
Principles for Software Composition

http://www.di.unipi.it/~bruni/
Roberto Bruni

16 - Erlang

PSC 2022/23 (375AA, 9CFU)

http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start

http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start
http://didawiki.di.unipi.it/doku.php/magistraleinformatica/psc/start

Erlang
concurrency oriented programming

2

33

Erlang: a concurrent programming language

http://www.erlang.org/

44

Erlang: origins
named after Danish mathematician A. K. Erlang

1986: first experimentation at Ericsson, Sweden
1989: internal use only
1990: sold as a product
1998: open source

Joe Armstrong, “Programming Erlang”, ch.1-5, 11-12

55

Features
declarative (functional, Prolog) programming

arbitrary size integers, tuples, lists, functions, higher-order

atoms everywhere

dynamically typed

open source

unfamiliar syntax

variables are assigned only once

left-to-right evaluation, no pointers, no object-orientation

66

Features: concurrency
concurrent and distributed programming

asynchronous message passing
(no locks, no mutexes)

fault tolerance

hot swapping code

erlang processes are cheap

automatic memory allocation and garbage collection

can handle large telecom applications

Erl

7

88

Erlang: erl

interactive shell or interpreter, executing read-eval-print loop

programmers enter expressions / declarations one at a time

they are compiled / executed

erl is the Erlang VM emulator

99

erl expressions

typical interaction:

1> command .
value
2>

prompt user’s input

result don’t forget the dot!

next prompt

halt(). to exit the emulator

1010

Erlang modules
functions are organised in modules

one module for source file

filename is module name with suffix .erl

% filename hello.erl
-module(hello).
-export([hello/0]).

hello() -> io:format("Hello, world!~n").

a comment declarations end with a dot

module name function name argumentseparator

arity

function def

1111

erl: module loading

1> c(hello) .
{ok,hello}
2> hello:hello() .
Hello, world!
ok
3>

compile and load the module

return value

next prompt

invoke the function

if you edit hello.erl and do c(hello) again
the new version of the module replaces the old one

Erlang basics

12

1313

Function definition
separates function clauses with ;
last clause ends with .

variables start with upper-case letters X Head Tail
variables are local to function clauses

function definitions cannot be nested
non-exported functions are local to the module

pattern matching allowed

guards allowed (keyword when)

type-checking is done at runtime

1414

Atoms, tuples, lists
numbers: arbitrary size integers, floating point values
(cannot start with .)

atoms: start with lower-case character
(can be single-quoted if needed, don’t use camelCase)
true ok hello_world. ’this is an atom’

tuples: main data constructor
tagged tuples: the first element of the tuple is an atom
we can use pattern matching
{} {movie,”Matrix”} {movie,Title}

lists: can contain elements of any type
we can use pattern matching
[] [1,2,ok] [H|T] [X,Y,Z] [X,Y,Z| Tail]

1515

Funs

funs: anonymous functions (lambda expressions)
can have several arguments and clauses

fun () -> 42 end

fun (X) -> X+1 end

fun (X,Y) -> {X, fun (Z) -> Z+Y end} end

fun (F,X) -> F(X) end

1616

Type test & conversion

is_integer(X)
is_float(X)
is_number(X)
is_atom(X)
is_tuple(X)
is_list(X)
is_function(X)
is_pid(X)
…

atom_to_list(A)
list_to_atom(L)
tuple_to_list(T)
list_to_tuple(L)
…

Erlang concurrency

17

1818

Processes
every Erlang code is executed by a process
processes are implemented by the VM (not by OS threads)

multitasking is preemptive (VM switching and scheduling)

processes need very little memory

switching between processes is very fast

the VM can handle a large number of processes
on multiprocessor/multicore machines, processes can be
scheduled to run in parallel on separate CPUs/cores
using multiple schedulers

different processes may be reading the same program code
at the same time (no variable updates!)

1919

Pids
each process has a process identifier

Pid = spawn(module,function,arguments)

Pid = self()

new Erlang processes can be spawned to run functions

Pid = spawn(fun () -> … end)

Pid = spawn(fun f/0)

Pid = spawn(fun m:f/0)

the spawn operation returns immediately
(the return value is the pid of the process)

children pids are available to parent process,
not vice versa (unless passed)

2020

Communication
Messages can be sent to pids

Pid ! message

Processes can wait to receive (and select) some message

receive … end

called bang

2121

Message passing

Pid ! message

Pid

receive … end

2222

Message passing
messages are sent asynchronously
(the sender continues immediately)

any value can be sent as a message

each process has a message queue (mailbox)
no size limit, messages are kept until extracted

messages are ordered from oldest to newest in the mailbox

a message is received when it is extracted from the mailbox

the message that is extracted is not necessarily the oldest
(pattern matching can be used, if there is no match
the receiver suspends and keeps waiting)

2323

Reply
To reply a message, its sender must be known

its pid can be inserted in the message

Pid ! { Mypid , message }

now the receiver Pid can reply to Mypid

syntax for tuples

2424

erl session

