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Differences
operational denotational

closed, typeable terms typeable terms
no environment environment

not a congruence congruence
canonical terms mathematical entities

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c ) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c
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Inconsistency: example
206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x )
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt )? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c ) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr
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Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c ) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c
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for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r

We have

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K)

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove
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Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:
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But, as we are going to show, the situation in the case of HOFL is more complex and
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Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c ) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c
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TH.

Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c ) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c
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Chapter 10
Equivalence Between HOFL Denotational and
Operational Semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. However, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int do we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c ) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c
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Denotational converg.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j ( Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j ( Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

closed

Examples

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t # ) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t # ) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt )? . ut

Also the opposite implication t + ) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t + ) t #).
The property P(t) def

= t + ) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 + ) t1 # and P(t0)

def
= t0 + ) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) + ) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j ( Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k

Jrec x. xK⇢ *
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J(t1 t0)Kr = let j ( Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j ( Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j ( Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j ( Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

¬
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A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t # ) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t # ) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt )? . ut

Also the opposite implication t + ) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t + ) t #).
The property P(t) def

= t + ) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 + ) t1 # and P(t0)

def
= t0 + ) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) + ) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j ( Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k
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Consistency on converg.

10.3 Agreement on Convergence 209

J(t1 t0)Kr = let j ( Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j ( Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

closed
proof.

210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t # ) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t # ) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt )? . ut

Also the opposite implication t + ) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t + ) t #).
The property P(t) def

= t + ) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 + ) t1 # and P(t0)

def
= t0 + ) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) + ) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j ( Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have
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r =
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A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t # ) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t # ) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt )? . ut

Also the opposite implication t + ) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t + ) t #).
The property P(t) def

= t + ) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 + ) t1 # and P(t0)

def
= t0 + ) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) + ) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By the definition of the
denotational semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j ( Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by the definition of the operational semantics it must be the
case that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have
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210 10 Equivalence Between HOFL Denotational and Operational Semantics

A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ?.

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t . We define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t # ) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have

t # ) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different from ?(Vt )? . ut

Also the opposite implication t + ) t # holds (for any closed and typable term
t, see Theorem 10.3) but the proof is not straightforward: we cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t + ) t #).
The property P(t) def

= t + ) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why this is so. Let us focus on the case of
function application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 + ) t1 # and P(t0)

def
= t0 + ) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) + ) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
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J(t1 t0)Kr = let j ( Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j ( Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis)

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL.
We define the following predicate:

t # , 9c 2 Ct . t �! c

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.

closed
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Therefore

J(t1 t0)Kr = let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (see above)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by functional application)

= Jt 01[t0/x]Kr (by the Substitution Lemma)

So (t1 t0) + if and only if t 01[
t0/x] +. We would like to conclude by structural induction

that t 01[
t0/x] # and then prove the theorem by using the rule

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

but this is incorrect since t 01[
t0/x] is not a subterm of (t1 t0) and we are not allowed to

assume that P(t 01[
t0/x]) holds.

Theorem 10.3. For any closed typable term t : t we have:

t + ) t #

Proof. The proof exploits two suitable logical relations, indexed by HOFL types:

• .c
t✓ Vt ⇥Ct , which relates canonical forms to corresponding values in Vt and is

defined by structural induction over types t;
• .t✓ (Vt)? ⇥Tt , which relates well-formed (closed) terms to values in (Vt)? and

is defined by letting

d .t t def
= 8v 2 Vt . d = bvc ) 9c. t ! c^ v .c

t c

In particular, note that, by definition, we have ?(Vt )? .t t for any term t : t .

The logical relation on canonical forms is defined as follows:

ground type: we simply let n .c
int n;

product type: we let (d0,d1) .c
t0⇤t1

(t0, t1) iff d0 .t0 t0 and d1 .t1 t1;
function type: we let j .c

t0!t1
lx. t iff 8d0 2 (Vt0)? and 8t0 : t0 closed, d0 .t0 t0

implies j(d0) .t1 t[t0/x].

Then one can show by structural induction on t : t that

1. 8d,d0 2 (Vt)?. (d v(Vt )? d0 ^d0 .t t) ) d .t t;
2. if {di}i2N is a chain in (Vt)? such that 8i 2 N. di .t t, we have

F
i2N di .t t (i.e.,

the predicate · .t t is inclusive).

Finally, by structural induction on terms, one can prove that 8t : t with fv(t) ✓ {x1 :
t1, . . . ,xk : tk}, if 8i 2 [1,k]. di .ti ti then JtKr[d1/x1 , ...,

dk /xk ].t t[t1/x1 , ...,
tk /xk ]. In

fact, taking t : t closed, it follows from the definition of .t that if t +, i.e., JtKr = bvc
for some v 2 Vt , then t ! c for some canonical form c, i.e., t #. ut

the proof is not part of the program of the course
(structural induction would not work)
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HOFL equivalences

closed

t0 ⌘op t1 i↵ 8c. t0 ! c , t1 ! c
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t0, t1 : ⌧
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t0 ⌘den t1 i↵ 8⇢. Jt0K⇢ = Jt1K⇢

<latexit sha1_base64="bthbFV1BdzNyetHkGaOf9JGnyyM="></latexit>
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Op is more concrete
⌘op ✓ ⌘den

<latexit sha1_base64="Oya+y4Yqi6DiuoZBYkcZKI4WKno="></latexit>

proof. take                closed, such that t0 ⌘op t1
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either 9c. t0 ! c ^ t1 ! c

<latexit sha1_base64="xc7hUQs+zKKAugHVLju3LybP0sU=">AAACMnicbZC9SgNBFIVn/Y3xL2ppMxgEbcKuKFqKNpYRjArZZbk7uYmDsz/M3FVDyDP4Mtrqc2gntlY+gbMxhUk81eG793JmTpQpach135yp6ZnZufnSQnlxaXlltbK2fmnSXAtsiFSl+joCg0om2CBJCq8zjRBHCq+i29NifnWH2sg0uaBuhkEMnUS2pQCyKKzs+vhgUwwXNZ9T6HKfUi587t9jq4MF8n5ROaxU3Zo7EJ803tBU2VD1sPLtt1KRx5iQUGBM03MzCnqgSQqF/bKfG8xA3EIHm9YmEKMJeoMv9fl2bsDGZqi5VHwA8e9FD2JjunFkN2OgGzM+K+B/s2ZO7aOgJ5MsJ0xEEURS4SDICC1tV8hbUiMRFC9HLhMuQAMRaslBCAtzW95IoKEYdFe3+rYkb7ySSXO5V/P2awfn+9Xjk2FdJbbJttgO89ghO2ZnrM4aTLBH9sxe2Kvz5Lw7H87n7+qUM7zZYCNyvn4Ai5ipkQ==</latexit>

or t0 " ^ t1 "

<latexit sha1_base64="6EEqfbM3kMz5MuBtL0V6epRA5o4=">AAACK3icbVDLTgJBEJzFF+IL9ehlAjHxRHYNRo9ELx4xkUfCkk3v0OCE2UdmeiWEcPdn9Kr/4Unj1R/wC1yQGAHrVKnqTnWXHytpyLbfrMzK6tr6RnYzt7W9s7uX3z+omyjRAmsiUpFu+mBQyRBrJElhM9YIga+w4fevJn7jHrWRUXhLwxjbAfRC2ZUCKJW8fIE8m7tJDFpHA+4OsNNDl5Pn/Io5L1+0S/YUfJk4M1JkM1S9/JfbiUQSYEhCgTEtx46pPQJNUigc59zEYAyiDz1spTSEAE17NP1lzI8TAxTxGDWXik9F/LsxgsCYYeCnkwHQnVn0JuJ/Xiuh7kV7JMM4IQzFJIikwmmQEVqmJSHvSI1EMLkcuQy5AA1EqCUHIVIxSVubCzQUgB7qzjgtyVmsZJnUT0tOuXR2Uy5WLmd1ZdkRK7AT5rBzVmHXrMpqTLAH9sSe2Yv1aL1a79bHz2jGmu0csjlYn99DWaga</latexit>

if 9c. t0 ! c ^ t1 ! c

<latexit sha1_base64="xc7hUQs+zKKAugHVLju3LybP0sU=">AAACMnicbZC9SgNBFIVn/Y3xL2ppMxgEbcKuKFqKNpYRjArZZbk7uYmDsz/M3FVDyDP4Mtrqc2gntlY+gbMxhUk81eG793JmTpQpach135yp6ZnZufnSQnlxaXlltbK2fmnSXAtsiFSl+joCg0om2CBJCq8zjRBHCq+i29NifnWH2sg0uaBuhkEMnUS2pQCyKKzs+vhgUwwXNZ9T6HKfUi587t9jq4MF8n5ROaxU3Zo7EJ803tBU2VD1sPLtt1KRx5iQUGBM03MzCnqgSQqF/bKfG8xA3EIHm9YmEKMJeoMv9fl2bsDGZqi5VHwA8e9FD2JjunFkN2OgGzM+K+B/s2ZO7aOgJ5MsJ0xEEURS4SDICC1tV8hbUiMRFC9HLhMuQAMRaslBCAtzW95IoKEYdFe3+rYkb7ySSXO5V/P2awfn+9Xjk2FdJbbJttgO89ghO2ZnrM4aTLBH9sxe2Kvz5Lw7H87n7+qUM7zZYCNyvn4Ai5ipkQ==</latexit>

