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algorithmic techniques to reduce 
verification complexity (M*B*S)

● to reduce B:
● usually not an issue
● for complex properties:

● separate into smaller properties (it would be nice to have an 
algorithm for this)

● try both ltl2ba -f and spin –f to see which algorithm produces 
the smaller automaton (neither is guaranteed to generate 
smaller automata than the other alas…)

● to reduce M:
● partial order reduction (default in Spin) 
● abstraction (supported by Spin extension only)
● symmetry reduction (supported by Spin extension only)

● to reduce S:
● lossless compression (sharing, symbolic )
● lossy compression (bitstate, supertrace)



Partial-Order
Reduction



partial order reduction

• full asynchronous interleaving of process actions is 
sometimes redundant

byte a, b;

active proctype A()
{
   a = 2; 0 
}

active proctype B()
{
   b = 2; 0 
}

a=2 b=2

a=2 b=2

b=2 a=2

a=0 b=0

a=0 b=2

a=2 b=2

a=2 b=0

the final result is the same,
no matter which path is followed



partial order reduction
a slightly larger example

x=1

g=g+2

y=1

g=g*2

T1 T2
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g=g*2

g=g+2

g=g+2

g=g+2g=g*2

six runs:
x=1;g=g+2;y=1;g=g*2
x=1;y=1;g=g+2;g=g*2
x=1;y=1;g=g*2;g=g+2
y=1;g=g*2;x=1;g=g+2
y=1;x=1;g=g*2;g=g+2
y=1;x=1;g=g+2;g=g*2

only two operations share data:
g=g+2 <-> g=g*2

all other combinations of operations
are data-independent, e.g. x=1 <-> g=g+2

local variables:
   x and y
global variable:
   g



data and control dependence

         I     Control      I

I                 I     Control

Control  I                Data

I        Control  Data

I: Independent operations
Control: control dependent operations
Data: data dependent operations

x=1

g=g+2

y=1

g=g*2

T1 T2

runs that differ only in the relative order of
independent operations are equivalent

x=1

g=g+2

y=1

g=g*2

x=1 g=g+2y=1 g=g*2



partial order reduction
x,y,g
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x=1

x=1

x=1

y=1

y=1

y=1

g=g*2

g=g*2

g=g+2

g=g+2

g=g+2g=g*2

independent pairs:
   x=1 , y=1
   x=1 , g=g*2
   y=1 , g=g+2

2 groups of 3 equivalent runs each:

x=1;g=g+2;y=1;g=g*2

x=1;y=1;g=g+2;g=g*2

y=1;x=1;g=g+2;g=g*2

x=1;y=1;g=g*2;g=g+2

y=1;x=1;g=g*2;g=g+2

y=1;g=g*2;x=1;g=g+2

reducing R from 10 to 7 states
(eliminating 3 states and 6 transitions)

but what if we want to prove:
[] ( x >= y)



visibility

1,0,2

x,y,g
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      [] (x >= y)

holds in the reduced graph,
but not in the full graph

x and y are no longer independent

there is a 3rd class of dependence:
property dependence (visibility)

x=1

g=g+2

y=1

g=g*2

x=1 g=g+2y=1 g=g*2

         P     Control      I

P                 I     Control

Control  I                Data

I        Control  Data

I: Independent operations
P:   Property dependent (Visible)



visibility

independent pairs:
   x=1 , y=1
   x=1 , g=g*2
   y=1 , g=g+2

4 groups of equivalent runs:

x=1;g=g+2;y=1;g=g*2

x=1;y=1;g=g+2;g=g*2

y=1;x=1;g=g+2;g=g*2

x=1;y=1;g=g*2;g=g+2

y=1;x=1;g=g*2;g=g+2

y=1;g=g*2;x=1;g=g+2

x=1

g=g+2

y=1

g=g*2

x=1 g=g+2y=1 g=g*2

         P     Control      I

P                 I     Control

Control  I                Data

I        Control  Data

I: Independent operations
P:   Property dependent (Visible)



