
MapReduce
&	Pig	&	Spark

IoannaMiliou
Giuseppe	Attardi

Advanced	Programming	
Università	di	Pisa

Hadoop
• The	Apache™	Hadoop®	project	develops	open-source	software	for	

reliable,	scalable,	distributed	computing.

• Framework	that	allows	for	the	distributed	processing	of	large	data	sets	
across	clusters	of	computers	using	simple	programming	models.	

• It	is	designed	to	scale	up	from	single	servers	to	thousands	of	machines,	
each	offering	local	computation	and	storage.	

• It	is	designed	to	detect	and	handle	failures	at	the	application	layer.

The	core	of	Apache	Hadoop	consists	of	a	storage	part,	known	as	Hadoop	
Distributed	File	System	(HDFS),	and	a	processing	part	called	MapReduce.

Hadoop
• The	project	includes	these	modules:

– Hadoop	Common:	The	common	utilities	that	support	the	other	
Hadoop	modules.

– Hadoop	Distributed	File	System	(HDFS):	A	distributed	file	
system	that	provides	high-throughput	access	to	application	
data.

– Hadoop	YARN:	A	framework	for	job	scheduling	and	cluster	
resource	management.

– Hadoop	MapReduce:	A	YARN-based	system	for	parallel	
processing	of	large	data	sets.

Hadoop
• Other	Hadoop-related	projects	at	Apache	include:

– Ambari:	A	web-based	tool	for	provisioning,	 managing,	 and	monitoring	 Apache	
Hadoop.	

– Avro:	A	data	serialization	system.
– Cassandra:	A	scalable	multi-master	database	with	no	single	points	of	failure.
– Chukwa:	A	data	collection	system	for	managing	 large	distributed	 systems.
– HBase:	A	scalable,	distributed	database	that	supports	 structured	data	storage	

for	large	tables.
– Hive:	A	data	warehouse	infrastructure	that	provides	data	summarization	and	

ad	hoc	querying.
– Mahout:	A	Scalable	machine	learning	and	data	mining	 library.
– Tez:	A	generalized	data-flow	programming	 framework,	built	on	Hadoop	YARN,	

which	provides	a	powerful	and	flexible	engine	 to	execute	an	arbitrary	DAG	of	
tasks	to	process	data	for	both	batch	and	interactive	use-cases.	

– ZooKeeper:	A	high-performance	 coordination	service	for	distributed	
applications.

Hadoop
– Pig	:	A	high-level	data-flow	language	and	execution	
framework	for	parallel	computation.

– Spark	:	A	fast	and	general	compute	engine	for	Hadoop	
data.	Spark	provides	a	simple	and	expressive	programming	
model	that	supports	a	wide	range	of	applications,	
including	ETL,	machine	learning,	stream	processing,	and	
graph	computation.

Hadoop	Stack

What	is	MapReduce?

• MapReduce	is	the	heart	of	Hadoop®

• Programming	paradigm	that	allows	for	massive	
scalability	across	hundreds	or	thousands	of	servers	in	
a	Hadoop	cluster.	

Proposed	by	Dean	and	Ghemawat at	Google

What	is	it?

• Processing	engine	of	Hadoop
• Used	for	big	data	batch	processing
• Parallel	processing	of	huge	data	volumes
• Fault	tolerant
• Scalable

Why	use	it?

• Your	data	in	Terabyte	/	Petabyte	range
• You	have	huge	I/O
• Hadoop	framework	takes	care	of
– Job	and	task	management
– Failures
– Storage
– Replication

You	just	write	Map	and	Reduce	jobs

Big	Users

• Users
– Facebook
– Yahoo
– Amazon
– Ebay

• Providers
– Amazon
– Cloudera
– HortonWorks
– MapR

Map	&	Reduce
The	term	MapReduce	actually	refers	to	two	separate	and	distinct	
tasks	that	Hadoop	programs	perform.

1. The	map job,	which	takes	a	set	of	data	and	converts	it	into	another	
set	of	data,	where	individual	elements	are	broken	down	into	tuples	
(key/value	pairs).	

map	(k1,v1)	→	list(k2,v2)	

1. The	reduce job	takes	the	output	from	a	map	as	input	and	combines	
those	data	tuples	into	a	smaller	set	of	tuples.	

reduce	(k2,list(v2))	→	list(v2)	

As	the	sequence	of	the	name	MapReduce	implies,	the	reduce	
job	is	always	performed	after	the	map	job.

