CLI and CLR

Antonio Cisternino
Giluseppe Attard

" A
Introduction

m Java made popular Virtual Machines (JVM)

m Execution environments are a generalization of
virtual machines

m They provide a set of common runtime services
for high level programming languages

m They incorporate valuable programming
techniques developed in the last 30 years of PL

research

" J
Java, a brief history

m Java was designed by James Gosling as a language for embedded
systems (e.g. washing machines)

m The original name of the language was Oak (renamed to Java for
copyright reasons)

m Sun Microsystems applied for a tender to supply Java-based SetTop
boxes for video-on-demand, but lost to Silicon Graphics

m Gosling team was to be dismantled, but came up with Web browser
Implemented in Java (HotJava), that could be extended with Java
applets

m Mark Adreessen and Gosling discussed about the possibility of
Integrating Java in Netscape and the JVM was incorporated in
Netscape browser

m Through the wide distribution of Netscape Navigator, Java became
used in research and achieved popularity

m Nonetheless its strength and weakness often derive from its original
design goals

'_
Microsoft CLI

'_
CLR and JVM

m Secure m Mix-in inheritance
m Portable

m Automatic MM (GC)
m Type safety

m Dynamic loading

m Class Library

m OOP

" J
A new layer to the onion

Runtime exposes a superset of OS Runtime mediates access between
Services through the BCL the application and OS

L : , Different runtimes implements in a
Applications are group of types interacting different way LP abstractions such

together types: interoperability is complex

'_
How CLR works

Unmanaged

\ Managed

CLR

"
Type system

m Execution environments such as CLR and JVM
are data oriented

m A type is the unit of code managed by the
runtime: loading, code, state and permissions
are defined in terms of types

m Applications are set of types that interact
together

m One type exposes a static method (Main) which
IS the entry point of the application: it loads the
needed types and creates the appropriate
Instances

" JEE———
Java type system

<
<

Base types.

i

" J
Java type system

m There are base types: numbers, Object, String and Class
(which is the entry-point for reflection)

m Type constructors are:
Array
Class

m The number types are unrelated to Object with respect to
Inheritance relation

m This applies to interfaces too, but objects that
Implements interfaces are always inherited from object

m Java type system is far simpler than the one of CLR

" N
CLR type system

<
<«

igw

" I
CLR Type System

m Common rooted: even numbers inherits from Object

m There are more type constructors:
Enum: constants
Struct: like class but without inheritance and stack allocation

Delegate: type that describes a set of methods with common
signature

m Value types (numbers and structs) inherits from object.
Still are not references and aren’t stored on the heap

m The trick is that when a value type should be upcasted to
Object it is boxed in a wrapper on the heap

m The opposite operation is called unboxing

"
Delegate types

m A delegate is a type that describes a set of callable
methods

m Example, static method.
class Foo {
delegate int MyFun(int i, int j);
static int Add(int i, int j) { return i + j; }
static void Main(string[] args) ({
MyFun f = new MyFun (Foo.Add) ;
Console.WritelLine(f(2, 3)):;

}
}

" J
Is It a function pointer?

NOOOOOOO00000000000000000

m A delegate is more than a pointer! It is a special
object

m To understand what a delegate really Is try to

answer to: "How a delegate can invoke an
instance method?”

m An Instance method must be invoked on an
object! We may use a pair (object, method)

" N
CLR delegates

Delegate object

Method code

" J
Delegates as types

m A delegate type allows building delegate objects
on methods with a specified signature

m The type exposes an Invoke method with the
appropriate signature at CLR level

m C# provides a special syntax for declaring
delegates (not class like)

m The pair is built using the new operator and the
pair is specified using an invocation-like syntax

" J
Delegates like closures?

m In functional programming it is possible to define
a function that refers to external variables

m The behavior of the function depends on those
external values and may change

m Closures are used In functional programming to
close open terms in functions

m Delegates are not equivalent to closures
although they are a pair (env, func): the
environment should be of the same type to
which the method belongs

Functional programming in C#?

m Delegates allow representing static and instance
methods as values

m Those values can be passed as arguments
m Methods become first class values

m Introduce elements of FP style in the
mainstream, cleaner event model (call-backs
can be naturally expressed as delegates)

" S
Example: Mapping

m Performing a mapping on an array:
delegate int MyFun (int) ;
int[] ApplyInt (MyFun £, int[] a) {
int[] r = new int[a.Length];
for (int 1 = 0;1 < a.Length;i++)
r[i] = £(a[1]);
return r;

" J
Events using delegates?

m Event systems are built on the notion of
notification (call-back)

m A method invocation can be seen as a
notification

m In GUI frameworks such as MFC and Java 1.0.2
they were based on virtual methods

m Java 1.1 introduces delegation event model:

There are source of events
There are listeners that ask sources for notifications
Event fires: a method is invoked for each subscriber

" N
Delegation Event Model

Subscribe

Notification

Subscribed listeners

" J
Delegate event model in Java

m \WWhich method should call the event source to
notify the event?

m In Java there are no delegates and interfaces
are used instead (XXXListener)

m The listener must implement an interface and
the source provides a method for
(un)subscription.

m A vector of subscribed listeners is kept by the
event source

" J
Delegates to handle events

m Delegates allow connecting event sources to listeners
Independent of the types involved

m In C# a delegate object can be used to specify which
method must be invoked when an event is fired

m One approach could be to store an array of delegates in
the source to represents subscribers

m A component (not necessarily the listener) builds a
delegate on the listener and subscribes to an event

" J
Multicast delegates

m Event notification is in general one-to-many

m CLR provides multicast delegates to support
notification to many listeners

m A multicast delegate is a kind of delegate that
holds inside a list of ‘delegate objects’

m Multicast delegates keep track of subscriptions
to event sources reducing the burden of
replicating the code

"
Multicast delegates: Example

delegate void Event () ’ Unrelated typesl
class EventSource {
public Event evt;

evt(); // fires the event

}

class Foo { public void MyMethod () {} }

// Elsewhere in the program!
EventSource src = new EventSource() ;

Foo £ = new Foo();
src.evt += new Event (f.MyMethod) ;

" J
C# and delegates

m In C# there is no way to choose between single
and multicast delegates

m The compiler always generates multicast
delegates

m In principle JIT could get rid of possible
Inefficiencies

m Delegates represent a novel programming
pattern

" S
Event keyword

m C# introduces the event keyword to control
access to a delegate member.

m If a delegate field of a class Is labeled with event
then outside code will be able to use only +=
and -= operators on it

m Listener would not be allowed to affect the
subscribers list in other ways

m Event infrastructures can be easily implemented
by means of this keyword and delegates

" J
Event delegates: Example

delegate void Event() ;
class EventSource {
public event Event evt;

evt(); // fires the event

}

class Foo { public void MyMethod () {} }

// Elsewhere in the program!
EventSource src = new EventSource() ;
Foo £ = new Foo();

src.evt += new Event (f.MyMethod) ;
src.evt = null; // ERROR!