slightly reduced reduction

4 groups of equivalent runs:

x=1;g=g+2;y=1;g=g*2

x=1;y=1;g=g+2;g=g*2

y=1;x=1;g=g+2;g=g*2

x=1;y=1;g=g*2;g=g+2

y=1;x=1;g=g*2;g=g+2

y=1;g=g*2;x=1;g=g+2

x,y,g
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1,0,0 0,1,0

0,1,00,0,0

1,1,2 1,1,0

1,1,4 1,1,2

x=1

x=1

x=1

y=1

y=1

y=1

g=g*2

g=g*2

g=g+2

g=g+2

g=g+2g=g*2

1,0,2

1 more state must be explored

this state can no
longer be eliminated



partial order reduction
● two transitions are independent at state s if

● both are enabled at s
● the execution of neither can disable the other (no control dependence)
● the combined effect of both transitions is independent of the relative order 

of execution (no data or property dependence)
● strong independence

● two transitions are strongly independent if they are independent at every 
state where both are enabled

● safe transitions (this is a static property, that can be checked at compile 
time… to avoid runtime overhead for enforcing PO reduction)

● a transition is safe if it is strongly independent from all other transitions in 
the system (Spin implementation)

the effect of even this conservative
notion of independence can be an

exponential reduction
in the size of the reachable state space (M*B)
without measurable runtime overhead…

reduction can be proven
to preserve all safety
and liveness properties
(Peled, 1994)



Partial Order Reduction
(ample set technique)

(C0) “if a state has at least one successor in the full state space, it
          has at least one successor in the reduced state space.”
(C1) “for all states s and for all paths in the full state space, starting
          at s, the following holds true: an action a that is dependent on
          an action b in ample(s) cannot be executed without a
          transition from ample(s) occurring first”. ***
(C2) “for all states s if s is not fully expanded, then every transition
          in ample(s) is invisible”;
(C3)  “the reduced state graph may not contain a cycle in which an
           action a is enabled for some state s of the cycle so that a is
           not in the ample set of any state s' of the cycle”. ***

*** as hard as exploring the whole state space



C0-3 approximations in SPIN
1. Consider a simple set of candidates for ample(s), i.e.
    the set of transitions corresponding to each process.
          (ensures control-independency)
2. Discard empty ample sets (unless the state is a deadlock);
3. Consider ample sets with safe transitions only, i.e.
    (i) data independent from any other action b if:

● a access local variables only;
• a operates on a shared channel with exclusive access 

(only on process reads and only one process).
    (ii) property independent (i.e. invisible) 

● a modifies local variables only;
● a modifies variables not used by the “never claim” (???)

4. If all successors of a state s are on the DFS stack
    (i.e. they all close a cycle) then expand all successors of s. 

(C0)

(C2)

(C1)

(C3)



effect of partial
order reduction

best case

worst case



no partial order reduction
$ spin -a leader.pml
$ cc -DNOREDUCE pan.c
$ time ./pan
(Spin Version 4.0.7 -- 1 August 2003)
Full statespace search for:
        never claim             - (none specified)
        assertion violations    +
        acceptance   cycles     - (not selected)
        invalid end states      +

State-vector 276 byte, depth reached 148, errors: 0
  723053 states, stored
3.00211e+006 states, matched
3.72517e+006 transitions (= stored+matched)
      16 atomic steps
hash conflicts: 2.70635e+006 (resolved)
(max size 2^18 states)

Stats on memory usage (in Megabytes):
205.347 equivalent memory usage for states (...)
174.346 actual memory usage for states (compression: 84.90%)
        State-vector as stored = 233 byte + 8 byte overhead
1.049   memory used for hash table (-w18)
0.240   memory used for DFS stack (-m10000)
175.266 total actual memory usage

...