8⇢. Jt0K⇢ = JcK⇢ = Jt1K⇢

<latexit sha1_base64="F+L0gnkgNM7EEbEAr0uhB24H9eE="></latexit>

by correctness thus t0 ⌘den t1

<latexit sha1_base64="xwIL5ils9fS96BOyJBMRS/aXuTI=">AAACJ3icbVDLSgNBEJz1bXxFPQoyGARPYVcUPYpePCoYDSRh6Z10dHBmdp3pFcKyN39Gr/of3kSP/oJf4G7MQRPrVFR1U90VJUo68v0Pb2Jyanpmdm6+srC4tLxSXV27dHFqBTZErGLbjMChkgYbJElhM7EIOlJ4Fd2elP7VPVonY3NB/QQ7Gq6N7EkBVEhhdZNCn7fxLpX3YdbWQDdWZ100ec4pDCphtebX/QH4OAmGpMaGOAurX+1uLFKNhoQC51qBn1AnA0tSKMwr7dRhAuIWrrFVUAMaXScb/JHz7dQBxTxBy6XiAxF/b2SgnevrqJgsL3WjXin+57VS6h12MmmSlNCIMoikwkGQE1YWBSHvSotEUF6OXBouwAIRWslBiEJMi8b+BDrSYPu2mxclBaOVjJPL3XqwV98/36sdHQ/rmmMbbIvtsIAdsCN2ys5Ygwn2wJ7YM3vxHr1X7817/xmd8IY76+wPvM9vCNWnBw==</latexit>

if t0 " ^ t1 "

<latexit sha1_base64="6EEqfbM3kMz5MuBtL0V6epRA5o4=">AAACK3icbVDLTgJBEJzFF+IL9ehlAjHxRHYNRo9ELx4xkUfCkk3v0OCE2UdmeiWEcPdn9Kr/4Unj1R/wC1yQGAHrVKnqTnWXHytpyLbfrMzK6tr6RnYzt7W9s7uX3z+omyjRAmsiUpFu+mBQyRBrJElhM9YIga+w4fevJn7jHrWRUXhLwxjbAfRC2ZUCKJW8fIE8m7tJDFpHA+4OsNNDl5Pn/Io5L1+0S/YUfJk4M1JkM1S9/JfbiUQSYEhCgTEtx46pPQJNUigc59zEYAyiDz1spTSEAE17NP1lzI8TAxTxGDWXik9F/LsxgsCYYeCnkwHQnVn0JuJ/Xiuh7kV7JMM4IQzFJIikwmmQEVqmJSHvSI1EMLkcuQy5AA1EqCUHIVIxSVubCzQUgB7qzjgtyVmsZJnUT0tOuXR2Uy5WLmd1ZdkRK7AT5rBzVmHXrMpqTLAH9sSe2Yv1aL1a79bHz2jGmu0csjlYn99DWaga</latexit>

t0 * ^ t1 *

<latexit sha1_base64="+elzbNs1uI6nUsI+2EAffa0BeR0=">AAACK3icbVDLTgJBEJzFF+IL9ehlAjHxRHYNRo9ELx4xkUfCkk3v0OCE2UdmeiWEcPdn9Kr/4Unj1R/wC1yQGAHrVKnqTnWXHytpyLbfrMzK6tr6RnYzt7W9s7uX3z+omyjRAmsiUpFu+mBQyRBrJElhM9YIga+w4fevJn7jHrWRUXhLwxjbAfRC2ZUCKJW8fIE8m7u1GLSOBtwdYKeHLifP+RVzXr5ol+wp+DJxZqTIZqh6+S+3E4kkwJCEAmNajh1TewSapFA4zrmJwRhEH3rYSmkIAZr2aPrLmB8nBijiMWouFZ+K+HdjBIExw8BPJwOgO7PoTcT/vFZC3Yv2SIZxQhiKSRBJhdMgI7RMS0LekRqJYHI5chlyARqIUEsOQqRikrY2F2goAD3UnXFakrNYyTKpn5accunsplysXM7qyrIjVmAnzGHnrMKuWZXVmGAP7Ik9sxfr0Xq13q2Pn9GMNds5ZHOwPr8B1eqn2g==</latexit>

i.e. thus t0 ⌘den t1

<latexit sha1_base64="xwIL5ils9fS96BOyJBMRS/aXuTI=">AAACJ3icbVDLSgNBEJz1bXxFPQoyGARPYVcUPYpePCoYDSRh6Z10dHBmdp3pFcKyN39Gr/of3kSP/oJf4G7MQRPrVFR1U90VJUo68v0Pb2Jyanpmdm6+srC4tLxSXV27dHFqBTZErGLbjMChkgYbJElhM7EIOlJ4Fd2elP7VPVonY3NB/QQ7Gq6N7EkBVEhhdZNCn7fxLpX3YdbWQDdWZ100ec4pDCphtebX/QH4OAmGpMaGOAurX+1uLFKNhoQC51qBn1AnA0tSKMwr7dRhAuIWrrFVUAMaXScb/JHz7dQBxTxBy6XiAxF/b2SgnevrqJgsL3WjXin+57VS6h12MmmSlNCIMoikwkGQE1YWBSHvSotEUF6OXBouwAIRWslBiEJMi8b+BDrSYPu2mxclBaOVjJPL3XqwV98/36sdHQ/rmmMbbIvtsIAdsCN2ys5Ygwn2wJ7YM3vxHr1X7817/xmd8IY76+wPvM9vCNWnBw==</latexit>

by agreement on convergence

t0, t1 : ⌧

<latexit sha1_base64="mDb7h6v7sJ9cOEjLzSMHgwpsc9Q=">AAACE3icbVBLSgNBFOyJvxh/UZduGoPgQsKMRBRXQTcuI5gPZIbhTeclNun50P1GCCHH0K3ew5249QBewxM4GbMw0VoVVe9RRQWJkoZs+9MqLC2vrK4V10sbm1vbO+XdvZaJUy2wKWIV604ABpWMsEmSFHYSjRAGCtvB8Hrqtx9QGxlHdzRK0AthEMm+FECZ5JJvn5DvXLoEqV+u2FU7B/9LnBmpsBkafvnL7cUiDTEiocCYrmMn5I1BkxQKJyU3NZiAGMIAuxmNIETjjfPOE36UGqCYJ6i5VDwX8ffHGEJjRmGQXYZA92bRm4r/ed2U+hfeWEZJShiJaRBJhXmQEVpmYyDvSY1EMG2OXEZcgAYi1JKDEJmYZuvMBRoKQY90b5KN5CxO8pe0TqtOrXp2W6vUr2ZzFdkBO2THzGHnrM5uWIM1mWAJe2LP7MV6tF6tN+v957RgzX722Rysj2+Szp7z</latexit>

8⇢. Jt0K⇢ = ?D⌧ = Jt1K⇢

<latexit sha1_base64="NjoU6JTZyBKMo42OioV7OZsze3E="></latexit>

TH.
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Den is strictly more 
abstract

proof.

⌘den 6✓ ⌘op

<latexit sha1_base64="dCh9wgpysyOOyUlIakmgMXCFnL4="></latexit>

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x )
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt )? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c ) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x )
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt )? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c ) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

206 10 Equivalence Between HOFL Denotational and Operational Semantics

Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One might think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = x )
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational
and denotational semantics as was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt )? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have

t ! c ) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr

see previous counterexample

TH.
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Consistency on int

proof.

t : int

<latexit sha1_base64="HlGv7TteQSw+BFhL2Xhqr65hlUA=">AAACFXicbVC7TsNAEDyHVwivACXNiQiJKrIRCEQVQUMZJPKQEhOtL5twyvmhuzVSFOU7oIX/oEO01PwGX4BtXJCEqUYzu9rZ8SIlDdn2l1VYWl5ZXSuulzY2t7Z3yrt7TRPGWmBDhCrUbQ8MKhlggyQpbEcawfcUtrzRdeq3HlEbGQZ3NI7Q9WEYyIEUQIl0T5ddH+hB0kQGNO2VK3bVzsAXiZOTCstR75W/u/1QxD4GJBQY03HsiNwJaJJC4bTUjQ1GIEYwxE5CA/DRuJMs9ZQfxQYo5BFqLhXPRPy7MQHfmLHvJZNpRjPvpeJ/XiemwYWbPBTFhIFID5FUmB0yQsukDuR9qZEI0uTIZcAFaCBCLTkIkYhx0s/MQUM+6LHupyU585UskuZJ1Tmtnt2eVmpXeV1FdsAO2TFz2DmrsRtWZw0mmGbP7IW9Wk/Wm/VuffyOFqx8Z5/NwPr8AcxXoMg=</latexit>

closed t ! n , 8⇢.JtK⇢ = bnc

<latexit sha1_base64="bNv30IgPTxrsmgFM974E3EwlESo=">AAACa3icbZBPbxMxEMWdpYWyFAj0RnuwiCpxinZREVyQKrhw4FCkpq0UR9GsM5tY9drLeBYURfl+fAU+BBy4wBFvmkr9N6ef3pvRs19RWxM4y352knsbm/cfbD1MH20/fvK0++z5SfANaRxobz2dFRDQGocDNmzxrCaEqrB4Wpx/bP3Tb0jBeHfM8xpHFUydKY0GjtK4W7BU7KVL1dcGJqn6jCWTmc4YiPz3S7X0BNZKRTPfl8ragkCfI0tWRJfcmvJ9dEvrPUmn6ALScbeX9bPVyNuQr6En1nM07v5RE6+bCh1rCyEM86zm0QKIjba4TFUTsI6hMMVhRAcVhtFi1cVS7jcB4odqJGmsXIl49WIBVQjzqoibFfAs3PRa8S5v2HD5brQwrm4YnW6D2FhcBQVNJpaMcmIImaF9OUrjpAYCZiQjQesoNrH1a4GBK6A5TZaxpPxmJbfh5HU/P+i/+XLQO/ywrmtL7IqX4pXIxVtxKD6JIzEQWvwQv8Vf8a/zK9lJXiR7F6tJZ32zI65Nsv8fFwq9uw==</latexit>

