow{\mu} p
\]

an action prefixed process can perform the action and continue as expected

the action may involve an interaction with the environment

\[
\text{coin.coffee.nil}
\]

waits a coin, then gives a coffee and then it stops

\[
\text{coin.coffe.nil} \xrightarrow{\text{coin}} \text{coffe.nil} \xrightarrow{\text{coffe}} \text{nil}
\]
LTS of a process

\[\mu.p \xrightarrow{\mu} p \]
Nondeterministic choice

\[
\begin{align*}
\text{SumL) } & \quad \frac{\mu}{p_1 \to q} \quad \frac{\mu}{p_1 + p_2 \to q} \\
\text{SumR) } & \quad \frac{\mu}{p_2 \to q} \quad \frac{\mu}{p_1 + p_2 \to q}
\end{align*}
\]

process \(p_1 + p_2 \) can behave either as \(p_1 \) or as \(p_2 \)

\[
\text{coin.}(\text{coffee.nil + tea.nil})
\]

waits a coin, then gives a coffee or a tea, then it stops

\[
\text{coin.}(\text{coffee.nil + tea.nil})
\]

\[
\text{coin} \downarrow
\]

\[
\text{coffee.nil + tea.nil}
\]

\[
\text{coffee} \quad \text{tea} \\
\quad \downarrow \quad \downarrow
\]

\[
\text{nil}
\]
LTS of a process

\[p \]

\[q \]

\[p + q \]
Recursion

\[p[\text{rec } x. \ p / x] \xrightarrow{\mu} q \]

like a recursive definition \[
\text{let } x = p \text{ in } x
\]

\[
\text{rec } x. \ \text{coin.}(\text{coffee}.x + \text{tea}.\text{nil})
\]

waits a coin, then gives a coffee and is ready again
or a tea and stops

\[
\text{rec } x. \ \text{coin.}(\text{coffee}.x + \text{tea}.\text{nil})
\]

\[
\text{coffee.}(\text{rec } x. \ \text{coin.}(\text{coffee}.x + \text{tea}.\text{nil})) + \text{tea}.\text{nil}
\]

\[
\text{coffee.}P + \text{tea}.\text{nil}
\]

\[
\text{tea}
\]

\[
\text{nil}
\]

\[
\text{tea}
\]

\[
\text{nil}
\]

28
Recursion via process constants

Imagine some process constants A are available together with a set Δ of declarations of the form

$$A \triangleq p$$

one for each constant

$$\text{Const)} \quad \frac{A \triangleq p \in \Delta \quad p \xrightarrow{\mu} q}{A \xrightarrow{\mu} q}$$

$$P \triangleq \text{coin.}(\overline{\text{coffee}}.P + \overline{\text{tea}}.\text{nil})$$
CCS: capacity 1 buffer

\[\Delta = \{ B_0^1 \triangleq \text{in}.B_1^1, \ B_1^1 \triangleq \overline{\text{out}}.B_0^1 \} \]

\[\text{rec } x. \ \text{in.out.x} \]

\[B_0^1 \]

\[B_1^1 \]

\[\text{in} \]

\[\text{out} \]
CCS: capacity 2 buffer

\[
\begin{align*}
B_0^2 &\triangleq in.B_1^2 \\
B_1^2 &\triangleq in.B_2^2 + out.B_0^2 \\
B_2^2 &\triangleq out.B_1^2
\end{align*}
\]
CCS: boolean buffer

\[B_\emptyset \triangleq \text{in}_t.B_t + \text{in}_f.B_f \]

\[B_t \triangleq \overline{\text{out}}_t.B_\emptyset \]

\[B_f \triangleq \overline{\text{out}}_f.B_\emptyset \]
Parallel composition

processes running in parallel can interleave their actions or synchronize when dual actions are performed

\[
\begin{align*}
P & \triangleq \text{coin.coffee.nil} & M & \triangleq \text{coin.}(\text{coffee.nil} + \text{tea.nil}) \\

P\mid M & \xrightarrow{\text{coin}} \text{coffee.nil}\mid M \\

P\mid M & \xrightarrow{\text{coin}} P\mid (\text{coffee.nil} + \text{tea.nil}) \\

