
Principles for software composition 2022/23
07 - Temporal and modal logics, GoogleGo and pi-calculus

[Ex. 1] Two processes p1 and p2 want to access a single shared resource r.
Consider the atomic propositions:

reqi: holds when process pi is requesting access to r;
usei: holds when process pi has had access to r;
reli: holds when process pi has released r.

with i ∈ [1, 2]. Use LTL formulas to specify the following properties:

1. mutual exclusion: r is accessed by only one process at a time;

2. release: every time p1 accesses r, it releases r after some time;

3. priority : whenever both p1 and p2 require r, p1 is granted access first;

4. no starvation: whenever p1 requires r, it is eventually granted access.

[Ex. 2] Three dogs live in a house with two couches and a front garden.
Let couch i,j represent the predicate “the dog i sits on couch j” and garden i

represent the predicate “the dog i plays in the front garden”.

1. Write an LTL formula expressing the fact that whenever dog 1 plays
in the garden then he keeps playing until he sits on some couch (but
he may also play forever).

2. Write a CTL formula expressing the fact that dog 2 eventually plays
in the garden whenever couch 1 is occupied by another dog.

3. Write a µ-calculus formula expressing the fact that no more than one
couch is occupied at any time by dog 3.

[Ex. 3] Given the µ-calculus formula Φ = µx.((p ∧ □x) ∨ (¬p ∧ ♢x)) write
its denotational semantics JΦK ρ and evaluate it on the LTS below (where
V = {s1, s2, s3, s4} and P = {p}).

s1 //

''

s2

s4p s3

OO

oo

[Ex. 4] Write a GoogleGo function that takes one channel ini for receiving
integers and one channel ins for receving strings and returns a channel outp
where all the messages received on ini and ins will be paired.
Hint: define a struct to form pairs

[Ex. 5] Write a GoogleGo function that takes two channels f and q and tries
to send the stream of Fibonacci numbers on f but quits when it receives true
on channel q. Write a main program to test the function by printing the first
10 Fibonacci numbers.

[Ex. 6] The asynchronous π-calculus requires that outputs have no contin-
uation:

p ::= nil | x⟨y⟩ | x(y).p | τ.p | [x = y]p | p+ p | p|p | (x)p | !p

Show that any process in the original π-calculus can be represented in the
asynchronous π-calculus using an extra (fresh) channel to simulate explicit
acknowledgement of name transmission.

[Ex. 7] The polyadic π-calculus allows communicating more than one name
in a single action, i.e., its action prefixes are of the form:

π ::= τ | x⟨z1, ...zn⟩ | x(z1, ...zn)

The polyadic extension is useful especially when studying types for name
passing processes. Show that the polyadic π-calculus can be encoded in
the ordinary (monadic) π-calculus by passing the name of a private channel
through which the multiple arguments are then passed in a sequence.

