The SPIN Model Checker

Metodi di Verifica del Software

Andrea Corradini

Lezione 6
2013

Slides per gentile concessione di Gerard J. Holzmann

help with properties

_inix]
Eile Edit Wiew Favorites Tools Help ﬁ
=Back ~ = - @ (3] ﬁ-| QiSearch [GelFavorites @iMedia £ | BE-Ss 5% D
Address I-&ﬂ http:/{patterns, projects, cis. ksu, edufdocument ationfpatterns shkml j G0 | Liniks

SAnToS

laboratory
w g

s

The Patterns
The infarmation in the patterns can be presented in a variety of ways, One

organization, ilustrated below, is based on classifying the patterns in terms of
the kinds of system behaviors they describe,

Propetty Patterns

/

/‘OUCUHBHOB /Ordcr\
A bsehoe / \ Bounded Ptecedence Respohse Chain Chain
Existence Ptecedence Respohse

Umiversality Existence

« Occurrence Patterns talk about the occurrence of a given eventfstate during
system execution.

« Order Patterns talk about relative order in which multiple events/states ocour
during system execution.

« ‘While not themselves patterns, Pattern Notes discuss common ways to vary
the existing patterns to suite your needs,

An alternative organization for this information is to group pattern to formalism
mappings by specification formalism, The supported formalisms are listed below,
Clicking on the formalism will bring you to pages with mappings for each property —
pattern in that formalisms. We supply the mappings on these formalism-specific
pages and you are refered to the complete patterns for information about
relationships and example uses.

e Linear Temporal Logic (LTL)
« Computation Tree Logic (CTL)
e Graphical Interval Logic (GIL)

[&] Done ’_ l_ ’_ |4 mternet

| EN

the temporal logic patterns database
http://patterns.projects.cis.ksu.edu/

logic patterns

/ for LTL/CTL/...

occurrence order (sequence)

/ \ precedence response

absence existence universality ‘ ’

chain chain
precedence response
bounded
eXiStence five variants are given for every pattern:
name example for ‘absence’and LTL #states
globally 'p [1('p) 1
before r <>r -> ('p U r) 4
after gq [1(qa -> [1(!'p)) 2
E g9 _ between r and q [1((r && 'g && <>q) -> ('p U q)) 4
! ! - after r until q [1(r && 'q -> (('p U Q) Il [1'p)) 4

3

expressiveness of LTL
compared to never claims

never-claims can define all W-regular word-automata
propositional linear temporal logic (without quantifiers) defines
a subset of this language

anything expressable in LTL can be expressed as a never
claim

but, never claims can also express properties that cannot be
expressed in LTL

adding a single existential quantifier over 1 propositional
symbol to LTL suffices to extend its expressiveness to all

W-regular word-automata:

I:lpa [] (p -> <> q)

Kousha Etessami’s ‘temporal massage parlor’ TMP:
http://www.bell-labs.com/projects/TMP

omega-regular properties

something not expressible in pure LTL:

(p) can hold after an even number of execution steps, but
never holds after an odd number of steps

[] X (p) certainly does not capture it:

true ¢
O—0d |-
p && [J(p -> Xlp) && [J(!p -> Xp) does not capture it either
(because now p must always hold after all even steps):

O—0O i)

'p

O, 't && [1 (t-> X 1t) && [1('t-> Xt) && [1(p -> !t)
this formula expresses it correctly

: true O

'p

On the semantics of Promela
proctypes and automata

active proctype not_euclid()

{
S: if

X ==y -> assert(x '= y); goto L

X>y >L: x=Xx-y
x<y -> y =y - X
fi;
E: printf (“%d\n”, x)
}

start

a Spin model defines a system of:
states and state transformers (transitions)

state is maintained in

local and global variables and

lprintf(“%d\n”,x)

sets of process counters (control flow states) <:>
stop

message channels

Y,0, Y=>', if-fi, do-od, goto, etc.
define the transition structure

are only used to

(not the state transformers themselves)
the only state transformers are the basic statements:
assignment, (expr), printf, assert, send, receive

operational model (see MVS page)

to define the semantics of the modeling language, we can
define an operational model in terms of states and state
transformers (transitions)

we have to define what a “global system state” is

we have to define what a “state transition” is
i.e., how the ‘next-state’ relation is defined

global system states are defined in terms of a small number of
primitive objects:
we have to define: variables, messages, message channels, and processes

