
The SPIN Model Checker

Metodi di Verifica del Software
Andrea Corradini

Lezione 6
2013

Slides per gentile concessione di Gerard J. Holzmann

 2

help with properties

 3

the temporal logic patterns database
http://patterns.projects.cis.ksu.edu/

logic patterns
for LTL/CTL/...

absence universalityexistence

bounded
existence

order (sequence)occurrence

precedence response

chain
precedence

chain
response

five variants are given for every pattern:

 name example for ‘absence’and LTL #states
 globally !p [](!p) 1
 before r <>r -> (!p U r) 4
 after q [](q -> [](!p)) 2
 between r and q []((r && !q && <>q) -> (!p U q)) 4
 after r until q [](r && !q -> ((!p U q) || []!p)) 4

r q

 4

expressiveness of LTL
compared to never claims

(cf. book p. 151)

• never-claims can define all ω-regular word-automata

• propositional linear temporal logic (without quantifiers) defines
a subset of this language
– anything expressable in LTL can be expressed as a never

claim

– but, never claims can also express properties that cannot be
expressed in LTL

• adding a single existential quantifier over 1 propositional
symbol to LTL suffices to extend its expressiveness to all

ω-regular word-automata:

∃p, [](p -> <> q)
• Kousha Etessami’s ‘temporal massage parlor’ TMP:

http://www.bell-labs.com/projects/TMP

 5

omega-regular properties
(~p. 150 book)

• something not expressible in pure LTL:
– (p) can hold after an even number of execution steps, but

never holds after an odd number of steps
– [] X (p) certainly does not capture it:

– p && [](p -> X!p) && [](!p -> Xp) does not capture it either
(because now p must always hold after all even steps):

� ∃ t, !t && [] (t -> X !t) && [](!t -> Xt) && [](p -> !t)

this formula expresses it correctly

true

p

(ltl2ba -f)

p

!p

true

!p

 6

On the semantics of Promela
proctypes and automata

active proctype not_euclid()
{
S: if
 :: x == y -> assert(x != y); goto L
 :: x > y -> L: x = x - y
 :: x < y -> y = y - x
 fi;
E: printf(“%d\n”, x)
}

a Spin model defines a system of:
 states and state transformers (transitions)

state is maintained in
 sets of process counters (control flow states)
 local and global variables and
 message channels

‘;’, ‘->’, if-fi, do-od, goto, etc. are only used to
 define the transition structure
 (not the state transformers themselves)
 the only state transformers are the basic statements:
 assignment, (expr), printf, assert, send, receive

L
:

x==y x<yx>y

assert

x=x-y y=y-x

printf(“%d\n”,x)

stop

start

S:

E:

 7

operational model (see MVS page)
• to define the semantics of the modeling language, we can

define an operational model in terms of states and state
transformers (transitions)
– we have to define what a “global system state” is
– we have to define what a “state transition” is

• i.e., how the ‘next-state’ relation is defined

• global system states are defined in terms of a small number of
primitive objects:

– we have to define: variables, messages, message channels, and processes

• state transitions are defined with the help of
– basic statements that label transitions

• the alphabet of the underlying automata
• there are only 6 types of labels in the alphabet: assignment, condition, etc.

– we have to define: transitions, transition selection, and transition execution

 8

search algorithms in SPIN
• checking safety properties

– basic depth-first search
– variant1: stateless search [checks only the stack]
– variant2: depth-limited search
– breadth-first search

• checking liveness properties
– non-progress cycles
– acceptance cycles
– Spin’s nested depth-first search algorithm

• fairness constraints
– Choueka’s flag construction method

• optimization
– partial order reduction, state compression,

alternate state representation methods

 9

basic depth-first search

Automaton A = { S, s0, L, T, F }
Stack D = {}
Statespace V = {}

Start()
{
 Add_Statespace(V, A.s0)
 Push_Stack(D, A.s0)
 Search()
}

Search()
{
 s = Top_Stack(D)
 for each (s,l,s')∈ A.T

if In_Statespace(V, s')== false
{ Add_Statespace(V, s')
 Push_Stack(D, s')
 Search()
}

 Pop_Stack(D)
}

the DFS is most easily written
as a recursive procedure -- but the
actual Spin implementation is iterative
(originally to increase efficiency)

Fig. 8.1 p. 168

Add_Statespace(V,s)
adds s to set V

In_Statespace(V,s)
true iff s is in V

Push_Stack(D,s)
adds s to ordered set D

In_Stack(D,s)
true iff s is in D

Top_Stack(D,s)
returns top element in D
if any

Pop_Stack(D)
removes top element from D
if any

objective:
-store as little data about the graph as possible

- stores states in V, but not transitions
- Statespace V is there to prevent doing redundant work

- for correctness, V does not need to be complete
- in fact, V does not need to be there at all....

 10

Automaton A = { S, s0, L, T, F }
Stack D = {}
/* Statespace V = {} */

Start()
{
 Push_Stack(D, A.s0)
 Search()
}

Search()
{
 s = Top_Stack(D)
 for each (s,l,s')∈ A.T

if In_Stack(D, s')== false
{ Push_Stack(D, s')
 Search()
}

 Pop_Stack(D)
}

a stateless search
(memory efficient, but excessively time consuming...)

