[Ex. 1] Two processes \(p_1 \) and \(p_2 \) want to access a single shared resource \(r \). Consider the atomic propositions:

- \(\text{req}_i \): holds when process \(p_i \) is requesting access to \(r \);
- \(\text{use}_i \): holds when process \(p_i \) has had access to \(r \);
- \(\text{rel}_i \): holds when process \(p_i \) has released \(r \).

with \(i \in [1, 2] \). Use LTL formulas to specify the following properties:

1. mutual exclusion: \(r \) is accessed by only one process at a time;
2. release: every time \(p_1 \) accesses \(r \), it releases \(r \) after some time;
3. priority: whenever both \(p_1 \) and \(p_2 \) require \(r \), \(p_1 \) is granted access first;
4. no starvation: whenever \(p_1 \) requires \(r \), it is eventually granted access.

[Ex. 2] Three dogs live in a house with two couches and a front garden. Let \(\text{couch}_{i,j} \) represent the predicate “the dog \(i \) sits on couch \(j \)” and \(\text{garden}_i \) represent the predicate “the dog \(i \) plays in the front garden”.

1. Write an LTL formula expressing the fact that whenever dog 1 plays in the garden then he keeps playing until he sits on some couch (but he may also play forever).
2. Write a CTL formula expressing the fact that dog 2 eventually plays in the garden whenever couch 1 is occupied by another dog.
3. Write a \(\mu \)-calculus formula expressing the fact that no more than one couch is occupied at any time by dog 3.

[Ex. 3] Given the \(\mu \)-calculus formula \(\Phi = \mu x.((p \land \Box x) \lor (\neg p \land \Diamond x)) \) write its denotational semantics \([\Phi]_\rho \) and evaluate it on the LTS below (where \(V = \{s_1, s_2, s_3, s_4\} \) and \(P = \{p\} \)).
[Ex. 4] Write a GoogleGo function that takes one channel `ini` for receiving integers and one channel `ins` for receiving strings and returns a channel `outp` where all the messages received on `ini` and `ins` will be paired.

Hint: define a `struct` to form pairs

[Ex. 5] Write a GoogleGo function that takes two channels `f` and `q` and tries to send the stream of Fibonacci numbers on `f` but quits when it receives `true` on channel `q`. Write a `main` program to test the function by printing the first 10 Fibonacci numbers.

[Ex. 6] The *asynchronous* π-calculus requires that outputs have no continuation:

\[
p ::= \text{nil} \mid x(y) \mid x(y).p \mid \tau.p \mid [x = y]p \mid p + p \mid p|p \mid (x)p \mid \!p
\]

Show that any process in the original π-calculus can be represented in the asynchronous π-calculus using an extra (fresh) channel to simulate explicit acknowledgement of name transmission.

[Ex. 7] The *polyadic* π-calculus allows communicating more than one name in a single action, i.e., its action prefixes are of the form:

\[
\pi ::= \tau \mid x(z_1, \ldots, z_n) \mid \pi(z_1, \ldots, z_n)
\]

The polyadic extension is useful especially when studying types for name passing processes. Show that the polyadic π-calculus can be encoded in the ordinary (monadic) π-calculus by passing the name of a private channel through which the multiple arguments are then passed in a sequence.