real    0m16.657s
user    0m0.015s
sys     0m0

175.3 Mbytes used
17 seconds

all states reached
default
compression

7 nodes



effect of partial order reduction
$ spin –a leader.pml
$ cc pan.c
$ time ./pan
(Spin Version 4.1.2 -- 4 February 2004)
        + Partial Order Reduction

Full statespace search for:
        never claim             - (none specified)
        assertion violations    +
        acceptance   cycles     - (not selected)
        invalid end states      +

State-vector 272 byte, depth reached 148, errors: 0
     133 states, stored
       0 states, matched
     133 transitions (= stored+matched)
      16 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

1.573   memory usage (Mbyte)

unreached in proctype node
        line 53, state 28, "out!two,nr"
        (1 of 49 states)
unreached in proctype :init:
        (0 of 11 states)

real    0m0.076s
user    0m0.046s
sys     0m0.015s
$

1.5 Mbytes used
0.076 seconds

all relevant
states reached

175.3 Mbytes used
17 seconds

all states reached



statement merging (default spin reduction)
a form of partial order reduction

 

 

  

   

 

 

a sequence of unconditionally
safe, non-blocking, transitions:

x = 1;
x = y+z;

predictably produces a non-interleaved
run of states in the global graph

the intermediate states in such sub-graphs
are redundant and can be omitted

we can accomplish that effect by merging
sequences of unconditionally safe transitions
into a single transition (similar to d_step)

savings in memory and time

default in Spin
(can be disabled with spin –a –o3 …)



State
Compression



state compression (-DCOLLAPSE)

the state-vector is broken down into separate components:
global data and message channels
processes (one component for each active process)

each component is stored separately in a lookup table, and
each component is given a unique index-number

only the index numbers are used to form the global state vector,
which is stored in the statespace

basic idea: a small number of local component typically appear
in many different combinations

global data

process 1

process 2

p1_1

p2_1

g_1 global data

process 1

process 2

p1_2

p2_2

g_2 global data

process 1

process 2

. . . p1_5

p2_7

g_10. . .

. . .

g_1  p1_2  p2_7statevector1: g_1  p2_2  p2_7statevector2:



effect of collapse compression
$ cc -DNOREDUCE -DCOLLAPSE pan.c
$ time ./pan
(Spin Version 4.0.7 -- 1 August 2003)
        + Compression
Full statespace search for:
        never claim             - (none specified)
        assertion violations    +
        acceptance   cycles     - (not selected)
        invalid end states      +

State-vector 276 byte, depth reached 148, errors: 0
  723053 states, stored
3.00211e+006 states, matched
3.72517e+006 transitions (= stored+matched)
      16 atomic steps
hash conflicts: 3.23779e+006 (resolved)
(max size 2^18 states)

Stats on memory usage (in Megabytes):
208.239 equivalent memory usage for states (...)
23.547  actual memory usage for states (compression: 11.31%)
        State-vector as stored = 21 byte + 12 byte overhead
1.049   memory used for hash table (-w18)
0.240   memory used for DFS stack (-m10000)
24.738  total actual memory usage

nr of templates: [ globals chans procs ]
collapse counts: [ 2765 129 2 ]
...

real    0m20.104s
user    0m0.015s
sys     0m0.015s.015s

175.3 Mbytes used
17 seconds

all states reached

24.7 Mbytes used
20 seconds

all states reached



minimized dfa storage (-DMA)

instead of storing states explicitly in a hash-table, we can
build a minimized deterministic finite automaton as a recognizer
for states

example:
states = { 011, 101, 110, 111 }

updating the DFA for a new state s takes O(|s|), but the
constant factor is relatively large (compared to explicit storage)
  - can reduce memory use exponentially
  - considerably more time consuming than explicit storage

0,1 0 1 0,1

0 1

0 1 0 1

dfa recognizer



short note on BDDs

Symbolic representation of states:
● Codify states as bit vectors x1,...,xn;
● A  boolean formula over xi = v , v  {0, 1} represents a set;∈

E.g. (¬ x0 ∧¬x1) (x0 x1) (x0 ∨ ∧ ∨ ∧¬x1)
● Boolean formulae as Binary Decision Diagrams (BDDs)

