Overview

Introduction Modelling parallel systems **Linear Time Properties** state-based and linear time view definition of linear time properties invariants and safety liveness and fairness **Regular Properties** Linear Temporal Logic Computation-Tree Logic Equivalences and Abstraction

LF2.6-1

"liveness: something good will happen."

LF2.6-1

"liveness: something good will happen."

"event *a* will occur eventually"

- "event *a* will occur eventually"
- e.g., termination for sequential programs

"event *a* will occur eventually"

e.g., termination for sequential programs

"event *a* will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"event *a* will occur eventually"

e.g., termination for sequential programs

"event *a* will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"whenever event **b** occurs then event **a** will occur sometimes in the future"

"event *a* will occur eventually"

e.g., termination for sequential programs

"event a will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"whenever event **b** occurs then event **a** will occur sometimes in the future"

e.g., every waiting process enters eventually its critical section

• Each philosopher thinks infinitely often.

• Each philosopher thinks infinitely often.

liveness

• Each philosopher thinks infinitely often.

liveness

• Two philosophers next to each other never eat at the same time.

• Each philosopher thinks infinitely often.

liveness

• Two philosophers next to each other never eat at the same time.

- LF2.6-2
- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before.

- LF2.6-2
- Each philosopher thinks infinitely often.

liveness

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before. safety

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before. safety

• Whenever a philosopher eats then he will think some time afterwards.

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before. safety

• Whenever a philosopher eats then he will think some time afterwards.

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before.

safety

- Whenever a philosopher eats then he will think some time afterwards.
- Between two eating phases of philosopher *i* lies at least one eating phase of philosopher *i*+1.

• Each philosopher thinks infinitely often.

liveness

LF2.6-2

- Two philosophers next to each other never eat at the same time.
- Whenever a philosopher eats then he has been thinking at some time before.

safety

safetv

- Whenever a philosopher eats then he will think some time afterwards.
- Between two eating phases of philosopher *i* lies at least one eating phase of philosopher *i*+1.

many different formal definitions of liveness have been suggested in the literature

many different formal definitions of liveness have been suggested in the literature

here: one just example for a formal definition of liveness

Definition of liveness properties

Let **E** be an LT property over **AP**, i.e., $\mathbf{E} \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over AP can be extended to an infinite word in E

Let **E** be an LT property over **AP**, i.e., $\mathbf{E} \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over AP can be extended to an infinite word in E, i.e., if

$$pref(E) = (2^{AP})^+$$

recall: pref(E) = set of all finite, nonempty
prefixes of words in E

Let **E** be an LT property over **AP**, i.e., $\mathbf{E} \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over *AP* can be extended to an infinite word in *E*, i.e., if

$$pref(E) = (2^{AP})^+$$

Examples:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
- whenever a process has requested its critical section then it will eventually enter its critical section

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

• each process will eventually enter its critical section

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

• each process will eventually enter its critical section

$$E = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$$
$$\forall i \in \{1, \dots, n\} \exists k \ge 0. \ crit_i \in A_k$$

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

Examples for $AP = \{crit_i : i = 1, \dots, n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

 $E = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$ $\forall i \in \{1, \dots, n\} \stackrel{\infty}{\exists} k \ge 0. \ crit_i \in A_k$

Examples for $AP = \{wait_i, crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

Examples for $AP = \{wait_i, crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

$$E = \text{set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$$

$$\forall i \in \{1, \dots, n\} \ \forall j \ge 0. \ wait_i \in A_j$$

$$\longrightarrow \exists k > j. \ crit_i \in A_k$$

Let **E** be an LT-property, i.e.,
$$\mathbf{E} \subseteq (2^{AP})^{\omega}$$

LF2.6-SAFETY

Let **E** be an LT-property, i.e.,
$$\mathbf{E} \subseteq (2^{AP})^{\omega}$$

E is a safety property
iff
$$\forall \sigma \in (2^{AP})^{\omega} \setminus E \exists A_0 A_1 \dots A_n \in pref(\sigma)$$
 s.t.
 $\{\sigma' \in E : A_0 A_1 \dots A_n \in pref(\sigma')\} = \emptyset$

