

PSC 2021/22 (375AA, 9CFU)

Principles for Software Composition

Roberto Bruni
http://www.di.unipi.it/~bruni/
http://didawiki.di.unipi.it/doku.php/
magistraleinformatica/psc/start
15-HOFL: Consistency?

HOFL
 Operational vs Denotational

Differences

operational $t \rightarrow c$
closed, typeable terms
no environment
not a congruence
canonical terms
denotational $\llbracket t \rrbracket \rho$
typeable terms environment
congruence
mathematical entities

$$
\begin{gathered}
\forall t, c . \quad t \rightarrow c \quad \stackrel{?}{\Leftrightarrow} \quad \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho \\
t \rightarrow c \Rightarrow \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho
\end{gathered}
$$

$$
(\forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho) \nRightarrow t \rightarrow c
$$

there is only one type for which the implication holds

Inconsistency: example

$$
\begin{aligned}
x: \text { int } & c_{0}=\lambda x \cdot x+0 \quad c_{1}=\lambda x \cdot x \\
& \text { already in canonical forms }
\end{aligned}
$$

$$
\llbracket c_{0} \rrbracket \rho=\llbracket c_{1} \rrbracket \rho \quad c_{0} \nrightarrow c_{1}
$$

$\llbracket c_{0} \rrbracket \rho=\llbracket \lambda x . x+0 \rrbracket \rho=\left\lfloor\lambda d . d \pm_{\perp}\lfloor 0\rfloor\right\rfloor=\lfloor\lambda d . d\rfloor=\llbracket \lambda x . x \rrbracket \rho=\llbracket c_{1} \rrbracket \rho$

Correctness

TH.

$$
t \rightarrow c \Rightarrow \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho
$$

proof. we proceed by rule induction

$$
P(t \rightarrow c) \stackrel{\text { def }}{=} \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho
$$

$$
P(c \rightarrow c) \stackrel{\text { det }}{=} \forall \rho . \llbracket c \rrbracket \rho=\llbracket c \rrbracket \rho \quad \text { obvious }
$$

TH. $t \rightarrow c \Rightarrow \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho$ (continue)

$$
\frac{t_{1} \rightarrow n_{1} \quad t_{2} \rightarrow n_{2}}{t_{1} \text { op } t_{2} \rightarrow n_{1} \text { op } n_{2}}
$$

assume

$$
\begin{aligned}
& P\left(t_{1} \rightarrow n_{1}\right) \stackrel{\text { def }}{=} \forall \rho \cdot \llbracket t_{1} \rrbracket \rho=\llbracket n_{1} \rrbracket \rho=\left\lfloor n_{1}\right\rfloor \\
& P\left(t_{2} \rightarrow n_{2}\right) \stackrel{\text { def }}{=} \forall \rho \cdot \llbracket t_{2} \rrbracket \rho=\llbracket n_{2} \rrbracket \rho=\left\lfloor n_{2}\right\rfloor
\end{aligned}
$$

we prove $\quad P\left(t_{1}\right.$ op $t_{2} \rightarrow n_{1}$ op $\left.n_{2}\right) \stackrel{\text { def }}{=} \forall \rho . \llbracket t_{1}$ op $t_{2} \rrbracket \rho=\llbracket n_{1}$ op $n_{2} \rrbracket \rho$

$$
\begin{aligned}
\llbracket t_{1} \mathrm{op} t_{2} \rrbracket \rho & =\llbracket t_{1} \rrbracket \rho \mathrm{oop} \perp \llbracket t_{2} \rrbracket \rho \\
& =\left\lfloor n_{1}\right\rfloor \underline{\mathrm{op}}\left\lfloor n_{2}\right\rfloor \\
& =\left\lfloor n_{1} \underline{\mathrm{op}} n_{2}\right\rfloor \\
& =\llbracket n_{1} \underline{\mathrm{op}} n_{2} \rrbracket \rho
\end{aligned}
$$

(by definition of $\llbracket \cdot \rrbracket$)
(by inductive hypotheses)
(by definition of op $\underline{\perp}_{\perp}$)
(by definition of $\llbracket \cdot \rrbracket$)

TH.

