
CLI and CLR

Antonio Cisternino

Giuseppe Attardi

Introduction

 Java made popular Virtual Machines (JVM)

 Execution environments are a generalization of

virtual machines

 They provide a set of common runtime services

for high level programming languages

 They incorporate valuable programming

techniques developed in the last 30 years of PL

research

Java, a brief history

 Java was designed by James Gosling as a language for embedded
systems (e.g. washing machines)

 The original name of the language was Oak (renamed to Java for
copyright reasons)

 Sun Microsystems applied for a tender to supply Java-based SetTop
boxes for video-on-demand, but lost to Silicon Graphics

 Gosling team was to be dismantled, but came up with Web browser
implemented in Java (HotJava), that could be extended with Java
applets

 Mark Adreessen and Gosling discussed about the possibility of
integrating Java in Netscape and the JVM was incorporated in
Netscape browser

 Through the wide distribution of Netscape Navigator, Java became
used in research and achieved popularity

 Nonetheless its strength and weakness often derive from its original
design goals

Microsoft CLI

 When Java became popular Microsoft joined the initiative

 The idea was to exploit the dynamic load features of JVM to
implement a component based architecture like COM

 There were two main problems:
 Interoperability with the existing code (COM)

 Support for many programming languages

 They extended the JVM but Sun complained of license infringement

 Microsoft started developing its own technology

 This was based on their experience on Java, but they tried to
address the two problems above

 The result was the Common Language Infrastructure (CLI)

 The core of CLI is the Common Language Runtime (CLR) which
plays the same role as the JMV in Java

Programming in different languages is like composing
pieces in different keys, particularly if you work at the
keyboard. If you have learned or written pieces in many
keys, each key will have its own special emotional aura.
Also, certain kinds of figurations “lie in the hand” in one
key but are awkward in another. So you are channeled
by your choice of key. In some ways, even enharmonic
keys, such as C-sharp and D-flat, are quite distinct in
feeling. This shows how a notational system can play a
significant role in shaping the final product.

(Gödel, Escher, Bach: an eternal golden braid, Hofstadter, 1980, Chapter X)

CLR and JVM

 Secure

 Portable

 Automatic MM (GC)

 Type safety

 Dynamic loading

 Class Library

 OOP

 Mix-in inheritance

Note that the essential traits of the

execution environment are similar,

though there are relevant

difference in the design

CLI has been standardized

(ECMA and ISO) and is a

superset of Java.

We will refer mainly to CLR,

pointing out feature missing from

the JVM.

A new layer to the onion

Applications
MLRT

CRTApp1

Appn

RT

OS Hw

App2

Runtime mediates access between

the application and OS

Different runtimes implements in a

different way LP abstractions such

types: interoperability is complex

Applications

T1

T2

Tn

T3

Tl

Tm

CLR OS Hw

Runtime exposes a superset of OS

Services through the BCL

Applications are group of types interacting

together

How CLR works

C#

C++

ML

VB

…

CIL

x86

Unmanaged

Managed

JIT

Managed x86

GC

CLR

Security

BCL

Loader

Type system

 Execution environments such as CLR and JVM
are data oriented

 A type is the unit of code managed by the
runtime: loading, code, state and permissions
are defined in terms of types

 Applications are set of types that interact
together

 One type exposes a static method (Main) which
is the entry point of the application: it loads the
needed types and creates the appropriate
instances

Java type system

Object

interface T

int
Base types

Class

String

T[]

class T

Java type system

 There are base types: numbers, Object, String and Class
(which is the entry-point for reflection)

 Type constructors are:
 Array

 Class

 The number types are unrelated to Object with respect to
inheritance relation

 This applies to interfaces too, but objects that
implements interfaces are always inherited from object

 Java type system is far simpler than the one of CLR

CLR type system

Object

interface T

int Base types

Type

String

Array

class T

ValueType

T[]

Delegate Delegate T

Enum Enum T

Struct T

CLR Type System

 Common rooted: even numbers inherits from Object

 There are more type constructors:
 Enum: constants

 Struct: like class but without inheritance and stack allocation

 Delegate: type that describes a set of methods with common
signature

 Value types (numbers and structs) inherits from object.
Still are not references and aren‟t stored on the heap

 The trick is that when a value type should be upcasted to
Object it is boxed in a wrapper on the heap

 The opposite operation is called unboxing

Delegate types

 A delegate is a type that describes a set of callable
methods

 Example, static method:
class Foo {

delegate int MyFun(int i, int j);

static int Add(int i, int j) { return i + j; }

static void Main(string[] args) {

MyFun f = new MyFun(Foo.Add);

Console.WriteLine(f(2, 3));

}

}

Is it a function pointer?