LF2.6-SAFETY

Let **E** be an LT-property, i.e.,
$$\mathbf{E} \subseteq (2^{AP})^{\omega}$$

E is a safety property
iff
$$\forall \sigma \in (2^{AP})^{\omega} \setminus E \exists A_0 A_1 \dots A_n \in pref(\sigma)$$
 s.t.
 $\{\sigma' \in E : A_0 A_1 \dots A_n \in pref(\sigma')\} = \emptyset$

remind:

$$pref(\sigma) = \text{ set of all finite, nonempty prefixes of } \sigma$$
$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

LF2.6-SAFETY

Let **E** be an LT-property, i.e.,
$$\mathbf{E} \subseteq (2^{AP})^{\omega}$$

$$E \text{ is a safety property}$$
iff $\forall \sigma \in (2^{AP})^{\omega} \setminus E \exists A_0 A_1 \dots A_n \in pref(\sigma) \text{ s.t.}$

$$\{\sigma' \in E : A_0 A_1 \dots A_n \in pref(\sigma')\} = \emptyset$$
iff $cl(E) = E$

remind: $cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}$ $pref(\sigma) = \text{set of all finite, nonempty prefixes of } \sigma$ $pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$

Decomposition theorem

LF2.6-DECOMP-THM

```
For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.
E = SAFE \cap LIVE
```
```
For each LT-property E, there exists a safety
property SAFE and a liveness property LIVE s.t.
E = SAFE \cap LIVE
```

Proof:

Proof: Let **SAFE** $\stackrel{\text{def}}{=}$ cl(E)

Proof: Let **SAFE** $\stackrel{\text{def}}{=}$ cl(E)

remind:
$$cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}$$

 $pref(\sigma) = \text{set of all finite, nonempty prefixes of } \sigma$
 $pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$

Proof: Let *SAFE*
$$\stackrel{\text{def}}{=} cl(E)$$

LIVE $\stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$

remind:
$$cl(E) = \{\sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E)\}$$

 $pref(\sigma) = set of all finite, nonempty prefixes of \sigma$
 $pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$

- *Proof:* Let *SAFE* $\stackrel{\text{def}}{=}$ cl(E) *LIVE* $\stackrel{\text{def}}{=}$ $E \cup ((2^{AP})^{\omega} \setminus cl(E))$ Show that:
- $E = SAFE \cap LIVE$
- **SAFE** is a safety property
- *LIVE* is a liveness property

- *Proof:* Let *SAFE* $\stackrel{\text{def}}{=}$ cl(E) *LIVE* $\stackrel{\text{def}}{=}$ $E \cup ((2^{AP})^{\omega} \setminus cl(E))$ Show that:
- $E = SAFE \cap LIVE \quad \checkmark$
- **SAFE** is a safety property
- *LIVE* is a liveness property

- *Proof:* Let *SAFE* $\stackrel{\text{def}}{=} cl(E)$ *LIVE* $\stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$ Show that:
- $E = SAFE \cap LIVE \quad \sqrt{}$
- SAFE is a safety property as cl(SAFE) = SAFE
- *LIVE* is a liveness property

- *Proof:* Let *SAFE* $\stackrel{\text{def}}{=} cl(E)$ *LIVE* $\stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$ Show that:
- $E = SAFE \cap LIVE \quad \checkmark$
- SAFE is a safety property as cl(SAFE) = SAFE
- LIVE is a liveness property, i.e., $pref(LIVE) = (2^{AP})^+$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

• $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

 $pref(E) = (2^{AP})^+$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$
$$\implies cl(E) = (2^{AP})^{\omega}$$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$
$$\implies cl(E) = (2^{AP})^{\omega}$$

If E is a safety property too, then cl(E) = E.

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$
$$\implies cl(E) = (2^{AP})^{\omega}$$

If **E** is a safety property too, then cl(E) = E. Hence $E = cl(E) = (2^{AP})^{\omega}$.

Observation

liveness properties are often violated although we expect them to hold

54/189

light 1 ||| **light 2** $\not\models$ "infinitely often *green*₁"

light 1 ||| **light 2** $\not\models$ "infinitely often *green*₁"

light 1 ||| **light 2** $\not\models$ "infinitely often *green*₁"

interleaving is completely time abstract !