))

<latexit sha1_base64="I64RwQnpgpTL1aB2iIIXjiNJS6Y=">AAACE3icbVBLTgJBFOzxi/hDXbrpSEx0Q2YMRpdENy7RyCdhCHnTPKBDzyfdbzSEcAzd6j3cGbcewGt4AodxFgLWqlL1XqpSXqSkIdv+spaWV1bX1nMb+c2t7Z3dwt5+3YSxFlgToQp10wODSgZYI0kKm5FG8D2FDW94PfUbD6iNDIN7GkXY9qEfyJ4UQInkuneyPyDQOnw87RSKdslOwReJk5Eiy1DtFL7dbihiHwMSCoxpOXZE7TFokkLhJO/GBiMQQ+hjK6EB+Gja47TzhB/HBijkEWouFU9F/PsxBt+Yke8llz7QwMx7U/E/rxVT77I9lkEUEwZiGkRSYRpkhJbJGMi7UiMRTJsjlwEXoIEIteQgRCLGyTozgYZ80CPdnSQjOfOTLJL6Wckpl85vy8XKVTZXjh2yI3bCHHbBKuyGVVmNCRaxZ/bCXq0n6816tz5+T5es7OeAzcD6/AGVwJ+O</latexit>

if             thent ! n

<latexit sha1_base64="w2FV7JMFUbb7Pj4c+MfouZHnS68=">AAACDXicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkU8CE/KmeWBLT8+k+40JIZxBt3oPd8atZ/AansABZyFgrSpV76UqFcRKWnLdLye3srq2vpHfLGxt7+zuFfcPGjZKjMC6iFRkWgFYVFJjnSQpbMUGIQwUNoPh9dRvPqKxMtJ3NIrRD2GgZV8KoFRqUIcirrvFklt2Z+DLxMtIiWWodYvfnV4kkhA1CQXWtj03Jn8MhqRQOCl0EosxiCEMsJ1SDSFafzxrO+EniYU0NUbDpeIzEf9+jCG0dhQG6WUIdG8Xvan4n9dOqH/pj6WOE0ItpkEkFc6CrDAynQF5Txokgmlz5FJzAQaI0EgOQqRiku4yF2gpBDMyvUk6krc4yTJpnJW9Svn8tlKqXmVz5dkRO2anzGMXrMpuWI3VmWAP7Jm9sFfnyXlz3p2P39Ock/0csjk4nz+oRJzl</latexit>

JtK⇢ = JnK⇢ = bnc

<latexit sha1_base64="EPO5MVbWSSDolI0c81D1+ye1K24=">AAACVnicbZDLSgNBEEU74/s96tJNYxBchRlRdCOIbtwICkaFTAg1nYo29nQP1TVCCPkqf0a3+gd+gDgZI/iq1eHeKm73TXOjPUfRcy2YmJyanpmdm19YXFpeCVfXrrwrSGFTOePoJgWPRltssmaDNzkhZKnB6/T+ZORfPyB57ewl93NsZ3BrdU8r4FLqhGeJMSmBukeWnBB9cUJ3Th7Kb66V/9k94xxJm1AFnbAeNaJq5F+Ix1AX4znvhG9J16kiQ8vKgPetOMq5PQBirQwO55PCY15Gwi22SrSQoW8Pqm8P5VbhgZ3MkaQ2shLx+8UAMu/7WVpuZsB3/rc3Ev/zWgX3DtoDbfOC0apREGuDVZBXpMs+UXY1ITOMXo5SW6mAgBlJS1CqFIuy4B+BnjOgPnWHZUnx70r+wtVOI95t7F3s1o+Ox3XNig2xKbZFLPbFkTgV56IplHgUz+JFvNaeau/BVDDzuRrUxjfr4scE4QeXk7ck</latexit>

if                   it meansJtK⇢ = bnc

<latexit sha1_base64="+/eLgHe9Ju+JL4DNVVTn9Mk/ERk=">AAACOXicbZDLSgNBEEV7fBtfUZduGoPgKsyIohsh6MalglEhE0JNp6KNPd1DdY0QQn7Dn9Gt/oNLd+JSf8BJjODrrg63qrjdN8mM9hyGT8HY+MTk1PTMbGlufmFxqby8cuZdTgrryhlHFwl4NNpinTUbvMgIIU0MnifXh4P5+Q2S186ecjfDZgqXVne0Ai6sVjmMjUkI1DWy5Jjoi2O6cnJfxqZjnCNpY/qEUqtcCavhUPIvRCOoiJGOW+W3uO1UnqJlZcD7RhRm3OwBsVYG+6U495gVoXCJjQItpOibveHP+nIj98BOZkhSGzk08ftFD1Lvu2lSbKbAV/73bGD+N2vk3Nlr9rTNckarBkGsDQ6DvCJdVIayrQmZYfBylNpKBQTMSFqCUoWZFx3+CPScAnWp3S9Kin5X8hfOtqrRdnXnZLtSOxjVNSPWxLrYFJHYFTVxJI5FXShxK+7Fg3gM7oLn4CV4/VwdC0Y3q+KHgvcPDuyuDQ==</latexit>

t +

<latexit sha1_base64="gEMMlDn+cAI3YM/4GXBOPSyhdNU=">AAACE3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdEXbjERD4JEPKmeWCHnp5J9xsJIRxDt3oPd8atB/AansBhZCFgrSpV76Uq5UdKWnLdLyezsrq2vpHdzG1t7+zu5fcPajaMjcCqCFVoGj5YVFJjlSQpbEQGIfAV1v3B9dSvP6KxMtT3NIqwHUBfy54UQInUIt66CYcajAmHnXzBLbop+DLxZqTAZqh08t+tbijiADUJBdY2PTei9hgMSaFwkmvFFiMQA+hjM6EaArTtcdp5wk9iCxTyCA2Xiqci/v0YQ2DtKPCTywDowS56U/E/rxlT77I9ljqKCbWYBpFUmAZZYWQyBvKuNEgE0+bIpeYCDBChkRyESMQ4WWcu0FIAZmS6k2Qkb3GSZVI7K3ql4vldqVC+ms2VZUfsmJ0yj12wMrtlFVZlgkXsmb2wV+fJeXPenY/f04wz+zlkc3A+fwCbuZ+T</latexit>

by agreement on convergence t #

<latexit sha1_base64="dvUiAb9JJbeOojYxXYpDZb7kjag=">AAACE3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xETCBCXnTPLBDT8+k+42EEI6hW72HO+PWA3gNT+AwshCwVpWqV6mXCmIlLbnul5NbWV1b38hvFra2d3b3ivsHDRslRmBdRCoy9wFYVFJjnSQpvI8NQhgobAaD66nffERjZaTvaBSjH0Jfy54UQKnUJt7uRkMNxkTDTrHklt0MfJl4M1JiM9Q6xe80LJIQNQkF1rY8NyZ/DIakUDgptBOLMYgB9LGVUg0hWn+c/TzhJ4kFiniMhkvFMxH/JsYQWjsKg/QyBHqwi95U/M9rJdS79MdSxwmhFtMikgqzIiuMTMdA3pUGiWD6OXKpuQADRGgkByFSMUnXmSu0FIIZme4kHclbnGSZNM7KXqV8flspVa9mc+XZETtmp8xjF6zKbliN1ZlgMXtmL+zVeXLenHfn4/c058wyh2wOzucP0Tmfsw==</latexit>

thus              for somet ! m

<latexit sha1_base64="u93oeA74pqbR5slNarXZ5gUfQHE=">AAACDnicbVBLSgNBFOyJvxh/UZduGoPgKsyIosugG5cRzAeSIbzpvMQm3TND9xshhNxBt3oPd+LWK3gNT+BknIVJrFVR9R5VVBAracl1v5zCyura+kZxs7S1vbO7V94/aNooMQIbIlKRaQdgUckQGyRJYTs2CDpQ2ApGNzO/9YjGyii8p3GMvoZhKAdSAKVSi3iXIq575YpbdTPwZeLlpMJy1Hvl724/EonGkIQCazueG5M/AUNSKJyWuonFGMQIhthJaQgarT/J6k75SWIhTY3RcKl4JuLfjwloa8c6SC810INd9Gbif14nocGVP5FhnBCGYhZEUmEWZIWR6Q7I+9IgEcyaI5chF2CACI3kIEQqJukwc4GWNJix6U/TkbzFSZZJ86zqnVcv7s4rtet8riI7YsfslHnsktXYLauzBhNsxJ7ZC3t1npw35935+D0tOPnPIZuD8/kDAVGdDg==</latexit>