P\mid M & \xrightarrow{\tau} \text{coffee.nil}\mid(\text{coffee.nil} + \text{tea.nil})
\end{align*}
\]
LTS of a process
CCS: parallel buffers

\[B_0^1 \triangleq in.B_1^1 \]
\[B_1^1 \triangleq out.B_0^1 \]
CCS: parallel buffers

\[B^1_0 \triangleq \text{in}.B^1_1 \]

\[B^1_1 \triangleq \text{out}.B^1_0 \]
$B_0^1 \triangleq in.B_1^1$

$B_1^1 \triangleq \overline{out}.B_0^1$
$B_0^1 \triangleq \text{in}.B_1^1$

$B_1^1 \triangleq \text{out}.B_0^1$
CCS: parallel buffers

\[B_0^1 \triangleq \text{in}.B_1^1 \]

\[B_1^1 \triangleq \overline{\text{out}}.B_0^1 \]

\[B_0^2 \]

\[B_1^2 \]

\[B_2^2 \]

\[B_0^1 \mid B_0^1 \]

\[B_1^1 \mid B_1^1 \]

\[B_0^1 \mid B_1^1 \]

\[B_1^1 \mid B_0^1 \]

compare with the 2-capacity buffer
Restriction

\[p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \overline{\alpha}\} \]

\[p\backslash \alpha \xrightarrow{\mu} q\backslash \alpha \]

makes the channel \(\alpha \) private to \(p \)

no interaction on \(\alpha \) with the environment

if \(p \) is the parallel composition of processes, then they can synchronise on \(\alpha \)

\[P \triangleq \text{coin.coffee.nil} \quad \quad M \triangleq \text{coin.(coffee.nil + tea.nil)} \]

\[(P|M)\backslash \text{coin}\backslash \text{coffee}\backslash \text{tea} \xrightarrow{\tau} (\text{coffee.nil|coffee.nil + tea.nil})\backslash \text{coin}\backslash \text{coffee}\backslash \text{tea} \]

\[(\text{coffee.nil|coffee.nil + tea.nil})\backslash \text{coin}\backslash \text{coffee}\backslash \text{tea} \xrightarrow{\tau} (\text{nil|nil})\backslash \text{coin}\backslash \text{coffee}\backslash \text{tea} \]
Restriction: shorthand

given \(S = \{\alpha_1, \ldots, \alpha_n\} \) we write \(p \setminus S \)

instead of \(p \setminus \alpha_1 \ldots \setminus \alpha_n \)

we omit trailing \(\text{nil} \)

\[
P \triangleq \overline{\text{coin}.\text{coffee}} \quad M \triangleq \text{coin}.(\overline{\text{coffee}} + \overline{\text{tea}}) \quad S \triangleq \{\text{coin, coffee, tea}\}
\]

\[
(P|M) \setminus S \xrightarrow{\tau} (\overline{\text{coffee}}|\overline{\text{coffee}} + \overline{\text{tea}}) \setminus S \xrightarrow{\tau} (\overline{\text{nil}}|\overline{\text{nil}}) \setminus S
\]
LTS of a process
LTS of a process
Relabelling

\[
\begin{align*}
\text{Rel)} & \quad p \xrightarrow{\mu} q \\
& \quad p[\phi] \xrightarrow{\phi(\mu)} q[\phi]
\end{align*}
\]

renames the action channels according to \(\phi \)

we assume \(\phi(\tau) = \tau \) \hspace{1cm} \(\phi(\overline{\lambda}) = \overline{\phi(\lambda)} \)

allows one to reuse processes

\[
P \triangleq \text{coin.coffee}
\]

\[
\begin{align*}
\phi(\text{coin}) &= \text{moneta} \\
\phi(\text{coffee}) &= \text{caffè}
\end{align*}
\]

\[
P[\phi] \xrightarrow{\text{moneta}} \text{coffee}[\phi] \xrightarrow{\text{caffè}} \text{nil}[\phi]
\]
LTS of a process

\[p \xrightarrow{\mu} \]