LF2.6-4

LF2.6-4

liveness \cong "each waiting process will eventually enter its critical section"

LF2.6-4

 $\mathcal{T}_{sem} \not\models$ "each waiting process will eventually enter its critical section"

LF2.6-4

 $\mathcal{T}_{sem} \not\models$ "each waiting process will eventually enter its critical section"

LF2.6-4

 $\mathcal{T}_{sem} \not\models$ "each waiting process will eventually enter its critical section"

level of abstraction is too coarse !

Process fairness

LF2.6-5

two independent non-communicating processes **P**₁ ||| **P**₂

possible interleavings:

two independent non-communicating processes **P**₁ ||| **P**₂

possible interleavings:

two independent non-communicating processes **P**₁ ||| **P**₂

possible interleavings:

two independent non-communicating processes **P**₁ ||| **P**₂

possible interleavings:

process fairness assumes an appropriate resolution of the nondeterminism resulting from interleaving and competitions

Nuances of fairness

LF2.6-6

• unconditional fairness

• strong fairness

• weak fairness

• unconditional fairness, e.g.,

every process enters gets its turn infinitely often.

• strong fairness

• weak fairness

• unconditional fairness, e.g.,

every process enters gets its turn infinitely often.

• strong fairness, e.g.,

every process that is enabled infinitely often gets its turn infinitely often.

• weak fairness

unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.

LF2.6-6

• strong fairness, e.g.,

every process that is enabled infinitely often gets its turn infinitely often.

• weak fairness, e.g.,

every process that is continuously enabled from a certain time instance on, gets its turn infinitely often.
Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

we will provide conditions for

- unconditional **A**-fairness of ρ
- strong A-fairness of ρ
- weak **A**-fairness of ρ

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

we will provide conditions for

- unconditional **A**-fairness of ρ
- strong A-fairness of ρ
- weak **A**-fairness of ρ

using the following notations:

$$Act(s_i) = \left\{ \beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s' \right\}$$

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

we will provide conditions for

- unconditional **A**-fairness of ρ
- strong A-fairness of ρ
- weak **A**-fairness of ρ

using the following notations:

$$\begin{array}{rcl} Act(s_i) &=& \left\{ \beta \in Act : \exists s' \text{ s.t. } s_i \stackrel{\beta}{\longrightarrow} s' \right\} \\ & \stackrel{\infty}{\exists} & \stackrel{\cong}{=} & \text{``there exists infinitely many ...''} \end{array}$$

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

we will provide conditions for

- unconditional **A**-fairness of ρ
- strong A-fairness of ρ
- weak **A**-fairness of ρ

using the following notations:

$$Act(s_i) = \{ \beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s' \}$$

$$\stackrel{\infty}{\exists} \stackrel{\cong}{=} \text{``there exists infinitely many ...''}$$

$$\stackrel{\infty}{\forall} \stackrel{\cong}{=} \text{``for all, but finitely many ...''}$$

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

• ρ is unconditionally **A**-fair, if

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = \mathbf{s_0} \xrightarrow{\alpha_0} \mathbf{s_1} \xrightarrow{\alpha_1} \mathbf{s_2} \xrightarrow{\alpha_2} \dots$ infinite execution fragment • ρ is unconditionally A-fair, if $\stackrel{\infty}{\exists} i \ge 0$. $\alpha_i \in A$ \uparrow "actions in A will be taken infinitely many times"

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

• ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \ge 0$. $\alpha_i \in A$

• ρ is strongly **A**-fair, if

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \ge 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \ge 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \ge 0. \alpha_i \in A$$

$$\uparrow$$

"If infinitely many times some action in **A** is enabled, then actions in **A** will be taken infinitely many times."

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \ge 0$. $\alpha_i \in A$
- ρ is strongly A-fair, if $\stackrel{\infty}{\exists} i \ge 0. A \cap Act(s_i) \ne \emptyset \implies \stackrel{\infty}{\exists} i \ge 0. \alpha_i \in A$
- ρ is weakly **A**-fair, if

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \ge 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if $\stackrel{\sim}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\sim}{\exists} i \geq 0. \alpha_i \in A$ • p is weakly A-fair, if $\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \overset{\infty}{\exists} i \geq 0. \alpha_i \in A$ "If from some moment, actions in A are enabled, then actions in A will be taken infinitely many times."