m

<latexit sha1_base64="MfABq4duxMm6Hs2P77lS0IQ18E8=">AAACCHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4hkU8CE/KmeWCH7plJ9xsTQriAbvUe7oxbb+E1PIEDzkLAWlWq3ktVKoiVtOS6X05ubX1jcyu/XdjZ3ds/KB4eNW2UGIENEanItAOwqGSIDZKksB0bBB0obAWj25nfekRjZRTe0zhGX8MwlAMpgFKprnvFklt25+CrxMtIiWWo9Yrf3X4kEo0hCQXWdjw3Jn8ChqRQOC10E4sxiBEMsZPSEDRafzIvOuVniQWKeIyGS8XnIv79mIC2dqyD9FIDPdhlbyb+53USGlz7ExnGCWEoZkEkFc6DrDAyXQB5Xxokgllz5DLkAgwQoZEchEjFJJ1kIdCSBjM2/Wk6krc8ySppXpS9SvmyXilVb7K58uyEnbJz5rErVmV3rMYaTDBkz+yFvTpPzpvz7nz8nuac7OeYLcD5/AHpAprf</latexit>

but then by correctness JtK⇢ = JmK⇢ = bmc

<latexit sha1_base64="yfMcsPLAvlMV3JmORbwNJfWWL3k=">AAACVnicbZDLSgNBEEU74/s96tJNYxBchRlRdCOIbtwICkaFTAg1nYo2dk8P1TVCCPkqf0a3+gd+gDgZI/iq1eHeKm73TXOjPUfRcy2YmJyanpmdm19YXFpeCVfXrrwrSGFTOePoJgWPRmfYZM0Gb3JCsKnB6/T+ZORfPyB57bJL7ufYtnCb6Z5WwKXUCc8SY1ICdY8sOSH64oTunDyU31wr/7N7xjmSNqEKOmE9akTVyL8Qj6EuxnPeCd+SrlOFxYyVAe9bcZRzewDEWhkczieFx7yMhFtslZiBRd8eVN8eyq3CAzuZI0ltZCXi94sBWO/7Ni03LfCd/+2NxP+8VsG9g/ZAZ3nBmKlREGuDVZBXpMs+UXY1ITOMXo5SZ1IBATOSlqBUKRZlwT8CPVugPnWHZUnx70r+wtVOI95t7F3s1o+Ox3XNig2xKbZFLPbFkTgV56IplHgUz+JFvNaeau/BVDDzuRrUxjfr4scE4QeUIbci</latexit>

and it must be m = n

<latexit sha1_base64="p7mGH2HCdDo2uQZ3Uf4XtMf/YCs=">AAACCnicbVBLTgJBFOzBH+IPdemmIzFxRWYMRjcmRDcuMconAULeNA/s0N0z6X5jQgg30K3ew51x6yW8hidwQBaC1qpS9V6qUmGspCPf//QyS8srq2vZ9dzG5tb2Tn53r+aixAqsikhFthGCQyUNVkmSwkZsEXSosB4OriZ+/QGtk5G5o2GMbQ19I3tSAKXSrb4wnXzBL/pT8L8kmJECm6HSyX+1upFINBoSCpxrBn5M7RFYkkLhONdKHMYgBtDHZkoNaHTt0bTqmB8lDijiMVouFZ+K+PtjBNq5oQ7TSw107xa9ifif10yod94eSRMnhEZMgkgqnAY5YWW6AfKutEgEk+bIpeECLBChlRyESMUkHWUu0JEGO7TdcTpSsDjJX1I7KQal4ulNqVC+nM2VZQfskB2zgJ2xMrtmFVZlgvXZE3tmL96j9+q9ee8/pxlv9rPP5uB9fANMzZue</latexit>

()

<latexit sha1_base64="G41eHNcWw/g4Ip7CkZDdR4gEE3g=">AAAB/XicbVA9SwNBEN3zM8avqKXNYhC0CXcSiGXQxsIigvmASwhzm0lcsrd37M4p4Qj+Clut7MTW32Lhf/ESU2jiqx7vzTBvXhAracl1P52l5ZXVtfXcRn5za3tnt7C337BRYgTWRaQi0wrAopIa6yRJYSs2CGGgsBkMLyd+8x6NlZG+pVGMnRAGWvalAMokv32NfQJjoofTbqHoltwp+CLxZqTIZqh1C1/tXiSSEDUJBdb6nhtTJwVDUigc59uJxRjEEAboZ1RDiLaTTiOP+XFigSIeo+FS8amIvzdSCK0dhUE2GQLd2XlvIv7n+Qn1zzup1HFCqMXkEEmF00NWGJl1gbwnDRLBJDlyqbkAA0RoJAchMjHJyslnfXjz3y+SxlnJK5cqN+Vi9WLWTI4dsiN2wjxWYVV2xWqszgSL2BN7Zi/Oo/PqvDnvP6NLzmzngP2B8/EN7hGVsg==</latexit>

TH.
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Equivalence on int

proof.

t0, t1 : int

<latexit sha1_base64="iQhRZZ1KfR1DqxmEszbAbnGAOQI=">AAACHXicbVDLSgNBEJyNrxhf6+PmZTAIHiTsSkTxFPTiMYJ5QBKW3kknDpl9MNMrxJBv0av+hzfxKv6GX+BuzMFE61RUddPV5cdKGnKcTyu3sLi0vJJfLaytb2xu2ds7dRMlWmBNRCrSTR8MKhlijSQpbMYaIfAVNvzBVeY37lEbGYW3NIyxE0A/lD0pgFLJs/fIc47Jcy/aAdCdpJEMaezZRafkTMD/EndKimyKqmd/tbuRSAIMSSgwpuU6MXVGoEkKheNCOzEYgxhAH1spDSFA0xlN0o/5YWKAIh6j5lLxiYi/N0YQGDMM/HQyy2jmvUz8z2sl1DvvpA/FCWEoskMkFU4OGaFlWgvyrtRIBFly5DLkAjQQoZYchEjFJO1p5qChAPRQd7OS3PlK/pL6Scktl05vysXK5bSuPNtnB+yIueyMVdg1q7IaE+yBPbFn9mI9Wq/Wm/X+M5qzpju7bAbWxzci0aL0</latexit>

t0 ⌘op t1 , t0 ⌘den t1

<latexit sha1_base64="nUKOCsALf4aoj2eGHXyyrqqR2WE="></latexit>

we know t0 ⌘op t1 ) t0 ⌘den t1

<latexit sha1_base64="TBjWkKNuW6GTVPLLYYEw+AmjMF8="></latexit>

assume t0 ⌘den t1

<latexit sha1_base64="xwIL5ils9fS96BOyJBMRS/aXuTI=">AAACJ3icbVDLSgNBEJz1bXxFPQoyGARPYVcUPYpePCoYDSRh6Z10dHBmdp3pFcKyN39Gr/of3kSP/oJf4G7MQRPrVFR1U90VJUo68v0Pb2Jyanpmdm6+srC4tLxSXV27dHFqBTZErGLbjMChkgYbJElhM7EIOlJ4Fd2elP7VPVonY3NB/QQ7Gq6N7EkBVEhhdZNCn7fxLpX3YdbWQDdWZ100ec4pDCphtebX/QH4OAmGpMaGOAurX+1uLFKNhoQC51qBn1AnA0tSKMwr7dRhAuIWrrFVUAMaXScb/JHz7dQBxTxBy6XiAxF/b2SgnevrqJgsL3WjXin+57VS6h12MmmSlNCIMoikwkGQE1YWBSHvSotEUF6OXBouwAIRWslBiEJMi8b+BDrSYPu2mxclBaOVjJPL3XqwV98/36sdHQ/rmmMbbIvtsIAdsCN2ys5Ygwn2wJ7YM3vxHr1X7817/xmd8IY76+wPvM9vCNWnBw==</latexit>

we prove t0 ⌘den t1 ) t0 ⌘op t1

<latexit sha1_base64="/iLnelnZYkbQnLCHoa0PCCyOZT8=">AAACU3icbVDBTttAEN240IJp2hSOvawaIfUU2ShVe0T0UnGiqEmQ4sgabybJKrtrd3cMiiz/U38GpJ7gG3rlgh18aIB3enrvjWbmJZmSjoLgb8t7tbX9+s3Orr/3tv3ufefD/tCluRU4EKlK7UUCDpU0OCBJCi8yi6AThaNk+b32R5donUzNL1plONEwN3ImBVAlxZ1TigMe4e9cXsZFpIEWVhdTNGXJKQ79yI/O5XxBYG16FfkvhdOsycadbtAL1uDPSdiQLmtwFnf+RdNU5BoNCQXOjcMgo0kBlqRQWPpR7jADsYQ5jitqQKObFOufS36YO6CUZ2i5VHwt4v8TBWjnVjqpkvWh7qlXiy9545xm3yaFNFlOaES9iKTC9SInrKzKRD6VFomgvhy5NFyABSK0koMQlZhX7W4sdKTBruy0rEoKn1bynAyPemG/9+Vnv3t80tS1wz6yT+wzC9lXdsx+sDM2YIL9YTfslt21rlv3nudtPUa9VjNzwDbgtR8AJDa1/Q==</latexit>