Typical	Problem	solved	by	MapReduce

• Read	a	lot	of	data

• Map :	extract	something	you	
care	about	from	each	record	

• Shuffle	and	Sort

• Reduce	:	aggregate,	summarize,	
filter,	or	transform

• Write	the	results

Input	Data

Map Map Map Map

Shuffle

Reduce Reduce

Results

Example	:	Word	Count	in	Web	Pages

A	typical	exercise	for	a	new	engineer	in	his	or	her	first	week

• Input	is	files	with	one	document	per	record
• Specify	a	map function	that	takes	a	key/value	pair

key	=	document	URL
value	=	document	contents

• Output	of	map	function	is	(potentially	many)	key/value	pairs.	
In	our	case,	output	(word,	“1”)	once	per	word	in	the	document

“document1”,	 “Apple	Orange	Mango	Orange	Grapes	Plum”

“Apple”,	“1”
“Orange”,	“1”
“Mango”,	“1”

…

Example	continued	:	
Word	Count	in	Web	Pages

• MapReduce	library	gathers	together	all	pairs	with	the	same	
key	(shuffle/sort)

• The	reduce	function	combines	the	values	for	a	key
In	our	case,	compute	the	sum	

• Output	of	reduce	paired	with	key	and	saved	

key	=	“Apple”
values	=	“1”

key	=	“Mango”
values	=	“1”

key	=	“Orange”
values	=	“1”,	“1”

key	=	“Plum”
values	=	“1”

key	=	“Grapes”
values	=	“1”

“1” “1”“1”“1”“2”

“Apple”,	“1”
“Orange”,	“2”
“Mango”,	“1”
“Grapes”,	“1”
“Plum”,	“1”

Example	Pseudo-code

map() reduce()

MapReduce	wrappers
Wrappers	have	been	developed	in	order	to:
• provide	a	better	control	over	the	MapReduce	code
• aid	in	the	source	code	development

Some	well-known	example:
• Sawzall (Google)
• Pig	(originally	Yahoo,	now	Apache)
• Hive	(Facebook)
• DryadLINQ (Microsoft)

Widely	applicable	at	Google
• Implemented	as	a	C++	library	linked	to	user	programs
• Can	read	and	write	many	different	data	types

Example	uses:

Example:	
Generating	Language	Model	Statistics
• Used	in	the	statistical	machine	translation	system

o need	to	count	#	of	times	every	5-word	sequence	occurs	in	
large	corpus	of	documents	(and	keep	all	those	where	
count	>=4)

• Easy	with	MapReduce:
o map :	extract	5-word	sequences	=>	count	from	document
o reduce :	combine	counts,	and	keep	if	count	large	enough

Example	:	
Joining	with	Other	Data

• Example	:	generate	per-doc	summary,	but	include	per-host	
information	(e.g.	#	of	pages	on	host,	important	terms	on	
host)
o per-host	information	might	be	in	per-process	data	structure,	or	

might	involve	RPC	to	a	set	of	machines	containing	data	for	all	
sites

• Easy	with	MapReduce:
o map :	extract	host	name	from	URL,	lookup	per-host	info,	

combine	with	per-doc	data	and	emit	
o reduce :	identity	function	(just	emit	key/value	directly)

MapReduce:	Scheduling

• One	master,	many	workers
o Input	data	split	into	M	map	tasks	(typically	64	MB	in	size)
o Reduce	phase	partitioned	 into	R	reduce	tasks
o Tasks	are	assigned	to	workers	dynamically
o Often:	M=200000,	R=4000,	workers=2000

• Master	assigns	each	map	task	to	a	free	worker
o Considers	locality	of	data	to	worker	when	assigning	 task
o Worker	 reads	task	input	 (often	 from	local	disk)
o Worker	produces	R	local	files	containing	 intermediate	k/v	pairs

• Master	assigns	each	reduce	task	to	a	free	worker
o Worker	 reads	intermediate	k/v	pairs	from	map	workers
o Worker	 sorts	&	applies	user’s	Reduce	op	 to	produce	 the	output