Fig. 8.5 p. 176

replaced In_Statespace(V,s’)
with In_Stack(D,s’)

no Statespace V

 Statespace V is used to prevent doing redundant work
- for correctness, it does not need to be complete
- in fact, it does not need to be there at all....

the algorithm is still guaranteed
to terminate in a finite number of steps

 11

the nested depth-first search algorithm

Automaton A = { S, s0, L, T, F }
Stack D = {}
Statespace V = {}
State seed = nil
Boolean toggle = false

Start()
{ Add_Statespace(V, A.s0, toggle)
 Push_Stack(D, A.s0, toggle)
 Search()
}

Search()
{ (s,toggle) = Top_Stack(D)
 for each (s,l,s') ∈ A.T
 { /* if seed is reachable from itself */

if s' == seed ∨ On_Stack(D,s',false)
{ PrintStack(D)
 PopStack(D)
 return
}
if In_Statespace(V, s', toggle) == false
{ Add_Statespace(V, s', toggle)
 Push_Stack(D, s', toggle)
 Search()

 } }
 if s ∈ A.F ∧ toggle == false
 { seed = s /* reachable accepting state */

toggle = true
Push_Stack(D, s, toggle)
Search() /* start 2nd search */
Pop_Stack(D)
seed = nil
toggle = false

 }
 Pop_Stack(D)
}

 12

enforcing fairness constraints

• fairness can be expressed in LTL, but this is not
always simple / convenient

• we can also provide options in the model checker to
enforce default types of process scheduling fairness

• there is a cost associated with the implementation as
part of the nested depth-first search procedure:
– weak fairness: linear increase of complexity (in # processes)
– strong fairness: quadratic increase of complexity

 13

the basic idea: unfolding
Choueka’s flag construction method

• create (k+2) copies of the global reachability graph, with k the
number of active processes

– we number them from 0..(k+1)

• preserve accept-state labels only in the 1st copy
– the copy numbered 0

• change the transition relation to connect all k+2 copies:
– in copy 0, change the destination state for outgoing transitions of all

accepting states so that they point to the corresponding state in copy 1
– in copy k+1, change the destination state for outgoing transitions of all

states so that they point to the corresponding state in copy 0
– in copy i, 1≤ i≤k, change the destination state for all transitions

contributed by process i to the corresponding state in copy i+1
– add a nil-transition from any state in copy i where process i is blocked

(has no enabled transitions) to the same state in copy i+1

• an accepting ω-run in the unfolded graph now necessarily contains
transitions from all active processes and therefore satisfies the
weak fairness requirement

 14

(k+2)-times unfolded graph

copy 0 1 k+1

1≤pid≤k

pid != 1

pid==1

2

pid != 2

pid==2 pid==k

1≤pid≤k

...

all runs of the original system are preserved, but unfolded.
no accept cycles can exist within copy 0
all accept cycles must traverse all copies to return to copy 0
and are therefore necessarily weakly fair

 15

fair reminders

• Spin’s built-in notion of fairness applies only to
– weak fairness, not strong fairness
– process scheduling
– not to non-deterministic choices within a process

• other types of fairness can be expressed in LTL with
properties of the type []<>p

 16

relative complexity

• parameters:
– k processes – typical values: 2..10
– M reachable states in model – typical values: 109 .. 1011

– B states in property automaton – typical values 1..4
– S size of one state in bits

• safety properties P P

• liveness properties P P*2

• liveness+weak fairness P P*2*(k+2)

 Memory Run-Time

use abstraction and p.o. reduction to keep the model size M small
use abstraction and compression to keep state size S small
use simple properties, exploit separability, to keep B small
use safety properties when possible
 liveness only when needed
 fairness constraints only when unavoidable

problem size

P = (M*B*S)

 17

search optimization
• the complexity is determined by M*B*S: reducing any of these 3

numbers reduces verification complexity
– M: numbers of reachable states in the global state space

• the size of the asynchronous product automaton

– B: the number of states in the property automaton

• M dominates (typically 106 states and up), B is almost always
very small (1..6 states)
– M can increase exponentially with the number of asynchronous

processes and message channels in the model
• in many cases this can be avoided by revising the model slightly
• reducing the nr of processes and/or data objects, splitting data streams

– B can increase exponentially with the number of sub-formulae (or
roughly: the number of operators) in an LTL formula

• in practice this is insignificant compared to the other factors that
contribute to complexity

• see Appendix B re comparisons between CTL/LTL

 18

non-algorithmic techniques to
reduce complexity

• to reduce M*B*S
– B: reducing the size of the property automaton

• use small separable properties, instead of one large combined one

– M: reducing the size of the global state space
• reducing the number of processes, message channels, data objects
• reducing the length of channels (number of slots)
• use a unique channel for each sender-receiver combination
• avoid data types with larger than necessary range
• using abstraction, separation of concerns, generalization, etc.

– S: reducing the size of individual states (the state-vector)
• using abstraction, lossless or lossy compression, or alternate

state representation methods

 19

algorithmic techniques to reduce
complexity

• to reduce M: partial order reduction (default in Spin)

– avoids computing equivalent paths and states

• to reduce S:
– lossless compression

• masking unused parts in state-vector (default in Spin)

• collapse compression (-DCOLLAPSE), increases time, reduces memory

– lossy compression
• hash-compact (-DHC), no increase in time, reduction in memory use,

modest risk of incompleteness

• bitstate hashing (-DBITSTATE), reduction in time, large reduction in
memory use, risk of incompleteness (statistical estimates of coverage)

– indirect methods
• using a recognizer (a minimized automaton) instead of a

hashed lookup table to store states (-DMA), major increase in time,
major reduction in memory

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	the semantics of Promela proctypes and automata
	operational model
	search algorithms
	basic depth-first search
	a stateless search (memory efficient, but excessively time consuming...)
	the nested depth-first search algorithm
	enforcing fairness constraints
	the basic idea: unfolding Choueka’s flag construction method
	(k+2)-times unfolded graph
	fair reminders
	relative complexity
	search optimization
	non-algorithmic techniques to reduce complexity
	algorithmic techniques to reduce complexity

