Principles for software composition 2022/23 03 - Well founded recursion, posets and semantics

[Ex. 1] Define by well-founded recursion the function *vars* that, given an arithmetic expression a, returns the set of identifiers that appear in a. Then, prove by rule induction that $\forall a \in Aexp, \forall \sigma \in \Sigma, \forall n \in \mathbb{Z}$

 $\langle a, \sigma \rangle \to n$ implies $\forall \sigma'. ((\forall y \in vars(a). \sigma(y) = \sigma'(y)) \Rightarrow \langle a, \sigma' \rangle \to n).$

[Ex. 2] Define by well-founded recursion the function vars that, given a command, returns the set of identifiers that appear on the left-hand side of some assignment. Then, prove by rule induction that $\forall c \in Com, \forall \sigma, \sigma' \in \Sigma$

 $\langle c, \sigma \rangle \to \sigma'$ implies $\forall x \notin vars(c). \ \sigma(x) = \sigma'(x).$

[Ex. 3] Consider the CPO_{\perp} ($\wp(\mathbb{N}), \subseteq$). Prove that for any set $S \subseteq \mathbb{N}$:

- 1. the function $f_S: \wp(\mathbb{N}) \to \wp(\mathbb{N})$ such that $f_S(X) = X \cap S$ is continuous.
- 2. the function $g_S : \wp(\mathbb{N}) \to \wp(\mathbb{N})$ such that $g_S(X) = X \cup S$ is continuous.

[Ex. 4] Prove that any limit-preserving function is monotone.

[Ex. 5] Let $D = \{n \in \mathbb{N} \mid n > 0\} \cup \{\infty\}$ and $\subseteq \subseteq (D \times D)$ such that

- for any $n, m \in D \cap \mathbb{N}$, we let $n \sqsubseteq m$ iff n divides m;
- for any $x \in D$, we let $x \sqsubseteq \infty$.

Is (D, \sqsubseteq) a CPO_{\perp}? Explain.

[Ex. 6] Define two functions $f_i : D_i \to D_i$ over two suitable CPOs D_i for $i \in [1, 2]$ (not necessarily with bottom) such that

- 1. f_1 is continuous, has fixpoints but not a least fixpoint;
- 2. f_2 is continuous and has no fixpoint;

[Ex. 7] Let D, E be two $CPO_{\perp}s$ and $f : D \to E, g : E \to D$ be two continuous functions between them. Their compositions $h = g \circ f : D \to D$ and $k = f \circ g : E \to E$ are known to be continuous and thus have least fixpoints.

$$h = g \circ f \bigcap D \xrightarrow{f} E \bigcap k = f \circ g$$

Let $e_0 = \text{fix}(k) \in E$. Prove that $g(e_0) = \text{fix}(h) \in D$ by showing that

- 1. $g(e_0)$ is a fixpoint for h, and
- 2. $g(e_0)$ is the least pre-fixpoint for h. *Hint:* first prove that whenever d is a pre-fixpoint for h then f(d) is a pre-fixpoint for k.