Task	Granularity	and	Pipelining
Fine	granularity	tasks:	many	more	map	tasks	than	machines
• Minimizes	time	for	fault	recovery
• Can	pipeline	shuffling	with	map	execution
• Better	dynamic	load	balancing	

Often	use	200,000	map/5000	reduce	tasks	w/	2000	machines

Fault	tolerance:	
Handled	via	re-execution

• On	worker	failure:
o Detect	failure	via	periodic	heartbeats
o Re-execute	completed	and	in-progress	map tasks
o Re-execute	in	progress	reduce tasks
o Task	completion	committed	through	master

• Master	failure:
o State	is	checkpointed :	new	master	recovers	&	continues

Robust:	Once	Google	lost	1600	of	1800	machines,	but	
finished	fine

Refinement:	Backup	tasks

• Slow	workers	significantly	lengthen	completion	time
o Other	jobs	consuming	resources	on	machine
o Bad	disks	with	soft	errors	transfer	data	very	slowly
o Weird	things:	processor	caches	disabled	(!!)	

• Solution:	Near	end	of	phase,	spawn	backup	copies	of	tasks
o Whichever	one	finishes	first	"wins"	

• Effect:	Dramatically	shortens	job	completion	time

Refinement:	Locality	Optimization

Master	scheduling	policy:
• Asks	for	locations	of	replicas	of	input	file	blocks
• Map	tasks	typically	split	into	64MB
• Map	tasks	scheduled	so	input	block	replica	are	on	same	

machine	or	same	rack

Effect:	Thousands	of	machines	read	input	at	local	disk	speed
• Without	this,	rack	switches	limit	read	rate

Refinement:	Skipping	Bad	Records

Map/Reduce	functions	sometimes	fail	for	particular	inputs
• Best	solution	is	to	debug	&	fix,	but	not	always	possible	

On	seg fault:
• Send	UDP	packet	to	master	from	signal	handler
• Include	sequence	number	of	record	being	processed	

If	master	sees	K failures	for	same	record	(typically	K set	to	2	or	3)	:
• Next	worker	is	told	to	skip	the	record	

Effect:	Can	work	around	bugs	in	third-party	libraries

Other	Refinements

• Optional	secondary	keys	for	ordering

• Compression	of	intermediate	data

• Combiner:	useful	for	saving	network	bandwidth

• Local	execution	for	debugging/testing

• User-defined	counters

“Play	around”

• Amazon	Elastic	MapReduce	(Amazon	EMR)
• Hortonworks Sandbox
• MapR Sandbox	for	Hadoop
• Qubole
• Microsoft	Azure	HDInsight
• Cloudera

MapReduce	examples	in	Java

Serializable vs	Writable
• Serializable stores	the	class	name	and	the	object	representation	to	

the	stream;	other	instances	of	the	class	are	referred	to	by	an	handle	
to	the	class	name:	this	approach	is	not	usable	with	random	access

• For	the	same	reason,	the	sorting	needed	for	the	shuffle	and	sort	
phase	can	not	be	used	with	Serializable

• The	deserialization	process	creates	an	new	instance	of	the	object,	
while	Hadoop	needs	to	reuse	object	to	minimize	computation

• Hadoop	introduces	the	two	interfaces	Writable and	
WritableComparable that	solve	these	problem

Writable	wrappers

Implementing	Writable:	the	SumCount class

Glossary

WordCount

• http://www.gutenberg.org/cache/epub/201/p
g201.txt

• Input	Data	:	
The	text	of	the	book	“Flatland”	by	Edwin	Abbott

WordCountmapper

WordCount reducer

Word	Count	results

TopN :	We	want	to	find	the	top-n	used	
words	of	a	text	file

• http://www.gutenberg.org/cache/epub/201/p
g201.txt

• Input	Data	:	
The	text	of	the	book	“Flatland”	by	Edwin	Abbott

TopNmapper

TopN reducer

TopN results	

MEAN	:	We	want	to	find	the	mean	
max	temperature	for	every	month

• http://archivio-meteo.distile.it/tabelle-dati-archivio-meteo/

• Input	Data	:	
Temperature	in	Milan	(DD/MM/YYYY,	MIN,	MAX)
02012015,	-2, 7
03012015,	-1,	8
04012015,	1,	16
…
29012015,	0,	5
30012015,	0,	9
31012015,	-3,	6

Mean	mapper

Mean	reducer

Mean	results

TODO	:	k-means	clustering	algorithm

• We	want	to	aggregate	2D	points	in	clusters	using	k-
means	algorithm

• Input	data	:	
A	random	set	of	points
2.2705 0.9178
1.8600 2.1002
2.0915 1.3679
-0.16120.8481
…

k-means	algorithm
Input:	data	points	D,	number	of	cluster	k

1. initialize	k	centroids	randomly
2. associate	each	data	point	in	D	with	the	nearest	centroid.	

