
 

Università degli Studi di Pisa 

Laurea Specialistica in Informatica 

 

Advanced Programming 

Final Term Paper 

Copyright © 2015, Giuseppe Attardi. 

Only copies for strictly personal use, in order to prepare the submission, are allowed. Any other use is 

forbidden and will be persecuted. 

Start Date: 31/01/2015 
Submission deadline: 20/02/2015 (send a single PDF file to attardi@di.unipi.it) 

 
Rules: 

The paper must be produced personally by the student, signed implicitly via his mail address. 

You are allowed to discuss with others the general lines of the problems, provided that each student 

eventually formulates his own solution. Each student is expected to understand and to be able to explain his 

solution. 

You are allowed to consult documentation from any source, provided that references are mentioned. 

It is not considered acceptable: 

 to consult or setup an online forum, to request help of consultants in producing the paper 

 to develop code or pseudo-code with others 

 to use code written by others 

 to let others use someone’s code 

 to show or to examine the work of other students. 

Violation of these rules will result in the cancellation of the exam and a report to the Presidente del Consiglio di 

Corso di Studio. 

For the programming exercises you can choose a programming language among C++, C# and Java.  

 
 

Introduction 

In this project, you will develop a DSL for game development, called GSL (Game Specification Language). Here 

is an example of the description of a simplified Space Invaders game 

(https://en.wikipedia.org/wiki/Space_Invaders), where a cannon is moved horizontally and shoots at a horde of 

descending aliens. The player controls the cannon with the keyboard arrows and shoots a laser beam by pressing 

the space bar. If the beam reaches an alien it is destroyed, while if an alien lands on the bottom, the game is lost. 

For simplicity assume there is a single row of aliens, aliens do not drop bombs and there are no defense 

bunkers as in the original game. 
 

<Game> 

   <State> <Start/> <Play/> <Win/> <Lose/> </State> 

   <Control> 

      <Keyboard> <Left/> <Right/> <Space/> </Keyboard> 

   </Control> 

The paper must: 

1. be in a single PDF file, formatted readably (font size ≥ 10 pt with suitable margins, single column), 

of no more than 10 numbered pages, including code: for each extra page one point will be 

subtracted from the score. 

2. include the student name 

3. provide the solution and the code for each exercise separately, referring to the code of other 

exercises if necessary. 

4. cite references to literature or Web pages from where information was taken. 



2 

   <Rule> <Destruction/> </Rule> 

   <Scene> 

      <Transition> <MoveAliens/> <MoveBeam/> </Transition> 

      <Graphics> <BattleField/> </Graphics> 

      <Events> 

         <ShootBeam/> 

         <MoveCannonLeft/> 

         <MoveCannonRight/> 

         <AlienShooted/> 

         <AliensLanding/> 

      </Events> 

   </Scene> 

</Game> 

The GSL is used to generate code for the game, by means of XSLT transformations. Just for illustrative 

purposes, here are some fragments of transformations that use JavaScript as target implementation language: 
 

<xsl:template match="/Game"> 

  var game = new Game(); 

  var currentState = new Start(); 

  window.addEventListener("keydown", function keydown(evt) { 

    var keycode = evt.which || window.event.keycode; 

    game.keyDown(keycode); 

  } 

  setInterval(function() { game.step(); }, 16); // timer 

  … 

</xslt:template> 

 

<xsl:template match="/Game/State/Win"> 

  Win.prototype = new GameState(); // inheritance 

  Win.prototype.enter = function(session, params) { 

      // session is a GameSession 

      session.setStatus("Win"); 

  } 

  Win.prototype.draw(…) { … } 

</xsl:template> 

 

<xsl:template match="/Game/Control/Keyboard/Space"> 

   if (keycode == 32)) // space 

      game.session.fire(new ShootBeam()); 

</xsl:template> 

Exercise 1 

Design a set of classes to represent the syntax of GSL, a subset of XML without attributes and GSLT 

transformations, a minimal subset of XSLT, whose tags only use a single attribute “match”. 

Exercise 2 

Implement a recursive descent parser for GSL and GSLT without using external libraries or parser generators. 

Split the parser into a lexical analyzer, recognizing as tokens just tags and text, and a syntax analyzer, as 

presented in the slides of the course. 

Exercise 3 

Design a set of classes to represent a game, including one for each of the element in GSL, and provide methods 

that implement a generic game mechanism, for example initialization, event firing, state transition and rule 

application. Explain the role of each class, for example, by a state transition diagram. 

Exercise 4 

Write a minimal XSL transformer, as a method on GSL trees, to which a set of XSLT transformations is passed, 

and which applies the proper transformation to that GSL tree, in order to produce the code for running the game. 



3 

Exercise 5 

Build a full Space Invaders game, completing the GSL and the GSLT of the introduction. 

Exercise 6 

Describe the technique of tracing garbage collection. Explain which information the garbage collector needs to 

know about the runtime data structures and the program data structures in order to perform its task. Explain how 

the collector can obtain such information. Explain why it is difficult to design a collector that could work on 

code produced by compilers for different programming languages. Discuss any relation or similarity between the 

information required by a garbage collection and that provided by reflection facilities.   