 \implies weakly **A**-fair

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ infinite execution fragment

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \ge 0$. $\alpha_i \in A$
- ρ is strongly *A*-fair, if $\stackrel{\infty}{\exists} i \ge 0. A \cap Act(s_i) \ne \emptyset \implies \stackrel{\infty}{\exists} i \ge 0. \alpha_i \in A$ • ρ is weakly *A*-fair, if $\stackrel{\infty}{\forall} i \ge 0. A \cap Act(s_i) \ne \emptyset \implies \stackrel{\infty}{\exists} i \ge 0. \alpha_i \in A$ unconditionally *A*-fair \implies strongly *A*-fair

Let \mathcal{T} be a TS with action-set Act, $A \subseteq Act$ and $\rho = s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \xrightarrow{\alpha_2} \dots$ an infinite execution fragment

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \ge 0$. $\alpha_i \in A$
- ρ is strongly A-fair, if $\stackrel{\infty}{\exists} i \ge 0. A \cap Act(s_i) \ne \emptyset \implies \stackrel{\infty}{\exists} i \ge 0. \alpha_i \in A$
- ρ is weakly **A**-fair, if

 $\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \overset{\infty}{\exists} i \geq 0. \alpha_i \in A$

unconditionally A-fair \implies strongly A-fair \implies weakly A-fair

Strong and weak action fairness

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times

Strong and weak action fairness

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times

- no A-actions are executed from a certain moment
- A-actions are continuously enabled from some moment on

Mutual exclusion with arbiter

Mutual exclusion with arbiter

Mutual exclusion with arbiter

LF2.6-10

fairness for action set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle \operatorname{crit}_1, I, w_2 \rangle \right)^{\omega}$$

- unconditional **A**-fairness:
- strong **A**-fairness:
- weak A-fairness:

LF2.6-10

fairness for action set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle \operatorname{crit}_1, I, w_2 \rangle \right)^{\omega}$$

- unconditional A-fairness: yes
- strong *A*-fairness: **yes** ← unconditionally fair
- weak *A*-fairness: **yes** ← unconditionally fair

LF2.6-10

fairness for action-set $A = \{enter_1\}$:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle \right)^{\omega}$$

- unconditional **A**-fairness:
- strong **A**-fairness:
- weak A-fairness:

LF2.6-10

fairness for action-set $A = \{enter_1\}$:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle \right)^{\omega}$$

- unconditional A-fairness: no
- strong A-fairness: yes ← A never enabled
- weak A-fairness:

yes ← strongly **A**-fair

LF2.6-10

fairness for action-set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow (\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle)^{\omega}$$

- unconditional **A**-fairness:
- strong **A**-fairness:
- weak A-fairness:

LF2.6-10

fairness for action-set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow (\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle)^{\omega}$$

- unconditional A-fairness: no
- strong **A**-fairness: **no**
- weak **A**-fairness: **yes**

LF2.6-10

fairness for action set $A = \{enter_1, enter_2\}$:

$$\left(\langle n_1, u, n_2 \rangle {\rightarrow} \langle n_1, u, w_2 \rangle {\rightarrow} \langle n_1, u, crit_2 \rangle \right)^{\omega}$$

- unconditional **A**-fairness:
- strong **A**-fairness:
- weak A-fairness:

LF2.6-10

fairness for action set $A = \{enter_1, enter_2\}$:

$$(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, u, crit_2 \rangle)^{\omega}$$

- unconditional A-fairness: yes
- strong **A**-fairness: **yes**
- weak **A**-fairness: **yes**

Let \mathcal{T} be a transition system with action-set Act. A fairness assumption for \mathcal{T} is a triple

 $\mathcal{F} = \left(\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak}\right)$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

Let \mathcal{T} be a transition system with action-set Act. A fairness assumption for \mathcal{T} is a triple $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ where $\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally A-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly **A**-fair
- ρ is weakly **A**-fair

for all $A \in \mathcal{F}_{strong}$

for all $A \in \mathcal{F}_{weak}$

Let \mathcal{T} be a transition system with action-set Act. A fairness assumption for \mathcal{T} is a triple $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ where $\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally A-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly **A**-fair
- ρ is weakly **A**-fair

for all $A \in \mathcal{F}_{strong}$

for all $A \in \mathcal{F}_{weak}$

 $FairTraces_{\mathcal{F}}(\mathcal{T}) \stackrel{\text{def}}{=} \{ trace(\rho) : \rho \text{ is a } \mathcal{F} \text{-fair execution of } \mathcal{T} \}$