This	will	divide	the	data	points	into	k	clusters.
3. recalculate	the	position	of	centroids.

Repeat	steps	2	and	3	until	there	are	no	more	changes	in	
the	membership	of	the	data	points.

Output:	data	points	with	cluster	memberships

MapReduce	examples	in	Python

Word	Count	using	mrjob

“a”,	936
“ab”,	6
“abbot”,	3
“abbott”,	2
“abbreviated”,	1
…

Product	Recommendations

• Goal	:	For	each	product	a	client	buys,	generate	a	‘people	who	
bought	this	also	bought	this’	recommendation

• Input	Data	:	product_id_1,	product_id_2

Coincident	Purchase	Frequency

Top	Recommendations

But…
Suppose	you	have	:

• user	data	in	one	file,	
• website	data	in	another,	

and	you	need	to	find	

• the	top	5 most	visited	pages	by	
users	aged	18-25.

In	Map	Reduce

In	Pig	Latin

What	is	Apache	Pig?

Idea:	a	MapReduce	program	essentially	performs	a	group-by-
aggregation	in	parallel	over	a	cluster	of	machines.

• Pig is	a	high-level	platform	for	creating	MapReduce	
programs	used	with	Hadoop.	

• The	language	for	this	platform	is	called	Pig	
Latin.	It	combines	high-level	declarative	
querying	in	the	spirit	of	SQL,	and	low-
level,	procedural	programming	à la	
MapReduce.

Developed	at	Yahoo

Pig
• Apache	Pig is	a	platform	for	analyzing	large	data	sets	that	

consists	of	a	high-level	language	for	expressing	data	
analysis	programs,	coupled	with	infrastructure	for	
evaluating	these	programs.	The	salient	property	of	Pig	
programs	is	that	their	structure	is	amenable	to	substantial	
parallelization,	which	in	turns	enables	them	to	handle	very	
large	data	sets.

• At	the	present	time,	Pig's	infrastructure	layer	consists	of	a	
compiler	that	produces	sequences	of	Map-Reduce	
programs,	for	which	large-scale	parallel	implementations	
already	exist	(e.g.,	the	Hadoop	subproject).	

Pig	Latin
Pig	Latin	has	the	following	key	properties:

• Ease	of	programming. It	is	trivial	to	achieve	parallel	execution	of	
simple,	"embarrassingly	parallel"	data	analysis	tasks.	Complex	tasks	
comprised	of	multiple	interrelated	data	transformations	are	
explicitly	encoded	as	data	flow	sequences,	making	them	easy	to	
write,	understand,	and	maintain.

• Optimization	opportunities.The	way	in	which	tasks	are	encoded	
permits	the	system	to	optimize	their	execution	automatically,	
allowing	the	user	to	focus	on	semantics	rather	than	efficiency.

• Extensibility. Users	can	create	their	own	functions	to	do	special-
purpose	processing.

Performance

Pig	Highlights

• User	defined	functions	(UDFs)	can	be	written	for	column	transformation	
(TOUPPER),	or	aggregation	(SUM)

• UDFs	can	be	written	to	take	advantage	of	the	combiner
• Four	join	implementations	built	in	:	hash,	fragment-replicate,	merge,	

skewed
• Multi-query	:	Pig	will	combine	certain	types	of	operations	together	in	a	

single	pipeline	to	reduce	the	number	of	times	data	is	scanned
• Order	by	provides	total	ordering	across	reducers	in	a	balanced	way
• Writing	load	and	store	functions	is	easy	once	an	InputFormat and	

OutputFormat exist
• Piggybank,	a	collection	of	users	contributed	UDFs

Who	uses	Pig	for	what?

