[Ex. 1] Write a server in erlang to convert temperatures from Celsius degrees to Fahrenheit degrees and vice versa, using the formula $F = 1.8C + 32$. The server receives requests of the form (Pid, cs, C) or (Pid, ft, F) and replies to Pid by sending messages in analogous format. The server can be stopped by sending the message `stop`. All the other messages are ignored. Spawn a copy of the server, send it some temperatures to convert, check out the results and stop the server.

[Ex. 2] Write an erlang function `copy` that receives an integer n and if n is positive it prints n copies of n (one per line). Write an erlang function that receives a list of integers and spawn an instance of `copy` for each integer in the list.

[Ex. 3] Write an erlang function `view` that displays the content of the mailbox but makes all messages remain available in the mailbox afterwards.

[Ex. 4] Define a CCS process B_n^k that represents an in/out buffer with capacity n of which k positions are taken. Show that B_n^0 is strongly bisimilar to n copies of B_1^0 that run in parallel.

[Ex. 5] Write a guarded CCS process whose LTS has infinitely many states without using parallel composition.

[Ex. 6] Prove that CCS strong bisimilarity is a congruence w.r.t. restriction, i.e., that for all p, q, α:

\[p \simeq q \Rightarrow p \\backslash \alpha \simeq q \\backslash \alpha \]

[Ex. 7] Prove that the CCS agents

\[p \equiv \alpha.(\alpha.\beta.\text{nil} + \alpha.(\beta.\text{nil} + \gamma.\text{nil})) \quad \text{and} \quad q \equiv \alpha.(\alpha.\beta.\text{nil} + \alpha.\gamma.\text{nil}) \]

are not strong bisimilar.

[Ex. 8] Let us consider the guarded CCS processes

\[p \equiv \text{rec } x.(\alpha.x + \beta.x) \quad q \equiv \text{rec } y.(\alpha.\text{nil} + \gamma.y) \quad r \equiv \text{rec } z.(\beta.\text{nil} + \gamma.z) \]

1. Draw the LTSs of the processes p, q, r and $s \equiv (p|q|r)\\backslash \alpha\\backslash \beta\\backslash \gamma$.

2. Show that s is strong bisimilar to the process \(t \equiv \text{rec } w.(\tau.w + \tau.\tau.\text{nil}) \).

[Ex. 9] Prove that the following property is valid for any agent p, where \approx is the weak bisimilarity:

\[p + \tau.p \approx \tau.p \]