● BDDs can efficiently represent states and compute transitions.
● (Bounded) Symbolic model checking via SAT

0 1

0 1 0 1

x0

x1 x1

0 1

0

1

x0

x1



effect of minimized automaton storage

$ cc -DNOREDUCE -DMA=270 pan.c
$ time ./pan
(Spin Version 4.0.7 -- 1 August 2003)
        + Graph Encoding (-DMA=270)

Full statespace search for:
        never claim             - (none specified)
        assertion violations    +
        acceptance   cycles     - (not selected)
        invalid end states      +

State-vector 276 byte, depth reached 148, errors: 0
MA stats: -DMA=234 is sufficient
Minimized Automaton:    161769 nodes and 397920 edges
  723053 states, stored
3.00211e+006 states, matched
3.72517e+006 transitions (= stored+matched)
      16 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

Stats on memory usage (in Megabytes):
202.455 equivalent memory usage for states (...)
7.235   actual memory usage for states (compression: 3.57%)
0.200   memory used for DFS stack (-m10000)
7.338   total actual memory usage
...
real    1m11.428s
user    0m0.015s
sys     0m0.015s

175.3 Mbytes used
17 seconds

all states reached

7.3 Mbytes used
71 seconds

all states reached

typical effect:
big reduction in Mem use
big increase in runtime



effect of using both
minimized automaton storage + collapse

$ cc -DNOREDUCE -DMA=21 -DCOLLAPSE pan.c
$ ./pan
(Spin Version 4.0.7 -- 1 August 2003)
        + Compression
        + Graph Encoding (-DMA=21)
Full statespace search for:
        never claim             - (none specified)
        assertion violations    +
        acceptance   cycles     - (not selected)
        invalid end states      +

State-vector 276 byte, depth reached 148, errors: 0
Minimized Automaton:      5499 nodes and  25262 edges
  723053 states, stored
3.00211e+006 states, matched
3.72517e+006 transitions (= stored+matched)
      16 atomic steps
hash conflicts: 0 (resolved)
(max size 2^18 states)

Stats on memory usage (in Megabytes):
208.239 equivalent memory usage for states (...)
0.892   actual memory usage for states (compression: 0.43%)
1.049   memory used for hash table (-w18)
0.200   memory used for DFS stack (-m10000)
2.068   total actual memory usage

nr of templates: [ globals chans procs ]
collapse counts: [ 2765 129 2 ]
...
real    0m44.214s
user    0m0.015s
sys     0m0.015s

175.3 Mbytes used
17 seconds

all states reached

2 Mbytes used
44 seconds

all states reached

not always as effective
as it is in this case



bitstate hashing: lossy storage
(the supertrace algorithm from 1987)

● instead of explicitly storing all reachable states we will 
now store only a few bits per state
● in an attempt to optimize search coverage and 
minimize memory use and runtime

● assume R states, S bytes per state, M bytes of memory 
available; the intended area of application for bitstate hashing 
is when we cannot do a standard search, i.e.:
● R*S >> M

● we can accept a small probability of incompleteness, provided 
that we miss significantly fewer states than would be missed in 
a normal run that exhausts available memory
● reaching far more states than M/S
● but, no guarantee that we will always reach all R states



state storage:  hash-tables

S3 h(s)

state hash
function

lookup
table

S3
S1 S45

S12

0

H-1

...

there are R states to be stored;
distinguish two cases:

H << R linked list of R/H states per slot
memory use > R.S bytes

H >> R most slots have 0 or 1 state
that is 1 bit of information per slot
effective memory use R bits



Robert Morris [CACM1968]

● in the case where H >> R there is no need to store the 
hash-key...
● the possibility of a hash-collision now becomes remote

● “no-one to this author’s knowledge has ever implemented this idea, 
and if anyone has, he might well not admit it.’’ 