• 70%	of	production	jobs	at	Yahoo (10ks	per	day)

• Also	used	by	Twitter,	LinkedIn,	Ebay,	AOL,	…

• Used	to
– Process	web	logs
– Build	user	behavior	models
– Process	images
– Build	maps	of	the	web
– Do	research	on	raw	data	sets

Components

Pig	resides	on	user	machine

User	machine

Hadoop	Cluster

Job	executes	on	cluster

No	need	to	install	anything	extra	on	your	Hadoop	cluster.

So,	why	Pig?

• Faster	development
– Fewer	lines	of	code
– Don’t	re-invent	the	wheel

• Flexible
– Metadata	is	optional
– Extensible
– Procedural	programming

But…

• Do	you	need	your	program	to	run	faster?

• Does	your	analytic	job	runs	for	hours?

Limitations	of	MapReduce

One	of	the	major	drawbacks	of	MapReduce	is	its	
inefficiency	in	running	iterative	algorithms.

MapReduce	is	not	designed	for	iterative	processes:	
after	each	iteration,	the	results	have	to	be	written	
to	the	disk	to	pass	them	onto	the	next	iteration.

degradation	of	performance

Limitations	of	Pig

Pig	uses	batch	oriented	frameworks,	which	
means	your	analytics	jobs	will	run	for	many	
minutes	or	hours.

Spark is	faster!

What	is	Apache	Spark?

• A	fast	and	general	compute	engine																																													
for	large-scale	data	processing.	

• The	major	feature:	the	ability	to	perform	in-memory	
computation	(the	data	can	be	cached	in	memory).

• Spark	provides	a	simple	and	expressive	programming	model	
that	supports	a	wide	range	of	applications,	including	ETL,	
machine	learning,	stream	processing,	and	graph	computation.

Developed	at	the	University	of	California	at	Berkeley

Spark

• It	 provides	an	interface	for	programming	entire	
clusters	with	implicit	data	parallelism	and	fault-
tolerance.

• For	certain	tasks,	it	is	tested	to	be	up	to	100x	faster	
(data	in	memory)	or	10x	(data	in	disk)	faster	than	
Hadoop	MapReduce	

• It	can	run	on	Hadoop	YARN	manager	and	can	read	data	
from	HDFS.

Spark
• Designed	to	be	used	with	a	range	of	programming	languages	and	

on	a	variety	of	architectures.

• Increasingly	popular	with	a	wide	range	of	developers,	thanks	to
speed,	simplicity,	and	broad	support for	existing	development	
environments	and	storage	systems.	

• Relatively	accessible to	those	learning	to	work	with	it	for	the	first	
time.

• One	of	Apache's	largest	and	most	vibrant,	with	over	500	
contributors	from	more	than	200	organizations	responsible	for	code	
in	the	software	release.

Why?

• Spark	is	basically	developed	to	overcome	
MapReduce’	s	shortcoming	that	it	is	not	
optimized	for	iterative	algorithms and	
interactive	data	analysis	which	performs	
cyclic	operations	on	same	set	of	data.	

• Spark	overcomes	this	problem	by	providing	a	
new	storage	primitive	called	Resilient	
Distributed	Datasets (RDDs).	

Resilient	Distributed	Datasets	(RDDs)

The	Resilient	Distributed	Dataset	is	a	concept	at	the	heart	of	Spark.	It	is	
designed	to	support	in-memory	data	storage,	distributed	across	a	cluster	in	a	
manner	that	is	demonstrably	both	fault-tolerant	and	efficient.	
• Fault-tolerance is	achieved,	in	part,	by	tracking	the	lineage	of	

transformations	applied	to	coarse-grained	sets	of	data.
• Efficiency is	achieved	through	parallelization	of	processing	across	multiple	

nodes	in	the	cluster,	and	minimization	of	data	replication	between	those	
nodes.	

Once	data	is	loaded	into	an	RDD,	two	basic	types	of	operation	can	be	carried	
out:
• Transformations,	which	create	a	new	RDD	by	changing	the	original	

through	processes	such	as	mapping,	filtering,	and	more;
• Actions,	such	as	counts,	which	measure	but	do	not	change	the	original	

data.

Word	Count	in	Spark

Another	example	:	logistic	regression	

A	common	machine	learning	algorithm	
for	classifying	objects	such	as,	say,	
spam	vs.	non-spam	emails.	