either 8⇢. Jt0K⇢ = ?Z? = Jt1K⇢

<latexit sha1_base64="J5xIdJi81cz0nOzuYSMUwn/rWEs="></latexit>

or 8⇢. Jt0K⇢ = bnc = Jt1K⇢

<latexit sha1_base64="gmjlvkDr27SJ1aoHt2iwa/BtIi0="></latexit>

for some n

<latexit sha1_base64="qtha8fmcmO0W77OgreEwKiiWH8o=">AAACCHicbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4hkU8CE/KmeWCHnp5J9xsTQriAbvUe7oxbb+E1PIEDzkLAWlWq3ktVKoiVtOS6X05ubX1jcyu/XdjZ3ds/KB4eNW2UGIENEanItAOwqKTGBklS2I4NQhgobAWj25nfekRjZaTvaRyjH8JQy4EUQKlU171iyS27c/BV4mWkxDLUesXvbj8SSYiahAJrO54bkz8BQ1IonBa6icUYxAiG2EmphhCtP5kXnfKzxAJFPEbDpeJzEf9+TCC0dhwG6WUI9GCXvZn4n9dJaHDtT6SOE0ItZkEkFc6DrDAyXQB5Xxokgllz5FJzAQaI0EgOQqRikk6yEGgpBDM2/Wk6krc8ySppXpS9SvmyXilVb7K58uyEnbJz5rErVmV3rMYaTDBkz+yFvTpPzpvz7nz8nuac7OeYLcD5/AHqpprg</latexit>

if 8⇢. Jt0K⇢ = ?Z? = Jt1K⇢

<latexit sha1_base64="J5xIdJi81cz0nOzuYSMUwn/rWEs="></latexit>

then t0 *, t1 *

<latexit sha1_base64="OMdc3rm1xUjF+jnJvGC+lH01bxY=">AAACIXicbVDLSgNBEJyNrxhfUS+Cl8EgeJCwKxE9Br14jGAekISld9KJQ2YfzPQqYYk/o1f9D2/iTfwLv8BNjGAS61RT1U31lBcpaci2P6zMwuLS8kp2Nbe2vrG5ld/eqZkw1gKrIlShbnhgUMkAqyRJYSPSCL6nsO71L0d+/Q61kWFwQ4MI2z70AtmVAiiV3PweuXarGoHW4f0xJ9f5fbj5gl20x+DzxJmQApug4ua/Wp1QxD4GJBQY03TsiNoJaJJC4TDXig1GIPrQw2ZKA/DRtJPxD4b8MDZAIY9Qc6n4WMS/Gwn4xgx8L530gW7NrDcS//OaMXXP24kMopgwEKMgkgrHQUZomVaDvCM1EsHocuQy4AI0EKGWHIRIxTjtairQkA96oDvDtCRntpJ5UjspOqXi6XWpUL6Y1JVl++yAHTGHnbEyu2IVVmWCPbAn9sxerEfr1Xqz3n9GM9ZkZ5dNwfr8Bg7QpHQ=</latexit>

by agreement on convergence t0 ", t1 "

<latexit sha1_base64="jSCiPrPZtq6iBwho3LRlB9nt0rU=">AAACIXicbVDLSgNBEJyNrxhfUS+Cl8EgeJCwKxE9Br14jGAekISld9KJQ2YfzPQqYYk/o1f9D2/iTfwLv8BNjGAS61RT1U31lBcpaci2P6zMwuLS8kp2Nbe2vrG5ld/eqZkw1gKrIlShbnhgUMkAqyRJYSPSCL6nsO71L0d+/Q61kWFwQ4MI2z70AtmVAiiV3PweuXYrjkDr8P6Yk+v8Ptx8wS7aY/B54kxIgU1QcfNfrU4oYh8DEgqMaTp2RO0ENEmhcJhrxQYjEH3oYTOlAfho2sn4B0N+GBugkEeouVR8LOLfjQR8Ywa+l076QLdm1huJ/3nNmLrn7UQGUUwYiFEQSYXjICO0TKtB3pEaiWB0OXIZcAEaiFBLDkKkYpx2NRVoyAc90J1hWpIzW8k8qZ0UnVLx9LpUKF9M6sqyfXbAjpjDzliZXbEKqzLBHtgTe2Yv1qP1ar1Z7z+jGWuys8umYH1+A3rwpLQ=</latexit>

thus t0 ⌘op t1

<latexit sha1_base64="Hvc2vSgnTOIq4oLNTEz+MomkIqQ=">AAACJnicbVBNS8NAEN34bf2qehRhsQieSiKKHkUvHhWsLbQlTLbTunQ3ibsToYSc/DN61f/hTcSbv8FfYFJ7sK3v9HhvhjfzglhJS6776czMzs0vLC4tl1ZW19Y3yptbtzZKjMCaiFRkGgFYVDLEGklS2IgNgg4U1oP+ReHXH9BYGYU3NIixraEXyq4UQLnkl3fJd3kL7xP54KctDXRndBrFWcbJ90p+ueJW3SH4NPFGpMJGuPLL361OJBKNIQkF1jY9N6Z2CoakUJiVWonFGEQfetjMaQgabTsdvpHx/cQCRTxGw6XiQxH/bqSgrR3oIJ8sDrWTXiH+5zUT6p62UxnGCWEoiiCSCodBVhiZ94O8Iw0SQXE5chlyAQaI0EgOQuRikhc2FmhJgxmYTpaX5E1WMk1uD6veUfX4+qhydj6qa4ntsD12wDx2ws7YJbtiNSbYI3tmL+zVeXLenHfn43d0xhntbLMxOF8/SAKmpQ==</latexit>

if then
thus t0 ⌘op t1

<latexit sha1_base64="Hvc2vSgnTOIq4oLNTEz+MomkIqQ=">AAACJnicbVBNS8NAEN34bf2qehRhsQieSiKKHkUvHhWsLbQlTLbTunQ3ibsToYSc/DN61f/hTcSbv8FfYFJ7sK3v9HhvhjfzglhJS6776czMzs0vLC4tl1ZW19Y3yptbtzZKjMCaiFRkGgFYVDLEGklS2IgNgg4U1oP+ReHXH9BYGYU3NIixraEXyq4UQLnkl3fJd3kL7xP54KctDXRndBrFWcbJ90p+ueJW3SH4NPFGpMJGuPLL361OJBKNIQkF1jY9N6Z2CoakUJiVWonFGEQfetjMaQgabTsdvpHx/cQCRTxGw6XiQxH/bqSgrR3oIJ8sDrWTXiH+5zUT6p62UxnGCWEoiiCSCodBVhiZ94O8Iw0SQXE5chlyAQaI0EgOQuRikhc2FmhJgxmYTpaX5E1WMk1uD6veUfX4+qhydj6qa4ntsD12wDx2ws7YJbtiNSbYI3tmL+zVeXLenHfn43d0xhntbLMxOF8/SAKmpQ==</latexit>

8⇢. Jt0K⇢ = bnc = Jt1K⇢

<latexit sha1_base64="gmjlvkDr27SJ1aoHt2iwa/BtIi0="></latexit>

t0 ! n , t1 ! n

<latexit sha1_base64="HHxnMdOStStUoWIF+EYejLnSJnw=">AAACIHicbVC7TsNAEDzzDOEVoKCgOREhUaDIRkFQRtBQBomESHFkrS8bOHE+W3drpCjKz0AL/0GHKOEz+AJsk4IEppqb2dXsTZgoacl1P5y5+YXFpeXSSnl1bX1js7K13bZxagS2RKxi0wnBopIaWyRJYScxCFGo8Ca8v8j9mwc0Vsb6moYJ9iK41XIgBVAmBZVdClzuU8y1z4/8MgVe8SgHlapbcwvwv8SbkCqboBlUvvx+LNIINQkF1nY9N6HeCAxJoXBc9lOLCYh7uMVuRjVEaHuj4gNjfpBayGITNFwqXoj4e2MEkbXDKMwmI6A7O+vl4n9eN6XBWW8kdZISapEHkVRYBFlhZNYM8r40SAT55cil5gIMEKGRHITIxDSrairQUgRmaPrjrCRvtpK/pH1c8+q1k6t6tXE+qavE9tg+O2QeO2UNdsmarMUEG7Mn9sxenEfn1Xlz3n9G55zJzg6bgvP5DW2holg=</latexit>
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Unlifted Domains
D⌧ , (V⌧ )?