State transitions are defined with the help of

basic statements that label transitions
the alphabet of the underlying automata
there are only 6 types of labels in the alphabet: assignment, condition, etc.

we have to define: transitions, transition selection, and transition execution

search algorithms in SPIN

checking safety properties
basic depth-first search
variant1: stateless search [checks only the stack]
variant2: depth-limited search
breadth-first search

checking liveness properties
non-progress cycles
acceptance cycles
Spin’s nested depth-first search algorithm

fairness constraints
Choueka’s flag construction method

optimization

partial order reduction, state compression,
alternate state representation methods

basic depth-first search

Automaton A = { S, s,, L, T, F }
Stack D = {}

Statespace V = {}

Start ()

{

Add Statespace(V, A.s,)
Push_Stack (D, A.s,)

Push Stack (D, s)
In Stack(D,s)
true iff s is in D

Top_Stack (D, s)

if any
Pop_Stack (D)

if any

Search()
} Add_statespace (V, s)
adds s to set V
Search () In_Statespace(V,s)
{ true iff s is in V
s = Top_Stack (D)
for each (s,1,s')d A.T
if In Statespace(V, s')== false
{ Add_StatesPace (v, s") the DFS is most easily written
Push _Stack(D, s') 3as a recursive procedure -- but the
Search() dctual Spin implementation is iterative
} originally to increase efficiency)
Pop_Stack (D)
} objective:

-store as little data about the graph as possible
- stores states in V, but not transitions

- Statespace V is there to prevent doing redundant work
- for correctness, V does not need to be complete
- in fact, V does not need to be there at all....

0

adds s to ordered set D

returns top element in D

removes top element from D

no Statespace V _

—»

a stateless search

(memory efficient, but excessively time consuming...)

Automaton A = { S, s,, L, T, F }
Stack D = {}
/* Statespace V = {} */
Start ()
{
Push Stack (D, A.s;)
Search ()
}

Search ()

{
s = Top_Stack (D) e
for each (s,1,s')d A.Tx

{ Push_Stack (D, s')
Search ()

}
Pop Stack (D)

}

if In Stack(D, s')== false

replaced In_Statespace(V,s’)
with In Stack(D,s’)

7
7

7
7

Fig. 8.5 p. 176

the algorithm is still guaranteed

to terminate in a finite number of steps

Statespace V is used to prevent doing redundant work

- for correctness, it does not need to be complete
- in fact, it does not need to be there at all....

10

the nested depth-first search algorithm

Automaton A = { S, s,, L, T, F }
Stack D = {}

Statespace V = {}

State seed = nil

Boolean toggle = false

Start ()

{ Add Statespace(V, A.s,, toggle)
Push_Stack (D, A.s,, toggle)
Search()

Search()
{ (s,toggle) = Top_ Stack(D)
for each (s,1,s') O a.T

{ /* if seed is reachable from itself */
if s' == seed [On_Stack(D,s', false)
{ PrintStack (D)
PopStack (D)
return
}
if In Statespace(V, s', toggle) == false
{ Add Statespace(V, s', toggle)
Push Stack(D, s', toggle)
Search()
} }
if s 0 A.F 0O toggle == false
{ seed = s /* reachable accepting state */

toggle = true

Push Stack(D, s, toggle)
Search() /* start 2nd search */
Pop_ Stack (D)

seed = nil

toggle = false

}
Pop_ Stack (D)

11

enforcing fairness constraints

fairness can be expressed in LTL, but this is not
always simple / convenient

we can also provide options in the model checker to
enforce default types of process scheduling fairness

there is a cost associated with the implementation as
part of the nested depth-first search procedure:

weak fairness: linear increase of complexity (in # processes)
strong fairness: quadratic increase of complexity