● trading increased memory use for increased accuracy:
● instead of 1 hash-function, use k>1 independent hash-functions
● “store” each state k times
● a hash-collision now requires k matches
● Spin originally used 2 CRC polynomials to compute the hashes
● current version uses 3 by default, user can choose any other number



the bitstate array

S3

h1(s)

state

1

hash
functions

h2(s)

1

alternatively use a combination of
k hash-keys, and set k bitflags
instead of 1 – a match now requires
a match on all k positions simultaneously

M = 500 Mbyte give ~4.109 bit positions,
can record at least ~2.109 states

S = 500 bytes can store just 1.106 states
in exhaustive mode

each hash key that is computed
now defines the address of a bit
in memory – i.e., the key itself
need not be stored

typically we compute a 24..32 bit
hash key to encode up to 232 distinct
bit positions (on64bit machine up to 264)

Q: how does coverage vary with k?



effect of collisions:
causes possible incompleteness of search

but, accuracy of error reports is always preserved

● If a hash collision happens, the target state is assumed to have 
been visited, while in fact it was not
● This means that the target state is missed

● if target is an error state, that error may be missed
● Are all successors of the missed state also missed?

● not necessarily, in an asynchronous process system there are typically 
many different paths that lead to the same state: the same set of 
states can be reached in many ways, so if one of the paths is blocked, 
another path will likely still find the state and its successors

● What about errors that are found
● they will always be accurate and indistinguishable from errors reported 

in an exhaustive search – the path on the stack identifies the execution 
sequence leading to the error as before



Bloom filters (Burton Bloom, 1970)

• k independent hash-functions – setting k bit-positions
• initially the hash-array has all zero bits: assume m bits.
• after r states have been stored, the probability of a 

specific bit being zero is:

     

the probability of a hash-collision on the (r+1)th entry:

the right-hand side is minimized for k = ln 2 x m/r



probability of hash-collisions
optimal number of hash-functions

area of
interest



probability of hash-collisions
optimal number of hash-functions

Memory bits divided by number of states (m/r)

Spin’s
default:
k = 3



bitstate
$ spin -a leader.pml
$ cc -DNOREDUCE -DBITSTATE -o pan pan.c
$ time ./pan
(Spin Version 4.0.7 -- 1 August 2003)

Bit statespace search for:
        never claim             - (none specified)
        assertion violations    +
        acceptance   cycles     - (not selected)
        invalid end states      +

State-vector 276 byte, depth reached 148, errors: 0
  700457 states, stored
2.9073e+006 states, matched
3.60775e+006 transitions (= stored+matched)
      16 atomic steps
hash factor: 5.98795 (best coverage if >100)
(max size 2^22 states)

Stats on memory usage (in Megabytes):
198.930 equivalent memory usage for states (...)
0.524   memory used for hash array (-w22)
2.097   memory used for bit stack
0.240   memory used for DFS stack (-m10000)
3.066   total actual memory usage
...
real    0m28.550s
user    0m0.015s
sys     0m0.015s

3 Mbytes used
28 seconds

96.7% of all states reached

175.3 Mbytes used
17 seconds

all states reached



effect of bitstate hashing
increased search coverage

problem
coverage
(%)

available memory (bits)

standard

bitstate

(Data: a Commercial Data Transfer Protocol)

increased coverage



accuracy vs speed

● by shrinking the available memory arena, we increase 
speed and reduce coverage
● the effect of the hash functions is that the search space 
is pruned randomly, so we can use bitstate hashing to 
perform a fast random pre-scan of a search space

● with user-selectable accuracy and speed
● this makes it possible to do iterative search refinement

● start with a search arena of 64k bits, run verifier, if an error is 
found stop, if not: double the search arena and repeat

● until either an error is found or an exhaustive search was 
completed



options options

● partial order reduction    no downside, default mode
● statement merging      no downside, default mode

● -DCOLLAPSE     good compression; small time penalty
● -DMA     superb compression; large time penalty

● -DBITSTATE     superb compression; chance of loss; fast
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