
 

Università degli Studi di Pisa 

Laurea Magistrale in Informatica 

 

Advanced Programming 

Middle Term Paper 

 

Start Date: 13/11/2013 
Submission deadline: 20/12/2013 (send a single PDF file to attardi@di.unipi.it) 

 
Rules: 

The paper must be produced personally by the student, signed implicitly via his mail address. 

You are allowed to discuss with others the general lines of the problems, provided that each student 

eventually formulates his own solution. Each student is expected to understand and to be able to explain his 

solution. 

You are allowed to consult documentation from any source, provided that references are mentioned. 

It is not considered acceptable: 

 to consult or setup an online forum, to request help of consultants in producing the paper 

 to develop code or pseudo-code with others 

 to use code written by others 

 to let others use someone’s code 

 to show or to examine the work of other students. 

Violation of these rules will result in the cancellation of the exam and a report to the Presidente del Consiglio di 

Corso di Studio. 

For the programming exercises you can choose a programming language among C++, C# and Java.  

 

Exercise 1 

Consider a set of tasks among which there is a partial ordering expressing the constraint that a task must precede 

another. Define a set of classes to represent such tasks and their precedencies (without storing information 

outside the task objects). 

Implement an iterator that lists all possible total orderings that satisfy the precedencies among tasks. An 

iterator is a class providing an interface like this: 
interface Iterator<T> { 

 bool  HasNext(); 

 T Next(); 

} 

Exercise 2 

Extend the previous classes, in order to represent the duration of a task. Implement a method that finds an 

assignment of tasks to n processors which minimizes the overall execution time. 

The paper must: 

1. be in a single PDF file, formatted readably (font size ≥ 10 pt with suitable margins, single column), 

of no more than 10 numbered pages, including code: for each extra page one point will be 

subtracted from the score. 

2. include the student name 

3. provide the solution and the code for each exercise separately, referring to the code of other 

exercises if necessary. Do not include in an exercise code only needed for a later exercise. 

4. cite references to literature or Web pages from where information was taken. 



2 

Exercise 3 

Extend the previous methods and/or classes so that the iterator will return no solution if there are cycles in the 

dependencies. 

Exercise 4 

Discuss and propose how to implement (as pseudocode) a generic iterator class using threads that provides a 

yield(x) method for returning x as a result of a call to Next(). 

Exercise 5 

Illustrate the constructs of threads in a programming language of your choice. What is the relation between a 

yield method on threads and the yield operator on iterators? 

 

 