\[\]
LTS of a process
CCS op. semantics

\[
\begin{align*}
\text{Act)} & \quad \mu.p \xrightarrow{\mu} p \\
\text{Res)} & \quad p \xrightarrow{\mu} q \quad \mu \not\in \{\alpha, \bar{\alpha}\} \\
& \quad p \setminus \alpha \xrightarrow{\mu} q \setminus \alpha \\
\text{Rel)} & \quad p \xrightarrow{\mu} q \\
& \quad p[\phi] \xrightarrow{\phi(\mu)} q[\phi] \\
\text{SumL)} & \quad p_1 \xrightarrow{\mu} q \\
& \quad p_1 + p_2 \xrightarrow{\mu} q \\
\text{SumR)} & \quad p_2 \xrightarrow{\mu} q \\
& \quad p_1 + p_2 \xrightarrow{\mu} q \\
\text{ParL)} & \quad p_1 \xrightarrow{\mu} q_1 \\
& \quad p_1 | p_2 \xrightarrow{\mu} q_1 | p_2 \\
\text{Com)} & \quad p_1 \xrightarrow{\lambda} q_1 \\
& \quad p_2 \xrightarrow{\bar{\lambda}} q_2 \\
& \quad p_1 | p_2 \xrightarrow{\tau} q_1 | q_2 \\
\text{ParR)} & \quad p_2 \xrightarrow{\mu} q_2 \\
& \quad p_1 | p_2 \xrightarrow{\mu} p_1 | q_2 \\
\text{Rec)} & \quad p[\text{rec } x.\ p/x] \xrightarrow{\mu} q \\
& \quad \text{rec } x.\ p \xrightarrow{\mu} q
\end{align*}
\]
Linked buffers

\[B_0^1 \triangleq \text{in}.B_1^1 \quad \eta(\text{out}) = \text{c} \]

\[B_1^1 \triangleq \overline{\text{out}}.B_0^1 \quad \phi(\text{in}) = \text{c} \]

\[(B_0^1[\eta]|B_0^1[\phi]) \backslash \text{c} \]

\[(B_1^1[\eta]|B_1^1[\phi]) \backslash \text{c} \]

\[\tau \]

\[(B_0^1[\eta]|B_1^1[\phi]) \backslash \text{c} \]

\[(B_1^1[\eta]|B_0^1[\phi]) \backslash \text{c} \]
Linked buffers

\[B_0^1 \triangleq \text{in}.B_1^1 \quad \eta(\text{out}) = c \]

\[B_1^1 \triangleq \overline{\text{out}.B_0^1} \quad \phi(\text{in}) = c \]

\[
\begin{array}{ccc}
\quad & B_0^1[\phi] & \quad \\
\quad & \text{out} & \quad \\
\iddots & \iddots & \iddots \\
\quad & B_1^1[\eta] & \quad \\
\quad & \text{in} & \quad \\
\end{array}
\]
Linked buffers

\[B_0^1 \triangleq \text{in}.B_1^1 \quad \eta(\text{out}) = c \]

\[B_1^1 \triangleq \overline{\text{out}}.B_0^1 \quad \phi(\text{in}) = c \]

\[p \sim q \triangleq (p[\eta]|q[\phi])\setminus c \]
Linked boolean buffers

\[B_{\emptyset} \triangleq in_t.B_t + in_f.B_f \quad \eta(out_t) = c_t \quad \phi(in_t) = c_t \]

\[B_t \triangleq \overline{out_t}.B_{\emptyset} \quad \eta(out_f) = c_f \quad \phi(in_f) = c_f \]

\[B_f \triangleq \overline{out_f}.B_{\emptyset} \quad p \sim q \triangleq (p[\eta]|q[\phi])\setminus\{c_t, c_f\} \]
Linked boolean buffers

\[B_0 \triangleq \text{in}_t.B_t + \text{in}_f.B_f \]

\[B_t \triangleq \overline{\text{out}_t}.B_0 \]

\[B_f \triangleq \overline{\text{out}_f}.B_0 \]
Linked boolean buffers

\[B_\emptyset \triangleq \text{in}_t.B_t + \text{in}_f.B_f \]

\[\eta(\text{out}_t) = c_t \quad \phi(\text{in}_t) = c_t \]

\[B_t \triangleq \overline{\text{out}_t}.B_\emptyset \]

\[\eta(\text{out}_f) = c_f \quad \phi(\text{in}_f) = c_f \]

\[B_f \triangleq \overline{\text{out}_f}.B_\emptyset \]

\[p \sim q \triangleq (p[\eta]|q[\phi])\backslash\{c_t, c_f\} \]
Linked boolean buffers

\[B_\emptyset \triangleq in_t.B_t + in_f.B_f \]
\[\eta(out_t) = c_t \quad \phi(in_t) = c_t \]
\[B_t \triangleq \overline{out_t}.B_\emptyset \]
\[\eta(out_f) = c_f \quad \phi(in_f) = c_f \]
\[B_f \triangleq \overline{out_f}.B_\emptyset \]
\[p \sim q \triangleq (p[\eta]|q[\phi]) \setminus \{c_t, c_f\} \]
CCS with value passing