12

the basic idea: unfolding
Choueka’s flag construction method

create (k+2) copies of the global reachability graph, with k the
number of active processes

we number them from 0..(k+1)

preserve accept-state labels only in the 1% copy
the copy numbered 0

change the transition relation to connect all k+2 copies:

in copy 0, change the destination state for outgoing transitions of all
accepting states so that they point to the corresponding state in copy 1
in copy k+1, change the destination state for outgoing transitions of all
states so that they point to the corresponding state in copy 0

in copy i, 1<i€k, change the destination state for all transitions
contributed by process i to the corresponding state in copy i+1

add a nil-transition from any state in copy / where process i is blocked
(has no enabled transitions) to the same state in copy i+1
an accepting w-run in the unfolded graph now necessarily contains
transitions from all active processes and therefore satisfies the
weak fairness requirement

13

(k+2)-times unfolded graph

copy O 1 2 k+1

all runs of the original system are preserved, but unfolded.
no accept cycles can exist within copy 0

all accept cycles must traverse all copies to return to copy 0
and are therefore necessarily weakly fair

14

fair reminders

Spin’s built-in notion of fairness applies only to
weak fairness, not strong fairness
process scheduling
not to non-deterministic choices within a process

other types of fairness can be expressed in LTL with
properties of the type [[<>p

15

relative complexity

parameters problem size
: P = (M*B*s)
K processes — typical values: 2..10 >
M reachable states in model — typical values: 10°.. 10" D

B states in property automaton — typical values 1..4
S size of one state in bits

Memory Run-Time

safety properties P P
liveness properties P P*2
liveness+weak fairness | P P*2*(k+2)

use abstraction and p.o. reduction to keep the model size M small
use abstraction and compression to keep state size S small
use simple properties, exploit separability, to keep B small
use safety properties when possible
liveness only when needed
fairness constraints only when unavoidable

16

search optimization

the complexity is determined by M*B*S: reducing any of these 3
numbers reduces verification complexity
M: numbers of reachable states in the global state space
the size of the asynchronous product automaton
B: the number of states in the property automaton

M dominates (typically 10° states and up), B is almost always
very small (1..6 states)
M can increase exponentially with the number of asynchronous
processes and message channels in the model
in many cases this can be avoided by revising the model slightly
reducing the nr of processes and/or data objects, splitting data streams
B can increase exponentially with the number of sub-formulae (or
roughly: the number of operators) in an LTL formula

in practice this is insignificant compared to the other factors that
contribute to complexity

see Appendix B re comparisons between CTL/LTL

17

non-algorithmic techniques to
reduce complexity

to reduce M*B*S

B: reducing the size of the property automaton
use small separable properties, instead of one large combined one

M: reducing the size of the global state space
reducing the number of processes, message channels, data objects
reducing the length of channels (number of slots)
use a unique channel for each sender-receiver combination
avoid data types with larger than necessary range
using abstraction, separation of concerns, generalization, etc.

S: reducing the size of individual states (the state-vector)

using abstraction, lossless or lossy compression, or alternate
state representation methods

18

algorithmic techniques to reduce

complexity
to reduce M: partial order reduction (default in Spin)
avoids computing equivalent paths and states

to reduce S:

lossless compression
masking unused parts in state-vector (default in Spin)
collapse compression (-DCOLLAPSE), increases time, reduces memory

lossy compression

hash-compact (-DHC), no increase in time, reduction in memory use,
modest risk of incompleteness

bitstate hashing (-DBITSTATE), reduction in time, large reduction in
memory use, risk of incompleteness (statistical estimates of coverage)

indirect methods

using a recognizer (a minimized automaton) instead of a

hashed lookup table to store states (-DMA), major increase in time,
major reduction in memory

19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	the semantics of Promela proctypes and automata
	operational model
	search algorithms
	basic depth-first search
	a stateless search (memory efficient, but excessively time consuming...)
	the nested depth-first search algorithm
	enforcing fairness constraints
	the basic idea: unfolding Choueka’s flag construction method
	(k+2)-times unfolded graph
	fair reminders
	relative complexity
	search optimization
	non-algorithmic techniques to reduce complexity
	algorithmic techniques to reduce complexity