<latexit sha1_base64="IrX9q694yr+/OHr0AD1OTI8+PvI=">AAACKHicbVC7TsNAEDzzJrwClBSciJCgiWwUBGUEFJRBIg8pjqz1ZRNOnM/mbo0URSn5GWjhP+gQLZ/AF+CYFASYajSzq9mdMFHSkuu+OzOzc/MLi0vLhZXVtfWN4uZWw8apEVgXsYpNKwSLSmqskySFrcQgRKHCZnh7Pvab92isjPU1DRLsRNDXsicFUCYFxd2LwCdIuU9Ggu4rvOMHjVw6DPwwpqBYcstuDv6XeBNSYhPUguKn341FGqEmocDatucm1BmCISkUjgp+ajEBcQt9bGdUQ4S2M8wfGfH91ALFPEHDpeK5iD83hhBZO4jCbDICurG/vbH4n9dOqXfaGUqdpIRajINIKsyDrDAyawh5VxokgvHlyKXmAgwQoZEchMjENKtsKtBSBGZguqOsJO93JX9J46jsVcrHV5VS9WxS1xLbYXvsgHnshFXZJauxOhPsgT2xZ/biPDqvzpvz/j0640x2ttkUnI8vVMmnJw==</latexit>

Vint , Z

<latexit sha1_base64="3C2LrONk3n2kLFUwb9DhGOev2aA=">AAACL3icbVC7TsNAEDzzDOEVoKQ5EYGoIhuBoETQUAaJPEQSRevLJpxyPpu7NVJk5Q/4GWjhPxANoqXlC7BNCiBMNZrZ1eyOHylpyXVfnZnZufmFxcJScXlldW29tLFZt2FsBNZEqELT9MGikhprJElhMzIIga+w4Q/PM79xh8bKUF/RKMJOAAMt+1IApVK3tFfvJu0A6EZSIjWNx8U2GQl6oPCW54bvJ9fjbqnsVtwcfJp4E1JmE1S7pc92LxRxgJqEAmtbnhtRJwFDUihMU2KLEYghDLCVUg0B2k6S/zPmu7EFCnmEhkvFcxF/biQQWDsK/HQyu9D+9TLxP68VU/+kk/4ZxYRaZEEkFeZBVhiZFoW8Jw0SQXY5cqm5AANEaCQHIVIxTpv7FWgpADMyvawk728l06R+UPEOK0eXh+XTs0ldBbbNdtg+89gxO2UXrMpqTLB79sie2LPz4Lw4b8779+iMM9nZYr/gfHwBLsqrUQ==</latexit>

V⌧1⇤⌧2 , D⌧1 ⇥D⌧2 = (V⌧1)? ⇥ (V⌧2)?

<latexit sha1_base64="F5c48mmIU8gRIgEgOI14sT9fpzc="></latexit>

V⌧1!⌧2 , [D⌧1 ! D⌧2 ] = [(V⌧1)? ! (V⌧2)?]

<latexit sha1_base64="VlUJPFt6sqbLws+hngQcM1e0g0M=">AAACb3icbVBLa9tAEF4rfaTqI05y6KFQlppCcjGSSWgvgdD20GMKsROQhBitx+6S1UrZHRWM0D/MH8jPaK7NoStVCXl0Tt98D2b4slJJS0FwOfDWnjx99nz9hf/y1es3G8PNrZktKiNwKgpVmNMMLCqpcUqSFJ6WBiHPFJ5kZ19b/eQXGisLfUyrEpMclloupAByVDpczNI6JqjSMKaiA5PGj8lI0EuF59yPvt0YGufgN9ukSf wDP9q5jTe7aZwV1HpuyUlPJn46HAXjoBv+GIQ9GLF+jtLhVTwvRJWjJqHA2igMSkpqMCSFQvdiZbEEcQZLjBzUkKNN6q6Phn+sLLg/SjRcKt6ReDdRQ27tKs+cMwf6aR9qLfk/Lapo8TmppS4rQi3aQyQVdoesMNIVjXwuDRJB+zlyqbkAA0RoJAchHFm55u8dtJSDWZl540oKH1byGMwm43BvvP9jb3T4pa9rnb1jH9gOC9kndsi+syM2ZYJdsCv2h10Pfntvvfce/2f1Bn1mm90bb/cv4s++3g==</latexit>

Uint , Z?

<latexit sha1_base64="xU14TbhazDG/IIbtHVgyzX/2LeE="></latexit>

U⌧1⇤⌧2 , U⌧1 ⇥ U⌧2

<latexit sha1_base64="COUomRfs4xK6Xmvs0/xC+U5FJDg="></latexit>

U⌧1!⌧2 , [U⌧1 ! U⌧2 ]

<latexit sha1_base64="UtgQ4NO8fX+FO+vYlPujlxd+YjA=">AAACRHicbVBNb9NAFFwXaEOgJYUjlxUREqfIjlKB1EtULhyD1HxIiWU9b17SVdZrs/tcKbL8Y/pn4ApH/gMnEFfUjesikvBOszPzNG8nzpS05PvfvYMHDx8dHjUeN588PT551jp9PrJpbgQORapSM4nBopIahyRJ4SQzCEmscByv3m/08TUaK1N9SesMwwSWWi6kAHJU1DofRsWMII+CGaUV6JbNGRkJeqnwE29O/xpK5+D3r2 4ZNqNW2+/41fB9ENSgzeoZRK2fs3kq8gQ1CQXWTgM/o7AAQ1IodLm5xQzECpY4dVBDgjYsqk+W/HVuwR2QoeFS8YrEfzcKSKxdJ7FzJkBXdlfbkP/Tpjkt3oWF1FlOqMUmiKTCKsgKI117yOfSIBFsLkcuNRdggAiN5CCEI3NX51agpQTM2sxLV1KwW8k+GHU7Qa9z9rHX7l/UdTXYS/aKvWEBe8v67AMbsCET7IZ9YV/ZN++z98P75f2+sx549c4LtjXen1sQKrJ8</latexit>

lifted domains

unlifted domains
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Unlifted Semantics
LnM⇢ , bnc

<latexit sha1_base64="Yze07D41KAK5vC3DayhAW5efBh0="></latexit>

LxM⇢ , ⇢(x)

<latexit sha1_base64="jRKVf+v3THX7aqITlexwzWxzbsM=">AAACP3icbVC5TsNAEF1z3wQoaVZESNBENgpHiaChBIkAUhxF482QrFivzewYEUX5E34GWvgBvoAOITo6HJOC61Vv3hxv90Wp0Y59/9kbGR0bn5icmp6ZnZtfWCwtLZ+5JCOFNZWYhC4icGi0xRprNniREkIcGTyPrg4H/fMbJKcTe8rdFBsxtK2+1Ao4l5qlndCYFAgtd9BpJ29Dou91SJ1EhkwabNvgdVFv3G42S2W/4heQf0kwJGUxxHGz9B62EpXF+WFlwLl64Kfc6AGxVgb7M2HmMAV1BW2s59RCjK7RK/7Xl+uZA05kiiS1kYWI3zd6EDvXjaN8MgbuuN+9gfhfr57x5V6jp22aMVo1MGJtsDByinQeHMqWJmSGwctRaisVEDAjaQlK5WKWJ/nD0HEM1KVWPw8p+B3JX3K2VQmqle2Tann/YBjXlFgVa2JDBGJX7IsjcSxqQok78SAexZN37714r97b1+iIN9xZET/gfXwCATqxow==</latexit>

Lt1 op t2M⇢ , Lt1M⇢ op? Lt2M⇢

<latexit sha1_base64="mccfZaSVqM4qOjso9g1iiezt9oI="></latexit>

Lif t then t1 else t2M⇢ , Cond⌧ ( LtM⇢ , Lt1M⇢ , Lt2M⇢ )

<latexit sha1_base64="jGVifwkUmryPGSvf/DKPROsTU3Y="></latexit>

Lrec x. tM⇢ , fix �d. LtM⇢[d/x]

<latexit sha1_base64="ykJkQDA0OidnIUOEFpZRHLcyIB8="></latexit>

L(t1 , t2)M⇢ , ( Lt1M⇢ , Lt2M⇢ )

<latexit sha1_base64="Ei/pAtMg7PJ6xZPEB+mVry/AC3c="></latexit>

Lfst( t )M⇢ , ⇡1 ( LtM⇢ )

<latexit sha1_base64="EaXpa5pAm3S89XS5TxAUPzohu7Q="></latexit>

Lsnd( t )M⇢ , ⇡2 ( LtM⇢ )

<latexit sha1_base64="81XmRO/qYbx1+kVfis3dE7ZZilc=">AAAChHicdVFNTxsxFPRuKdClH0s59mIRIaVSFe1SUDkhBJceQWoAKY6it85LYuH1uvZbpGiVH8qxf6G/AG+aAwT6TqOZeW+scWG18pRlD1H8ZuPt5tb2u2Tn/YePn9Ldz9e+qp3Evqx05W4L8KiVwT4p0nhrHUJZaLwp7i5a/eYenVeV+UVzi8MSpkZNlAQK1ChthNYWHBqaoVeeJ6IEmhWTxpvxois4Cf41Ec499Qg3q4KRnAIz1fg7YKtGh4InXZGs36P/bIezo7ST9bLl8JcgX4EOW83lKP0rxpWsy3BLavB+kGeWhg04UlLjIhG1RwvyDqY4CNBAiX7YLEta8IPaA1XcouNK8yWJTzcaKL2fl0VwthX4da0lX9MGNU1Oho0ytiY0sg0ipXEZ5KVToX3kY+WQCNqXI1eGS3BAhE5xkDKQdfiOZ4GeSnBzN16EkvL1Sl6C68NeftQ7vjrqnJ2v6tpmX9g+67Kc/WBn7Ce7ZH0m2Z9oK0qj3Xgz/hZ/j4//WeNotbPHnk18+ghtl8JH</latexit>