 $t \rightarrow c \Rightarrow \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho$ (continue)$$
t \rightarrow 0 \quad t_{0} \rightarrow c_{0}
$$

assume

$$
\begin{gathered}
P(t \rightarrow 0) \stackrel{\text { def }}{=} \forall \rho . \llbracket t \rrbracket \rho=\llbracket 0 \rrbracket \rho=\lfloor 0\rfloor \\
P\left(t_{0} \rightarrow c_{0}\right) \stackrel{\text { def }}{=} \forall \rho \cdot \llbracket t_{0} \rrbracket \rho=\llbracket c_{0} \rrbracket \rho
\end{gathered}
$$

we prove $P\left(\mathbf{i f} t\right.$ then t_{0} else $\left.t_{1} \rightarrow c_{0}\right) \stackrel{\text { def }}{=} \forall \rho$. $\llbracket \mathbf{i f} t$ then t_{0} else $t_{1} \rrbracket \rho=\llbracket c_{0} \rrbracket \rho$
$\llbracket i f t$ then t_{0} else $t_{1} \rrbracket \rho=\operatorname{Cond}\left(\llbracket t \rrbracket \rho, \llbracket t_{0} \rrbracket \rho, \llbracket t_{1} \rrbracket \rho\right)$

$$
\begin{aligned}
& =\operatorname{Cond}\left(\lfloor 0\rfloor, \llbracket t_{0} \rrbracket \rho, \llbracket t_{1} \rrbracket \rho\right) \\
& =\llbracket t_{0} \rrbracket \rho \\
& =\llbracket c_{0} \rrbracket \rho
\end{aligned}
$$

(by def. of $\llbracket \cdot \rrbracket)$
(by ind. hyp.)
(by def. of Cond)
(by ind. hyp.)
ifn) analogous (omitted)

TH. $t \rightarrow c \Rightarrow \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho$
$t \rightarrow\left(t_{0}, t_{1}\right) \quad t_{0} \rightarrow c_{0} \quad$ assume

$$
\begin{gathered}
P\left(t \rightarrow\left(t_{0}, t_{1}\right)\right) \stackrel{\text { def }}{=} \forall \rho . \llbracket t \rrbracket \rho=\llbracket\left(t_{0}, t_{1}\right) \rrbracket \rho \\
P\left(t_{0} \rightarrow c_{0}\right) \stackrel{\text { def }}{=} \forall \rho . \llbracket t_{0} \rrbracket \rho=\llbracket c_{0} \rrbracket \rho
\end{gathered}
$$

we prove $\quad P\left(\mathbf{f s t}(t) \rightarrow c_{0}\right) \stackrel{\text { def }}{=} \forall \rho . \llbracket \mathbf{f s t}(t) \rrbracket \rho=\llbracket c_{0} \rrbracket \rho$

$$
\begin{aligned}
\llbracket \mathbf{f s t}(t) \rrbracket \rho & =\pi_{1}^{*}(\llbracket \downarrow \rrbracket \rho) \\
& =\pi_{1}^{*}\left(\llbracket\left(t_{0}, t_{1}\right) \rrbracket \rho\right) \\
& =\pi_{1}^{*}\left(\left\lfloor\left(\llbracket t_{0} \rrbracket \rho, \llbracket t_{1} \rrbracket \rho\right)\right\rfloor\right) \\
& =\pi_{1}\left(\llbracket t_{0} \rrbracket \rho, \llbracket t_{1} \rrbracket \rho\right) \\
& =\llbracket t_{0} \rrbracket \rho \\
& =\llbracket c_{0} \rrbracket \rho
\end{aligned}
$$

(by def. of $\llbracket \rrbracket \rrbracket$)
(by ind. hyp.)
(by def. of $\llbracket \cdot \rrbracket$)
(by def. of lifting)
(by def. of π_{1})
(by ind. hyp.)
snd) analogous (omitted)

TH.