Fair satisfaction relation

LF2.6-FAIR-SAT

Fair satisfaction relation

LF2.6-FAIR-SAT

A fairness assumption for T is a triple

 $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ho is called ${\cal F}$ -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly **A**-fair
- ρ is weakly **A**-fair

for all $A \in \mathcal{F}_{strong}$

for all
$$A \in \mathcal{F}_{weak}$$

If
$$\mathcal{T}$$
 is a TS and \mathcal{E} a LT property over \mathcal{AP} then:
$$\mathcal{T} \models_{\mathcal{F}} \mathcal{E} \iff \mathcal{FairTraces_{\mathcal{F}}}(\mathcal{T}) \subseteq \mathcal{E}$$

Example: fair satisfaction relation

fairness assumption ${\cal F}$

- no unconditional fairness condition
- strong fairness for $\{\alpha, \beta\}$
- no weak fairness condition

Example: fair satisfaction relation

fairness assumption ${\cal F}$

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\} \leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

 $\leftarrow \mathcal{F}_{\textit{weak}} = \emptyset$
LF2.6-11

$$\mathcal{T}\models_{\mathcal{F}}$$
 "infinitely often b "?

fairness assumption ${\cal F}$

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\} \leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

 $\leftarrow \mathcal{F}_{weak} = \emptyset$

LF2.6-11

$$\mathcal{T}\models_{\mathcal{F}}$$
 "infinitely often **b**"?

fairness assumption ${\cal F}$

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\} \leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

 $\leftarrow \mathcal{F}_{weak} = \emptyset$

LF2.6-11

 $\leftarrow \mathcal{F}_{wask} = \emptyset$

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often **b**"?

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\} \leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

fairness assumption ${\cal F}$

- strong fairness for α
- weak fairness for β
- no unconditional fairness assumption

 $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\} \\ \leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$

$$\mathcal{T}\models_{\mathcal{F}}$$
 "infinitely often **b**"?

fairness assumption ${\cal F}$

- strong fairness for α
- weak fairness for β
- no unconditional fairness assumption

 $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\} \\ \leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$

 \emptyset α β $\{b\}$

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often **b**"?
answer: **no**

fairness assumption ${\cal F}$

- strong fairness for α
- weak fairness for β
- no unconditional fairness assumption

 $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\} \\ \leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often **b**" ?
answer: **no**

 $\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\} \\ \leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$

LF2.6-12

- strong fairness for α
- weak fairness for β
- no unconditional fairness assumption

 \emptyset α β $\{b\}$

$$\mathcal{T}\models_{\mathcal{F}}$$
 "infinitely often **b**"

LF2.6-12A

 $\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}$

- strong fairness for β
- no weak fairness assumption
- no unconditional fairness assumption

$$\mathcal{T}\models_{\mathcal{F}}$$
 "infinitely often **b**"

LF2.6-12A

- strong fairness for β
 - $\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}$
- no weak fairness assumption
- no unconditional fairness assumption

Which type of fairness?

fairness assumptions should be as weak as possible

LF2.6-15

 $T = T_1 \parallel$ Arbiter $\parallel T_2$

 $T = T_1 \parallel$ Arbiter $\parallel T_2$

 $\mathcal{T} = \mathcal{T}_1 \parallel$ Arbiter $\parallel \mathcal{T}_2$

 T_1 and T_2 compete to communicate with the arbiter by means of the actions *enter*₁ and *enter*₂, respectively

LF2.6-15

LT property *E*: each waiting process eventually enters its critical section

 $\mathcal{T} \not\models E$

LF2.6-15

LT property *E*: each waiting process eventually enters its critical section

$$egin{aligned} \mathcal{F}_{ucond} &= \mathcal{F}_{strong} = arnothing \ \mathcal{F}_{weak} &= ig\{ \{enter_1\}, \{enter_2\} \} \end{aligned}$$

does
$$\mathcal{T} \models_{\mathcal{F}} \mathcal{E}$$
 hold ?