NOOOOOOOOOOOOOOOOOOOOOOOO

 A delegate is more than a pointer! It is a special

object

 To understand what a delegate really is try to

answer to: “How a delegate can invoke an

instance method?”

 An instance method must be invoked on an

object! We may use a pair (object, method)

CLR delegates

Object

Method

Delegate object

Object

Method code

Delegates as types

 A delegate type allows building delegate objects

on methods with a specified signature

 The type exposes an Invoke method with the

appropriate signature at CLR level

 C# provides a special syntax for declaring

delegates (not class like)

 The pair is built using the new operator and the

pair is specified using an invocation-like syntax

Delegates like closures?

 In functional programming it is possible to define
a function that refers to external variables

 The behavior of the function depends on those
external values and may change

 Closures are used in functional programming to
close open terms in functions

 Delegates are not equivalent to closures
although they are a pair (env, func): the
environment should be of the same type to
which the method belongs

Functional programming in C#?

 Delegates allow representing static and instance

methods as values

 Those values can be passed as arguments

 Methods become first class values

 Introduce elements of FP style in the

mainstream, cleaner event model (call-backs

can be naturally expressed as delegates)

Example: Mapping

 Performing a mapping on an array:
delegate int MyFun(int);

int[] ApplyInt(MyFun f, int[] a) {

int[] r = new int[a.Length];

for (int i = 0;i < a.Length;i++)

r[i] = f(a[i]);

return r;

}

Events using delegates?

 Event systems are built on the notion of
notification (call-back)

 A method invocation can be seen as a
notification

 In GUI frameworks such as MFC and Java 1.0.2
they were based on virtual methods

 Java 1.1 introduces delegation event model:
 There are source of events

 There are listeners that ask sources for notifications

 Event fires: a method is invoked for each subscriber

Delegation Event Model

Event Source

Subscriber
Subscribe

Notification

Subscribed listeners

Delegate event model in Java

 Which method should call the event source to
notify the event?

 In Java there are no delegates and interfaces
are used instead (XXXListener)

 The listener must implement an interface and
the source provides a method for
(un)subscription.

 A vector of subscribed listeners is kept by the
event source

Delegates to handle events

 Delegates allow connecting event sources to listeners
independent of the types involved

 In C# a delegate object can be used to specify which
method must be invoked when an event is fired

 One approach could be to store an array of delegates in
the source to represents subscribers

 A component (not necessarily the listener) builds a
delegate on the listener and subscribes to an event

Multicast delegates

 Event notification is in general one-to-many

 CLR provides multicast delegates to support

notification to many listeners

 A multicast delegate is a kind of delegate that

holds inside a list of „delegate objects‟

 Multicast delegates keep track of subscriptions

to event sources reducing the burden of

replicating the code

Multicast delegates: Example

delegate void Event();

class EventSource {

public Event evt;

…

evt(); // fires the event

…

}

class Foo { public void MyMethod() {} }

// Elsewhere in the program!

EventSource src = new EventSource();

Foo f = new Foo();

src.evt += new Event(f.MyMethod);

Unrelated types!

C# and delegates

 In C# there is no way to choose between single

and multicast delegates

 The compiler always generates multicast

delegates

 In principle JIT could get rid of possible

inefficiencies

 Delegates represent a novel programming

pattern

Event keyword

 C# introduces the event keyword to control
access to a delegate member.

 If a delegate field of a class is labeled with event
then outside code will be able to use only +=
and -= operators on it

 Listener would not be allowed to affect the
subscribers list in other ways

 Event infrastructures can be easily implemented
by means of this keyword and delegates

Event delegates: Example

delegate void Event();

class EventSource {

public event Event evt;

…

evt(); // fires the event

…

}

class Foo { public void MyMethod() {} }

// Elsewhere in the program!

EventSource src = new EventSource();

Foo f = new Foo();

src.evt += new Event(f.MyMethod);

src.evt = null; // ERROR!