 $t \rightarrow c \Rightarrow \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho$$\left.t_{1} \rightarrow \lambda x . t_{1}^{\prime} \quad t_{1}^{\prime} t^{t_{0}} / x\right] \rightarrow c \quad$ assume

$$
\begin{aligned}
& P\left(t_{1} \rightarrow \lambda x . t_{1}^{\prime}\right) \stackrel{\text { def }}{=} \forall \rho . \llbracket t_{1} \rrbracket \rho=\llbracket \lambda x . t_{1}^{\prime} \rrbracket \rho \\
& \left.P\left(\left.t_{1}^{\prime}\right|^{t_{0}} / x\right] \rightarrow c\right) \stackrel{\text { def }}{=} \forall \rho .\left.\llbracket t_{1}^{\prime}\right|^{t_{0}} / x \rrbracket \rrbracket \rho=\llbracket c \rrbracket \rho
\end{aligned}
$$

we prove $P\left(\left(t_{1} t_{0}\right) \rightarrow c\right) \stackrel{\text { def }}{=} \forall \rho . \llbracket\left(t_{1} t_{0}\right) \rrbracket \rho=\llbracket c \rrbracket \rho$

$$
\begin{array}{rlrl}
\llbracket\left(t_{1} t_{0}\right) \rrbracket \rho & =\operatorname{let} \varphi \Leftarrow \llbracket t_{1} \rrbracket \rho \cdot \varphi\left(\llbracket t_{0} \rrbracket \rho\right) & & \text { (by definition of } \llbracket \cdot \rrbracket) \\
& =\operatorname{let} \varphi \Leftarrow \llbracket \lambda x \cdot t_{1}^{\prime} \rrbracket \rho \cdot \varphi\left(\llbracket t_{0} \rrbracket \rho\right) & & \text { (by ind. hypothesis) } \\
& \left.=\operatorname{let} \varphi \Leftarrow\left\lfloor\lambda d \cdot \llbracket t_{1}^{\prime} \rrbracket \rho \rho^{d} / x\right]\right\rfloor \cdot \varphi\left(\llbracket t_{0} \rrbracket \rho\right) & \text { (by definition of } \llbracket \cdot \rrbracket) \\
& =\left(\lambda d \cdot \llbracket t_{1}^{\prime} \rrbracket \rho\left[{ }^{d} / x\right]\right)\left(\llbracket t_{0} \rrbracket \rho\right) & & \text { (by de-lifting) } \\
& =\llbracket t_{1}^{\prime} \rrbracket \rho\left[\llbracket \rho_{0} \rrbracket \rho / x\right] & & \text { (by application) } \\
& \left.=\llbracket t_{1}^{\prime} t_{0} / x\right] \rrbracket \rho & & \text { (bybst. Lemma) ind. hypothesis) } \\
& =\llbracket c \rrbracket \rho &
\end{array}
$$

$$
\text { (by definition of } \llbracket \cdot \rrbracket \text {) }
$$

(by ind. hypothesis)
(by de-lifting)
(by application)
(by Subst. Lemma)
(by ind. hypothesis)

TH. $t \rightarrow c \Rightarrow \forall \rho . \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho$ (continue)
$t[\operatorname{rec} x . t / x] \rightarrow c \quad$ assume
$\operatorname{rec} x . t \rightarrow c$
$P(t[\mathrm{rec} x . t / x] \rightarrow c) \stackrel{\text { def }}{=} \forall \rho . \llbracket t\left[{ }^{\mathrm{rec} x . t} / x\right] \rrbracket \rho=\llbracket c \rrbracket \rho$
we prove $\quad P(\operatorname{rec} x . t \rightarrow c) \stackrel{\text { def }}{=} \forall \rho . \llbracket \mathbf{r e c} x . t \rrbracket \rho=\llbracket c \rrbracket \rho$

$$
\begin{aligned}
\llbracket \text { rec } x . t \rrbracket \rho & =\llbracket t \rrbracket \rho[\llbracket \operatorname{rec} x . t \rrbracket \rho / x] \\
& =\llbracket t[\operatorname{rec} x \cdot t / x] \rrbracket \rho \\
& =\llbracket c \rrbracket \rho
\end{aligned}
$$