\[\alpha!v.p \xrightarrow{\alpha_v} p \]

\[\alpha?x.p \xrightarrow{\alpha_v} p[v/x] \]

when the set of values is finite \(V \triangleq \{ v_1, \ldots, v_n \} \)

\[\alpha!v.p \equiv \overline{\alpha_v}.p \]

\[\alpha?x.p \equiv \alpha_{v_1}.p[v_1/x] + \cdots + \alpha_{v_n}.p[v_n/x] \]

receive

\[
\begin{align*}
 v & \rightarrow p \\
 w & \rightarrow q \\
 _ & \rightarrow r
\end{align*}
\]

\[\equiv \alpha_v.p + \alpha_w.q + \sum_{z \neq v, w} \alpha_z.r \]

end
Exercise: LTS?

\[P \triangleq (\text{rec } x. \alpha.x) + (\text{rec } x. \beta.x) \]
Exercise: LTS?

\[Q \triangleq \text{rec } x. (\alpha.x + \beta.x) \]

\[Q \triangleq \text{rec } x. \alpha.x + \beta.x \]

\[Q \triangleq \alpha.Q + \beta.Q \]

\[\alpha \cup Q \cup \beta \]
Exercise: LTS?

\[R \triangleq \text{rec } x. (\alpha.x + \beta.\text{nil}) \]

\[R \triangleq \text{rec } x. \alpha.x + \beta \]

\[R \triangleq \alpha.R + \beta \]
Exercise: LTS?

\[T \triangleq \text{rec } x. ((\alpha . \text{nil}|x) + \beta . \text{nil}) \]

\[T \triangleq \text{rec } x. (\alpha |x) + \beta \]

\[T \triangleq (\alpha |T) + \beta \]
Exercise: LTS?

\[
U \triangleq \text{rec } x. \ ((\alpha.\text{nil})|\beta.x)
\]

\[
U \triangleq \text{rec } x. \ \alpha|\beta.x
\]

\[
U \triangleq \alpha|\beta.U
\]

\[
\begin{array}{c}
\begin{array}{c}
U \xrightarrow{\beta} \alpha|U \\
\alpha \downarrow \text{nil}|\beta.U
\end{array}
\end{array}
\]
Exercise: LTS?

\[U \triangleq \text{rec } x. \ ((\alpha.n!l)|\beta.x) \]

\[U \triangleq \text{rec } x. \alpha|\beta.x \]

\[U \triangleq \alpha|\beta.U \]

\[U \xrightarrow{\beta} \alpha|U \]

\[\alpha \]

\[\alpha \]

\[\text{nil}|\beta.U \]

\[\text{nil}|\beta.U \]

\[\beta \]

\[\beta \]

\[\text{nil}|U \]

\[\text{nil}|U \]
Exercise: LTS?

\[U \triangleq \text{rec } x. \ ((\alpha . \text{nil}) | \beta . x) \]

\[U \triangleq \text{rec } x. \ \alpha | \beta . x \]

\[U \triangleq \alpha | \beta . U \]

\[
\begin{array}{c}
U \xrightarrow{\beta} \alpha | U \xrightarrow{\beta} \alpha | \alpha | U \\
\alpha \downarrow \quad \alpha \downarrow \\
\text{nil} | \beta . U \quad \alpha | \text{nil} | \beta . U \\
\beta \downarrow \quad \beta \downarrow \\
\text{nil} | U
\end{array}
\]
Exercise: LTS?

\[U \triangleq \text{rec } x. (\alpha . \text{nil}) | \beta . x \]

\[U \triangleq \text{rec } x. \alpha | \beta . x \]

\[U \triangleq \alpha | \beta . U \]

\[
\begin{array}{c}
U \\
\downarrow \alpha \\
\text{nil} | \beta . U
\end{array}
\quad
\begin{array}{c}
\alpha | U \\
\downarrow \alpha \\
\alpha | \text{nil} | \beta . U
\end{array}
\]

\[
\begin{array}{c}
\beta \\
\downarrow \\
\text{nil} | U
\end{array}
\quad
\begin{array}{c}
\beta \\
\downarrow \\
\text{nil} | \text{nil} | \beta . U
\end{array}
\]