L�x. tM⇢ , �d. LtM⇢[d/x]

<latexit sha1_base64="sewtUjMO5ulYLB+E1t5mWtZBvN8=">AAACg3icbVFNT9tAEF27QKn7gWmPXFaNkJCQUhulKhckRC8cQWoAKXaj8XpIVqzX7uwYEaL80N76G/oL2KSRCoE5Pb33Zt7qbdEY7ThJfgfhq7X1jdebb6K3795/2Iq3P164uiWFfVWbmq4KcGi0xT5rNnjVEEJVGLwsbr7P9ctbJKdr+4MnDeYVjKy+1grYU8P4PjOmAULLY3TaySgzfrkEedfNJEcZ0WM1o3HtLUwa7MjgL/nfX3p/tHrsxQODn+WX4V0eDeNO0k0WI5+DdAk6Yjlnw/hvVtaqrfw1ZcC5QZo0nE+BWCuDsyhrHTagbmCEAw8tVOjy6aKjmdxtHXAtGySpjVyQ+HhjCpVzk6rwzgp47Fa1OfmSNmj5+jCfatu0jFbNg1gbXAQ5RdqXj7LUhMwwfzlKbaUCAmYkLUEpT7b+N54EOq6AJlTOfEnpaiXPwcVBN+11v573Oscny7o2xY74LPZEKr6JY3EqzkRfKPEn2Ai2gjhcD/fDg7D3zxoGy51P4smERw8FRcLU</latexit>

L t t0 M⇢ , ( LtM⇢ ) ( Lt0M⇢ )

<latexit sha1_base64="BgqaSjt5wFBvhGwFKM7L2ZgAoDs="></latexit>

as before

without lifting
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Inconsistency on converg.
t1 , rec x. x : int ! int

<latexit sha1_base64="ZKZSWjbrQrvhDJ8qC+aQxdQVIrc="></latexit>

t2 , �y. rec z. z : int ! int

<latexit sha1_base64="oizMWQIqrTjlMazXXzWLH8xGYH8="></latexit>

Jt1K⇢ = ?[Z?!Z?]?

<latexit sha1_base64="KnHMCNEchoIInkM1PxjD/b1fx3g=">AAACWnicbVDLSgNBEJysr5j4iI+bl8EgeAq7EtGLEPTiUcGomF2Wnkmrg7MPZnqFsOS7/BZBr3r3C9xdI2i0D0N1dTdVUyLVypLrPtecmdm5+YX6YqO5tLyy2lpbv7RJZiT2ZaITcy3AolYx9kmRxuvUIERC45V4OCnnV49orEriCxqlGERwF6tbJYEKKmyd+1oLA/IBiVPo+cZ8d765T/gR90VCYT7wI6B7IfKbcVgy3KeET3 FB9Y7DVtvtuFXxv8CbgDab1FnY+vCHicwijElqsHbguSkFORhSUuO44WcW08IT3OGggDFEaIO8+vqY72QWCispGq40r0j8eZFDZO0oEsVm6dZOz0ryv9kgo9vDIFdxmhHGshQipbESstKoIlPkQ2WQCErnyFXMJRggQqM4SFmQWRHyL0FLEZiRGZYhedOR/AWXex2v29k/77Z7x5O46myLbbNd5rED1mOn7Iz1mWRP7JW9sffai+M4i07za9WpTW422K9yNj8BkqC4wA==</latexit>

Jt2K⇢ = b?[Z?!Z?]c

<latexit sha1_base64="vdlWp4gW5cwiBcR9qG+XgCMiiPc="></latexit>

t1 *

<latexit sha1_base64="UO/BARVMxZ4HTH0ppXY3kRS5uGU=">AAACE3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkU8ChLxpHtihZ6bT/UZDCMfQrd7DnXHrAbyGJ3AYZyFgrSpV76Uq5WslLbnul5NbWV1b38hvFra2d3b3ivsHDRvFRmBdRCoyLR8sKhlinSQpbGmDEPgKm/7oeuY3H9BYGYV3NNbYDWAYyoEUQInUoZ7HO3UNxkSPvWLJLbsp+DLxMlJiGWq94nenH4k4wJCEAmvbnqupOwFDUiicFjqxRQ1iBENsJzSEAG13knae8pPYAkVco+FS8VTEvx8TCKwdB35yGQDd20VvJv7ntWMaXHYnMtQxYShmQSQVpkFWGJmMgbwvDRLBrDlyGXIBBojQSA5CJGKcrDMXaCkAMzb9aTKStzjJMmmclb1K+fy2UqpeZXPl2RE7ZqfMYxesym5YjdWZYJo9sxf26jw5b8678/F7mnOyn0M2B+fzByxZn1A=</latexit>

t2 +

<latexit sha1_base64="rmfboJk4yZ1SdgaKHtiFdj/m0yo=">AAACFXicbVDLTgJBEJzFF+IL9ehlIjHxRHYJRo9EPXjERB4JIOkdGpwwO7uZ6ZUQwnfoVf/Dm/Hq2d/wC1yQg4B1qlR1pyrlR0pact0vJ7Wyura+kd7MbG3v7O5l9w+qNoyNwIoIVWjqPlhUUmOFJCmsRwYh8BXW/P7VxK89orEy1Hc0jLAVQE/LrhRAiXRP7QJvXocDDcaEg3Y25+bdKfgy8WYkx2Yot7PfzU4o4gA1CQXWNjw3otYIDEmhcJxpxhYjEH3oYSOhGgK0rdG09ZifxBYo5BEaLhWfivj3YwSBtcPATy4DoAe76E3E/7xGTN2L1kjqKCbUYhJEUuE0yAojkzmQd6RBIpg0Ry41F2CACI3kIEQixsk+c4GWAjBD0xknI3mLkyyTaiHvFfNnt8Vc6XI2V5odsWN2yjx2zkrshpVZhQlm2DN7Ya/Ok/PmvDsfv6cpZ/ZzyObgfP4A22SgOA==</latexit>

t1 "

<latexit sha1_base64="h5JLJ/ez3LpsnA9fZVZzm7sLDdI=">AAACE3icbVBLTgJBFOzBH+IPdemmIzFxRWYMRpdENy4xkU8CE/KmeWCHnplO9xsNmXAM3eo93Bm3HsBreAIHZCFgrSpV76UqFWglLbnul5NbWV1b38hvFra2d3b3ivsHDRsnRmBdxCo2rQAsKhlhnSQpbGmDEAYKm8HweuI3H9BYGUd3NNLohzCIZF8KoEzqUNfjnUSDMfFjt1hyy+4UfJl4M1JiM9S6xe9OLxZJiBEJBda2PVeTn4IhKRSOC53EogYxhAG2MxpBiNZPp53H/CSxQDHXaLhUfCri348UQmtHYZBdhkD3dtGbiP957YT6l34qI50QRmISRFLhNMgKI7MxkPekQSKYNEcuIy7AABEayUGITEyydeYCLYVgRqY3zkbyFidZJo2zslcpn99WStWr2Vx5dsSO2Snz2AWrshtWY3UmmGbP7IW9Ok/Om/PufPye5pzZzyGbg/P5A2GZn3A=</latexit>

t2 #

<latexit sha1_base64="dzIf5SosI2jM6flAWxKtLAQwGFE=">AAACFXicbVDLTgJBEJz1ifhCPXqZSEw8kV2C0SPRi0dM5JEAkt6hwQmzs5uZXgkhfIde9T+8Ga+e/Q2/wF3kIGCdKlVdqU75kZKWXPfLWVldW9/YzGxlt3d29/ZzB4c1G8ZGYFWEKjQNHywqqbFKkhQ2IoMQ+Arr/uA69euPaKwM9R2NImwH0NeyJwVQIt1Tp8hb3XCowZhw2Mnl3YI7BV8m3ozk2QyVTu47CYs4QE1CgbVNz42oPQZDUiicZFuxxQjEAPrYTKiGAG17PP16wk9jCxTyCA2Xik9F/JsYQ2DtKPCTywDowS56qfif14ypd9keSx3FhFqkRSQVTousMDKZA3lXGiSC9HPkUnMBBojQSA5CJGKc7DNXaCkAMzLdSTKStzjJMqkVC16pcH5bypevZnNl2DE7YWfMYxeszG5YhVWZYIY9sxf26jw5b8678/F7uuLMMkdsDs7nDxDzoFg=</latexit>

t2 ! t2

<latexit sha1_base64="a9WsVl8dmAtz/wUpnEO1bkhlXog=">AAACEnicbVDLTgJBEJzFF+IL9ehlIjHxRHYJRo9ELx4xkUcCG9I7NDhh9pGZXhNC+Au96n94M179AX/DL3DAPQhYl65Udac6FSRKGnLdLye3tr6xuZXfLuzs7u0fFA+PmiZOtcCGiFWs2wEYVDLCBklS2E40QhgobAWjm5nfekRtZBzd0zhBP4RhJAdSAFmpQ70K71LM7ewVS27ZnYOvEi8jJZah3it+d/uxSEOMSCgwpuO5CfkT0CSFwmmhmxpMQIxgiB1LIwjR+JP5y1N+lhqwuQlqLhWfi/j3YgKhMeMwsJsh0INZ9mbif14npcGVP5FRkhJGYhZEUuE8yAgtbRfI+1IjEcw+Ry4jLkADEWrJQQgrprachUBDIeix7k9tSd5yJaukWSl71fLFXbVUu87qyrMTdsrOmccuWY3dsjprMMFi9sxe2Kvz5Lw5787H72rOyW6O2QKczx+H+55f</latexit>

Lt1M⇢ = ?[Z?!Z?]