(by the Substitution Lemma)
(by inductive hypothesis)

HOFL convergence Operational vs Denotational

Operational convergence

$$
\begin{aligned}
& t: \tau \text { closed } \\
& t \downarrow \quad \Leftrightarrow \quad \exists c \in C_{\tau} . t \longrightarrow c \\
& t \uparrow \Leftrightarrow \neg t \downarrow
\end{aligned}
$$

Examples

$$
\begin{array}{r}
\operatorname{rec} x . x \\
\lambda y . \operatorname{rec} x . x \\
\hline
\end{array}
$$

$$
(\lambda y . \operatorname{rec} x . x) 0 \uparrow
$$

if 0 then 1 else rec $x . x \downarrow$

Denotational converg.

$t: \tau$ closed
$t \Downarrow \Leftrightarrow \quad \forall \rho \in E n v, \exists v \in V_{\tau} . \llbracket t \rrbracket \rho=\lfloor v\rfloor$
$t \Uparrow \Leftrightarrow \neg t \Downarrow$

Examples

$$
\begin{array}{r}
\llbracket \operatorname{rec} x . x \rrbracket \rho \Uparrow \\
\llbracket \lambda y \cdot \operatorname{rec} x . x \rrbracket \rho \Downarrow \\
\llbracket(\lambda y \cdot \operatorname{rec} x . x) 0 \rrbracket \rho \Uparrow
\end{array}
$$

【if 0 then 1 else rec $x . x \rrbracket \rho \Downarrow$

Consistency on converg.

TH. $t: \tau$ closed $\quad t \downarrow \Rightarrow t \Downarrow$
proof. $\quad t \downarrow \Rightarrow t \rightarrow c$

$$
\begin{array}{lll}
\Rightarrow & \forall \rho \cdot \llbracket t \rrbracket \rho=\llbracket c \rrbracket \rho & \\
\text { by corr } \\
\Rightarrow & \forall \rho \cdot \llbracket t \rrbracket \rho \neq \perp & \\
\text { canonic } \\
\Rightarrow & t \Downarrow & \text { by def }
\end{array}
$$

by def (for some c)
by correctness

$$
\Rightarrow \quad \forall \rho . \llbracket t \rrbracket \rho \neq \perp \quad \text { canonical } \quad \llbracket c \rrbracket \rho \neq \perp
$$

TH. $t: \tau$ closed $\quad t \Downarrow \Rightarrow t \downarrow$
the proof is not part of the program of the course (structural induction would not work)

HOFL equivalence
 Operational vs Denotational

HOFL equivalences

$$
\begin{aligned}
& t_{0}, t_{1}: \tau \quad \text { closed } \\
& t_{0} \equiv_{\mathrm{op}} t_{1} \quad \text { iff } \quad \forall c . t_{0} \rightarrow c \Leftrightarrow t_{1} \rightarrow c \\
& t_{0} \equiv_{\operatorname{den}} t_{1} \quad \text { iff } \quad \forall \rho . \llbracket t_{0} \rrbracket \rho=\llbracket t_{1} \rrbracket \rho
\end{aligned}
$$

Op is more concrete

TH. $\equiv_{\mathrm{op}} \subseteq \equiv_{\mathrm{den}}$

proof. take $t_{0}, t_{1}: \tau$ closed, such that $t_{0} \equiv_{\mathrm{op}} t_{1}$ either $\exists c . t_{0} \rightarrow c \wedge t_{1} \rightarrow c$ or $t_{0} \uparrow \wedge t_{1} \uparrow$
if $\exists c . t_{0} \rightarrow c \wedge t_{1} \rightarrow c$
by correctness $\forall \rho . \llbracket t_{0} \rrbracket \rho=\llbracket c \rrbracket \rho=\llbracket t_{1} \rrbracket \rho$ thus $t_{0} \equiv_{\operatorname{den}} t_{1}$
if $t_{0} \uparrow \wedge t_{1} \uparrow$
by agreement on convergence $t_{0} \Uparrow \wedge t_{1} \Uparrow$
i.e. $\forall \rho . \llbracket t_{0} \rrbracket \rho=\perp_{D_{\tau}}=\llbracket t_{1} \rrbracket \rho \quad$ thus $t_{0} \equiv_{\operatorname{den}} t_{1}$