\[
\begin{array}{c}
U \\
\downarrow \beta \\
\alpha | U
\end{array}
\quad
\begin{array}{c}
\beta \\
\downarrow \\
\alpha | \text{nil} | U
\end{array}
\]

\[
\begin{array}{c}
\alpha | \alpha | U \\
\downarrow \beta \\
\alpha | \text{nil} | U
\end{array}
\]

\[
\begin{array}{c}
\alpha | \text{nil} | U \\
\downarrow \beta \\
\alpha | \text{nil} | U
\end{array}
\]

\[
\begin{array}{c}
\alpha | \text{nil} | U \\
\downarrow \beta \\
\alpha | \text{nil} | U
\end{array}
\]

\[
\begin{array}{c}
\alpha | \text{nil} | U \\
\downarrow \beta \\
\alpha | \text{nil} | U
\end{array}
\]
Exercise: LTS?

\[U \triangleq \text{rec } x. ((\alpha.\text{nil}) | \beta.x) \]

\[U \triangleq \text{rec } x. \alpha | \beta.x \]

\[U \triangleq \alpha | \beta.U \]

\[U \xrightarrow{\beta} \alpha | U \xrightarrow{\beta} \alpha | \alpha | U \xrightarrow{\beta} \ldots \]

\[\alpha \quad \beta \]

\[\alpha | \beta.U \xrightarrow{\alpha} \alpha | \text{nil} | \beta.U \xrightarrow{\beta} \alpha | \text{nil} | U \xrightarrow{\ldots} \]

\[\beta \quad \alpha \quad \beta \quad \alpha \quad \beta \]

\[\text{nil} | U \xrightarrow{\beta} \text{nil} | \beta.U \xrightarrow{\alpha} \text{nil} | \text{nil} | \beta.U \xrightarrow{\ldots} \]
Exercise: LTS?

\[
U \triangleq \text{rec } x. ((\alpha.\text{nil})|\beta.x) \\
U \triangleq \text{rec } x. \alpha|\beta.x \\
U \triangleq \alpha|\beta.U
\]

\[
\begin{array}{cccccccc}
U & \xrightarrow{\beta} & \alpha|U & \xrightarrow{\beta} & \alpha|\alpha|U & \xrightarrow{\beta} & \ldots \\
\text{\alpha} & & \text{\alpha} & & \text{\alpha} & & \text{\alpha} \\
\text{nil}|\beta.U & \xrightarrow{\alpha} & \alpha|\text{nil}|\beta.U & \xrightarrow{\beta} & \alpha|\text{nil}|U & \xrightarrow{\beta} & \ldots \\
\beta & & \text{\alpha} & & \beta & & \text{\alpha} \\
\text{nil}|U & & \text{nil}|\text{nil}|\beta.U & & \text{nil}|\text{nil}|U & & \ldots \\
\end{array}
\]
Exercise: LTS?

let’s ignore nil

\[U \triangleq \text{rec } x. ((\alpha.\text{nil})|\beta.x) \]

\[U \triangleq \text{rec } x. \alpha|\beta.x \]

\[U \triangleq \alpha|\beta.U \]
Exercise: LTS?

let’s ignore nil

\[U \triangleq \text{rec } x. \ ((\alpha.\text{nil})|\beta.x) \]

\[U \triangleq \text{rec } x. \alpha|\beta.x \]

\[U \triangleq \alpha|\beta.U \]
Exercise: LTS?

let’s ignore nil

\[U \triangleq \text{rec } x. \ ((\alpha.\text{nil})|\beta.x) \]

\[U \triangleq \text{rec } x. \alpha|\beta.x \]

\[U \triangleq \alpha|\beta.U \]
Exercise: LTS?

let's ignore nil

\[U \triangleq \text{rec } x. ((\alpha.\text{nil})|\beta.x) \]

\[U \triangleq \text{rec } x. \alpha|\beta.x \]

\[U \triangleq \alpha|\beta.U \]
Exercise: LTS?

let’s ignore \texttt{nil}

\[U \triangleq \text{rec } x. ((\alpha.\text{nil}) | \beta.x) \]

\[U \triangleq \text{rec } x. \alpha|\beta.x \]

\[U \triangleq \alpha|\beta.U \]
Write an interactive counter modulo 4 in CCS

The counter process has four input channels: \(inc, val, reset, stop \)

and four output channels:

\(c_0, c_1, c_2, c_3 \)

used to display the current value of the counter

Draw the LTS of the counter process.