[Ex. 1] A list is palindrome if it is the same when scanned from left to right and from right to left. For example, the strings "noon" and "civic" are palindrome.
Write a Haskell function \texttt{pal} that checks if a list is palindrome.

[Ex. 2] Using the function \texttt{pal} from Ex. 1, write a Haskell function that takes a list of lists \texttt{xxs} and returns the list of palindrome lists in \texttt{xxs}.

[Ex. 3] Write a Haskell function \texttt{select} that takes a list of integers and return the list of elements that are followed by its immediate successor. For example, \texttt{select \{1,2,5,7,3,4\}} must evaluate to \{1,3\}.

[Ex. 4] Write a Haskell function \texttt{points} that takes a function \texttt{f :: Int -> Int} and the extremes of an interval and returns the list of points \((x,f(x))\) for all the values in the interval.

[Ex. 5] A positive natural number is called perfect if it is equal to the sum of its proper positive divisors. For example 6 = 1+2+3 and 28 = 1+2+4+7+14 are perfect numbers.
Write some Haskell code to generate the list of all perfect numbers.

[Ex. 6] Write some Haskell code that generates the list of Fibonacci numbers.

[Ex. 7] Collatz’s chains are built as follows: the chain starts with a positive number: if it is 1 we stop; if it is even we continue the chain dividing it by 2; if it is odd we continue the chain by multiplying it by 3 and adding 1. Examples of Collatz’s chains are \{3,10,5,16,8,4,2,1\} and
\{7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1\}.
It is conjectured that for all starting numbers the chains finish at the number 1. Write some Haskell code to compute what is the smallest number whose Collatz’s chain has a length greater than 500.

[Ex. 8] Define a new Haskell data structure for representing triangles on a cartesian plane and two functions for computing their perimeter and area. \textit{Hint:} given the lengths \(a, b, c\) of the sides of the triangle and letting \(s = \frac{a+b+c}{2}\) the semi-perimeter, you can use Heron’s formula to compute the area as the square root of \(s(s-a)(s-b)(s-c)\).
\textit{Note:} Heron’s formula as given above is numerically unstable for triangles with a very small angle when using floating point arithmetic.