Den is strictly more abstract

TH. $\equiv_{\text {den }} \nsubseteq \equiv_{\mathrm{op}}$
proof.
see previous counterexample
x : int
$c_{0}=\lambda x . x+0$
$c_{1}=\lambda x . x$

Consistency on int

TH. t : int closed $\quad t \rightarrow n \quad \Leftrightarrow \quad \forall \rho . \llbracket t \rrbracket \rho=\lfloor n\rfloor$
proof.

$$
\Rightarrow) \text { if } t \rightarrow n \text { then } \llbracket t \rrbracket \rho=\llbracket n \rrbracket \rho=\lfloor n\rfloor
$$

$\Leftarrow)$ if $\llbracket t \rrbracket \rho=\lfloor n\rfloor$ it means $t \Downarrow$ by agreement on convergence $t \downarrow$ thus $t \rightarrow m$ for some m but then by correctness $\llbracket t \rrbracket \rho=\llbracket m \rrbracket \rho=\lfloor m\rfloor$ and it must be $m=n$

Equivalence on int

TH. $\quad t_{0}, t_{1}:$ int $\quad t_{0} \equiv_{\mathrm{op}} t_{1} \Leftrightarrow t_{0} \equiv_{\text {den }} t_{1}$
proof. we know $t_{0} \equiv_{\mathrm{op}} t_{1} \Rightarrow t_{0} \equiv{ }_{\operatorname{den}} t_{1}$

$$
\text { we prove } t_{0} \equiv{ }_{\mathrm{den}} t_{1} \Rightarrow t_{0} \equiv_{\mathrm{op}} t_{1}
$$

assume $t_{0} \equiv_{\operatorname{den}} t_{1}$ either $\forall \rho . \llbracket t_{0} \rrbracket \rho=\perp_{\mathbb{Z}_{\perp}}=\llbracket t_{1} \rrbracket \rho$

$$
\text { or } \forall \rho . \llbracket t_{0} \rrbracket \rho=\lfloor n\rfloor=\llbracket t_{1} \rrbracket \rho \text { for some } n
$$

if $\forall \rho . \llbracket t_{0} \rrbracket \rho=\perp_{\mathbb{Z}_{\perp}}=\llbracket t_{1} \rrbracket \rho$ then $t_{0} \Uparrow, t_{1} \Uparrow$
by agreement on convergence $t_{0} \uparrow, t_{1} \uparrow$ thus $t_{0} \equiv{ }_{\mathrm{op}} t_{1}$
if $\forall \rho . \llbracket t_{0} \rrbracket \rho=\lfloor n\rfloor=\llbracket t_{1} \rrbracket \rho$ then $t_{0} \rightarrow n, t_{1} \rightarrow n$ thus $t_{0} \equiv_{\text {op }} t_{1}$

HOFL Unlifted Semantics

Unlifted Domains

$$
\begin{aligned}
D_{\tau} & \triangleq\left(V_{\tau}\right)_{\perp} \quad \text { lifted domains } \\
V_{\text {int }} & \triangleq \mathbb{Z} \\
V_{\tau_{1} * \tau_{2}} & \triangleq D_{\tau_{1}} \times D_{\tau_{2}}=\left(V_{\tau_{1}}\right)_{\perp} \times\left(V_{\tau_{2}}\right)_{\perp} \\
V_{\tau_{1} \rightarrow \tau_{2}} & \triangleq\left[D_{\tau_{1}} \rightarrow D_{\tau_{2}}\right]=\left[\left(V_{\tau_{1}}\right)_{\perp} \rightarrow\left(V_{\tau_{2}}\right)_{\perp}\right]
\end{aligned}
$$

