Principles for software composition 2022/23
07 - Temporal and modal logics, GoogleGo and pi-calculus

[Ex. 1] Two processes p; and p; want to access a single shared resource 7.
Consider the atomic propositions:

req;: holds when process p; is requesting access to r;

use;: holds when process p; has had access to r;

rel;: holds when process p; has released 7.
with i € [1,2]. Use LTL formulas to specify the following properties:

1. mutual exclusion: r is accessed by only one process at a time;
2. release: every time p; accesses r, it releases r after some time;
3. priority: whenever both p; and p, require r, p; is granted access first;

4. no starvation: whenever p; requires r, it is eventually granted access.

[Ex. 2] Three dogs live in a house with two couches and a front garden.
Let couch; ; represent the predicate “the dog 4 sits on couch ;7 and garden;
represent the predicate “the dog ¢ plays in the front garden”.

1. Write an LTL formula expressing the fact that whenever dog 1 plays
in the garden then he keeps playing until he sits on some couch (but
he may also play forever).

2. Write a CTL formula expressing the fact that dog 2 eventually plays
in the garden whenever couch 1 is occupied by another dog.

3. Write a p-calculus formula expressing the fact that no more than one
couch is occupied at any time by dog 3.

[Ex. 3] Given the p-calculus formula ® = pz.((p A Oz) V (—p A Qx)) write
its denotational semantics [®] p and evaluate it on the LTS below (where

V = {s1, 82,583,584} and P = {p}).

ﬁ)‘@

P (o (53)

[Ex. 4] Write a GoogleGo function that takes one channel ini for receiving
integers and one channel ins for receving strings and returns a channel outp
where all the messages received on ini and ins will be paired.

Hint: define a struct to form pairs

[Ex. 5] Write a GoogleGo function that takes two channels £ and q and tries
to send the stream of Fibonacci numbers on £ but quits when it receives true
on channel q. Write a main program to test the function by printing the first
10 Fibonacci numbers.

[Ex. 6] The asynchronous m-calculus requires that outputs have no contin-
uation:

pu=mnil [Z(y) | z@)p | 7p | [x=ylp | p+p | plp | ()p |lp

Show that any process in the original m-calculus can be represented in the
asynchronous 7-calculus using an extra (fresh) channel to simulate explicit
acknowledgement of name transmission.

[Ex. 7] The polyadic w-calculus allows communicating more than one name
in a single action, i.e., its action prefixes are of the form:

=1 | T(z1,.zm) | x(21,...20)

The polyadic extension is useful especially when studying types for name
passing processes. Show that the polyadic m-calculus can be encoded in
the ordinary (monadic) m-calculus by passing the name of a private channel
through which the multiple arguments are then passed in a sequence.