Pig	vs	Spark

• Pig	
– This	is	the	best	data	loading	 tool	available	inside	hadoop.	
– It	uses	a	scripting	 language	called	Pig	Latin,	which	is	more	workflow	driven.
– Don't	need	to	be	an	expert	Java	programmer	but	need	a	few	coding	skills.
– Is	also	an	abstraction	layer	on	top	of	map-reduce.	
– Simple	 to	write	and	control.

• Spark
– Pretty	much	the	successor	to	map-reduce	in	Hadoop,	with	an	emphasis	on	in-

memory	computing.
– You'll	need	to	be	a	pretty	good	 Java	programmer	 to	use	this.	
– Much	lower	level.

How	to	choose	a	platform?

• The	decision	to	choose	a	particular	platform	
for	a	certain	application	usually	depends	on	
the	following	important	factors:
– data	size
– speed	or	throughput	optimization
– model	development	(Training/Applying	a	model)

Example:	k-means	clustering	
algorithm

The	k-means	algorithm	is	used	for	providing	more	insight	
into	the	analytics	algorithms	on	different	platforms.

Characteristics:
• popular	and	widely	used
• iterative	nature
• compute-intensive	task	(calculating	the	centroids)
• aggregation	of	the	local	results	to	obtain	a	global	
solution

k-means	algorithm
Input:	data	points	D,	number	of	cluster	k

1. initialize	k	centroids	randomly
2. associate	each	data	point	in	D	with	the	nearest	centroid.	

This	will	divide	the	data	points	into	k	clusters.
3. recalculate	the	position	of	centroids.

Repeat	steps	2	and	3	until	there	are	no	more	changes	in	
the	membership	of	the	data	points.

Output:	data	points	with	cluster	memberships

k-means	on	MapReduce
Input:	data	points	D,	number	of	cluster	k	and	
centroids

1. for	each	data	point	d	∈ D	do
2. assign	d	to	the	closest	centroid

Output:	centroids	with	associated	data	points

Input:	centroids	with	associated	data	points	
1. compute	the	new	centroids	by	calculating	the	

average	of	data	points	in	cluster
2. write	the	global	centroids	to	the	disk

Output:	new	centroids	

Map

Reduce

k-means	on	PigLatin
REGISTER	udf.jar
DEFINE	find_centroid FindCentroid('$centroids');
points	=	LOAD	'points.txt'	as	(id:int,	pos:double);
centroided=	FOREACH	points	GENERATE	pos,	find_centroid(pos)	
as	centroid;
grouped	=	GROUP	centroided BY	centroid;
result	=	FOREACH	grouped	GENERATE	group,	
AVG(centroided.pos);
STORE	result	INTO	'output’;

k-means	on	Spark

Similar	to	MapReduce-based	 implementation

• Instead	of	writing	the	global	centroids	to	the	disk,	they	are	
written	to	memory	which	speeds	up	the	processing	and	
reduces	the	disk	I/O	overhead.

• The	data	will	be	loaded	into	the	system	memory	in	order	to	
provide	faster	access.

References
• Dean,	J.	and	Ghemawat,	S.	MapReduce:	Simplified	data	processing	on	large	

clusters.	In	Proceedings	of	Operating	Systems	Design	and	Implementation	 (OSDI).	
San	Francisco,	CA.	137-150.	2004

• Hadoop:	Open	source	implementation	of	MapReduce.	http://	
lucene.apache.org/hadoop/

• C.	Olston,	B.	Reed,	U.	Srivastava,	R.	Kumar,	A.	Tomkins.	Pig	Latin:	A	Not-so-foreign	
Language	for	Data	Processing.	In	Proceedings	SIGMOD	'08.	2008

• D.	Singh	and	C.	K.	Reddy.	A	survey	on	platforms	for	big	data	analytics,	 Journal	of	
Big	Data.	2014

• M.	Zaharia,	M.	Chowdhury,	T.	Das,	A.	Dave,	J.	Ma,	M.	McCauley,	M.	Franklin,	S.	
Shenker,	 and	I.	Stoica. Resilient	Distributed	Datasets:	A	Fault-Tolerant	Abstraction	
for	In-Memory	Cluster	Computing. USENIX	NSDI.	2012