unlifted domains

$$
\begin{aligned}
U_{i n t} & \triangleq \mathbb{Z}_{\perp} \\
U_{\tau_{1} * \tau_{2}} & \triangleq U_{\tau_{1}} \times U_{\tau_{2}} \\
U_{\tau_{1} \rightarrow \tau_{2}} & \triangleq\left[U_{\tau_{1}} \rightarrow U_{\tau_{2}}\right]
\end{aligned}
$$

Unlifted Semantics

as before

$$
\begin{gathered}
\langle n \downarrow \rho \triangleq\lfloor n\rfloor \\
(x \mid \rho \triangleq \rho(x) \\
\left(t_{1} \text { op } t_{2}\right) \rho \triangleq\left(t_{1}\right\rangle \rho \underline{\text { op }}_{\perp}\left(t_{2}\right) \rho
\end{gathered}
$$

(if t then t_{1} else $\left.t_{2}\right) \rho \triangleq \operatorname{Cond}_{\tau}\left((t) \rho,\left(t_{1}\right) \rho,\left(t_{2}\right) \rho\right)$
$(\operatorname{rec} x . t) \rho \triangleq f i x \lambda d$. (tt) $\rho\left[^{d} / x\right]$
without lifting

$$
\left(\left(t_{1}, t_{2}\right) D \rho \triangleq\left(\left(t_{1}\right) \rho,\left(t_{2}\right) \rho\right)\right.
$$

$$
\left(\operatorname{fst}(t) D \rho \triangleq \pi_{1}((0 t) \rho)\right.
$$

$$
\left(\operatorname{snd}(t) D \rho \triangleq \pi_{2}(0 t) \rho\right)
$$

$$
\begin{aligned}
& (\lambda x . t) \rho \triangleq \lambda d .(t) \rho\left[^{d} / x\right] \\
& \left(t t_{0} D \rho \triangleq((t t) \rho)\left(\left(t_{0}\right) \rho\right)\right.
\end{aligned}
$$

Inconsistency on converg.

 $t_{1} \triangleq \operatorname{rec} x . x: i n t \rightarrow i n t \quad t_{2} \triangleq \lambda y . \operatorname{rec} z . z: i n t \rightarrow i n t$ $x:$ int \rightarrow int $y, z: i n t$$$
D_{i n t \rightarrow i n t}=\left[\mathbb{Z}_{\perp} \rightarrow \mathbb{Z}_{\perp}\right]_{\perp}
$$

$$
\llbracket t_{1} \rrbracket \rho=\perp_{\left[\mathbb{Z}_{\perp} \rightarrow \mathbb{Z}_{\perp}\right]_{\perp}}
$$

$$
\llbracket t_{2} \rrbracket \rho=\left\lfloor\perp_{\left[\mathbb{Z}_{\perp} \rightarrow \mathbb{Z}_{\perp}\right]}\right\rfloor
$$

$t_{1} \Uparrow$
$t_{2} \Downarrow$
$t_{1} \uparrow$

$$
t_{2} \downarrow \quad t_{2} \rightarrow t_{2}
$$

$$
U_{i n t \rightarrow \text { int }}=\left[\mathbb{Z}_{\perp} \rightarrow \mathbb{Z}_{\perp}\right]
$$

$\left(t_{1}\right) \rho=\perp_{\left[\mathbb{Z}_{\perp} \rightarrow \mathbb{Z}_{\perp}\right]}$

$$
\left(t_{2}\right) \rho=\perp_{\left[\mathbb{Z}_{\perp} \rightarrow \mathbb{Z}_{\perp}\right]}=\lambda d . \perp_{\mathbb{Z}_{\perp}}
$$

$t_{1} \Uparrow$ unlifted

$$
t_{2} \downarrow \nRightarrow t_{2} \Downarrow_{\text {unlifted }}
$$