<latexit sha1_base64="DeFnQvoqlaOCw83eSolvjuZbcpc=">AAACXXicbZA9SwNBEIY3p9GoUaMWFjaLQbAKdxLRRgjaWEbIh5g7jrnNxCzufbA7J4Qjf8x/YqWtlv4C72IKTZzq5ZkZ3pk3SJQ0ZNuvJWtltby2XtnY3Kpu7+zW9vZ7Jk61wK6IVazvAzCoZIRdkqTwPtEIYaCwHzzdFP3+M2oj46hDkwS9EB4jOZICKEd+reMqlYDGiMZopOHkO67Wv4mrxzG/4m4Qk58N3BBoHATZw9QvCH cp5gvMm/q1ut2wZ8WXhTMXdTavtl/7coexSMPcVCgwZuDYCXkZaJJC4XTTTQ0mIJ7gEQe5jCBE42Wz76f8JDWQX5Gg5lLxGcTfGxmExkzCIJ8sDjWLvQL+1xukNLr0MhklKWEkCiOSCmdGRmiZx4p8KDUSQXE5chlxARqIUEsOQuQwzXP+Y2goBD3RwyIkZzGSZdE7azjNxvlds966nsdVYUfsmJ0yh12wFrtlbdZlgr2wd/bBPktvVtmqWjs/o1ZpvnPA/pR1+A0c+Lpy</latexit>

Lt2M⇢ = ?[Z?!Z?]

<latexit sha1_base64="el2FS/DMg5FFqqY5DDPxiXBzTDk="></latexit>

t2 *unlifted

<latexit sha1_base64="0D4B7ATTJbv+WmvVADkncHs/t8I=">AAACKXicbVC7TsNAEDzzDOEVoKQ5ESFRRTYCQRlBQxkkkiAlkbW+bODE3dm6W4MiKy0/Ay38Bx3Q8gd8AXZIAYSpRjO7mt2JEiUd+f6bNzM7N7+wWFoqL6+srq1XNjZbLk6twKaIVWwvI3CopMEmSVJ4mVgEHSlsRzenhd++RetkbC5omGBPw5WRAymAcimscAr3ebeZgLXxXZh1NdC11VlqlBwQ9kejsFL1a/4YfJoEE1JlEzTCyme3H4tUoyGhwLlO4CfUy8CSFApH5W7qMAFxA1fYyakBja6XjT8Z8d3UAcU8Qcul4mMRf25koJ0b6iifLC51f71C/M/rpDQ47mXSJCmhEUUQSYXjICeszCtC3pcWiaC4HLk0XIAFIrSSgxC5mOad/Qp0pMEObb8oKfhbyTRp7deCg9rh+UG1fjKpq8S22Q7bYwE7YnV2xhqsyQS7Z4/siT17D96L9+q9f4/OeJOdLfYL3scXR6io2Q==</latexit>

t1 *unlifted

<latexit sha1_base64="mi8LTaZNLjJA7Bi0D8aEt7+CqXc=">AAACKXicbVC7TsNAEDyH9ztASXMiQqKKbASCMoKGEiScICWRtb5s4JS7s3W3BkVWWn4GWvgPOqDlD/gC7JCC11SjmV3N7sSpko58/9WrTE3PzM7NLywuLa+srlXXN5ouyazAUCQqsZcxOFTSYEiSFF6mFkHHClvx4KT0WzdonUzMBQ1T7Gq4MrIvBVAhRVVOUcA7YQrWJrdR3tFA11bnmVGyT9gbjaJqza/7Y/C/JJiQGpvgLKp+dHqJyDQaEgqcawd+St0cLEmhcLTYyRymIAZwhe2CGtDouvn4kxHfyRxQwlO0XCo+FvH7Rg7auaGOi8nyUvfbK8X/vHZG/aNuLk2aERpRBpFUOA5ywsqiIuQ9aZEIysuRS8MFWCBCKzkIUYhZ0dmPQEca7ND2ypKC35X8Jc29erBfPzjfrzWOJ3XNsy22zXZZwA5Zg52yMxYywe7YA3tkT9699+y9eG9foxVvsrPJfsB7/wRF56jY</latexit>

t2 # 6) t2 +unlifted

<latexit sha1_base64="mkCZoCThhZV0fHFiHickm7Hwnlo="></latexit>

Dint!int = [Z? ! Z?]?

<latexit sha1_base64="6LG7pl71rtNDMIYMCDB3LiqHDMc="></latexit>

Uint!int = [Z? ! Z?]

<latexit sha1_base64="nsxINDjkygCA0kAVjRS0/DM5o6g="></latexit>

= �d. ?Z?

<latexit sha1_base64="blNY8LuLWhL+NBioC2LxsSvFa6s=">AAACLXicbVDLSgNBEJyN7/iKevQyGAVPYVciehFELx4VjAlmw9I724lDZh/M9AphyQ/4M3rV//AgiFfvfoG7MQcTrVNRXU11l58oaci236zSzOzc/MLiUnl5ZXVtvbKxeWPiVAtsiFjFuuWDQSUjbJAkha1EI4S+wqbfPy/mzXvURsbRNQ0S7ITQi2RXCqBc8iq7J2VX5fYAeFBzuevH5GVuCHTn+9nt0CuEoVep2jV7BP6XOGNSZWNcepUvN4hFGmJEQoExbcdOqJOBJikUDstuajAB0YcetnMaQYimk42+GfK91ADFPEHNpeIjEX9vZBAaMwj93FncaaZnhfjfrJ1S97iTyShJCSNRBJFUOAoyQsu8JuSB1EgExeXIZcQFaCBCLTkIkYtp3ttEoKEQ9EAHRUnOdCV/yc1BzanXDq/q1dOzcV2LbJvtsH3msCN2yi7YJWswwR7YE3tmL9aj9Wq9Wx8/1pI13tliE7A+vwFnMalH</latexit>

x : int ! int

<latexit sha1_base64="2OBeeGNF2fukAUmlk4Wse/+0nOc=">AAACJ3icbVDJSgNBEO2JW4xb1KMgjUHwFGYkongKevEYwSyQhFDTqcQmPQvdNWIIufkzetX/8CZ69Bf8AmfGHLJYp1fvVfGqnhsqaci2v6zM0vLK6lp2PbexubW9k9/dq5kg0gKrIlCBbrhgUEkfqyRJYSPUCJ6rsO4OrhO9/oDayMC/o2GIbQ/6vuxJARRTnfzhI79seUD3kkbSp3GLgum2ky/YRTstvgicCSiwSVU6+Z9WNxCRhz4JBcY0HTuk9gg0SaFwnGtFBkMQA+hjM4Y+eGjao/SPMT+ODFDAQ9RcKp6SOL0xAs+YoefGk8mNZl5LyP+0ZkS9i3b8UBgR+iIxIqkwNTJCyzgg5F2pkQiSy5FLnwvQQIRachAiJqM4sRlDQx7ooe4mITnzkSyC2mnRKRXPbkuF8tUkriw7YEfshDnsnJXZDauwKhPsib2wV/ZmPVvv1of1+TeasSY7+2ymrO9f3V+oIg==</latexit>

y, z : int

<latexit sha1_base64="hmA3Qtv1SKs8QEffueKkBo10SkA=">AAACGnicbVDLTgJBEJzFF+IL9OhlIjHxYMiuwWg8Eb14xEQeCRDSOzQ4YfaRmV4NEv5Er/of3oxXL/6GX+DuykHAOlWqutPV5YZKGrLtLyuztLyyupZdz21sbm3v5Au7dRNEWmBNBCrQTRcMKuljjSQpbIYawXMVNtzhVeI37lEbGfi3NAqx48HAl30pgGKpmy+Mjh/5RdsDupM0lj5NuvmiXbJT8EXiTEmRTVHt5r/bvUBEHvokFBjTcuyQOmPQJIXCSa4dGQxBDGGArZj64KHpjNPoE34YGaCAh6i5VDwV8e/GGDxjRp4bTyYZzbyXiP95rYj65534oTAi9EVyiKTC9JARWsadIO9JjUSQJEcufS5AAxFqyUGIWIzikmYOGvJAj3QvKcmZr2SR1E9KTrl0elMuVi6ndWXZPjtgR8xhZ6zCrlmV1ZhgD+yZvbBX68l6s96tj9/RjDXd2WMzsD5/ABFPoeI=</latexit>