LF2.6-15

LT property *E*: each waiting process eventually enters its critical section

 $\begin{aligned} \text{fairness assumption } \mathcal{F} \\ \mathcal{F}_{\textit{ucond}} &= \mathcal{F}_{\textit{strong}} = \varnothing \\ \mathcal{F}_{\textit{weak}} &= \big\{ \{\textit{enter}_1\}, \{\textit{enter}_2\} \big\} \end{aligned}$

does $\mathcal{T} \models_{\mathcal{F}} \mathcal{E}$ hold ? answer: **no**

LF2.6-15

LT property *E*: each waiting process eventually enters its critical section

fairness assumption \mathcal{F} $\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset$

$$\mathcal{F}_{weak} = \left\{ \{ enter_1 \}, \{ enter_2 \} \right\}$$

$$\mathcal{T} \not\models_{\mathcal{F}} \mathcal{E}$$

as enter₂ is not enabled in $\langle crit_1, I, w_2 \rangle$

LF2.6-16

E: each waiting process eventually enters its crit. section

$$\begin{array}{l} \mathcal{F}_{ucond} \ = \ ? \\ \mathcal{F}_{strong} \ = \ ? \\ \mathcal{F}_{weak} \ = \ ? \end{array}$$

$$\begin{array}{ccc} \mathcal{T} \not\models \mathcal{E}, \\ \text{but } \mathcal{T} \not\models_{\mathcal{F}} \mathcal{E} \end{array}$$

LF2.6-16

E: each waiting process eventually enters its crit. section

$$\begin{aligned} \mathcal{F}_{ucond} &= \varnothing \\ \mathcal{F}_{strong} &= \left\{ \{ enter_1 \}, \{ enter_2 \} \right\} \\ \mathcal{F}_{weak} &= \varnothing \end{aligned}$$

$$\begin{array}{ccc} \mathcal{T} \not\models \mathcal{E}, \\ \text{but } \mathcal{T} \not\models_{\mathcal{F}} \mathcal{E} \end{array}$$

LF2.6-16

E: each waiting process eventually enters its crit. section
D: each process enters its critical section infinitely often

$$\begin{aligned} \mathcal{F}_{ucond} &= \varnothing \\ \mathcal{F}_{strong} &= \left\{ \{ enter_1 \}, \{ enter_2 \} \right\} \\ \mathcal{F}_{weak} &= \varnothing \end{aligned}$$

$$\begin{array}{c} \mathcal{T} \models_{\mathcal{F}} \mathcal{E}, \\ \mathcal{T} \not\models_{\mathcal{F}} \mathcal{D} \end{array}$$

E: each waiting process eventually enters its crit. section*D*: each process enters its critical section infinitely often

$$\begin{aligned} \mathcal{F}_{ucond} &= \varnothing \\ \mathcal{F}_{strong} &= \left\{ \{ enter_1 \}, \{ enter_2 \} \right\} \\ \mathcal{F}_{weak} &= \varnothing \end{aligned}$$

$$\begin{array}{c} \mathcal{T} \models_{\mathcal{F}} \mathcal{E}, \\ \mathcal{T} \not\models_{\mathcal{F}} \mathcal{D} \end{array}$$

LF2.6-16

E: each waiting process eventually enters its crit. section*D*: each process enters its critical section infinitely often

$$\begin{aligned} \mathcal{F}_{ucond} &= \varnothing \\ \mathcal{F}_{strong} &= \left\{ \{\textit{enter}_1\}, \{\textit{enter}_2\} \right\} \\ \mathcal{F}_{weak} &= \left\{ \{\textit{req}_1\}, \{\textit{req}_2\} \right\} \end{aligned}$$

$$\begin{array}{c} \mathcal{T} \models_{\mathcal{F}} \mathcal{E}, \\ \mathcal{T} \models_{\mathcal{F}} \mathcal{D} \end{array}$$

LF2.6-19

For asynchronous systems:

parallelism = interleaving + fairness

LF2.6-19

For asynchronous systems:

LF2.6-19

For asynchronous systems:

parallelism = interleaving + fairness

should be as weak as possible

rule of thumb:

- strong fairness for the
 - choice between dependent actions
 - resolution of competitions

LF2.6-19

For asynchronous systems:

parallelism = interleaving + fairness

should be as weak as possible

rule of thumb:

- strong fairness for the
 - choice between dependent actions
 - resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions

LF2.6-19

For asynchronous systems:

parallelism = interleaving + fairness

should be as weak as possible

rule of thumb:

- strong fairness for the
 - choice between dependent actions
 - resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions
- unconditional fairness: only of theoretical interest

parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler

or requirements for environment

• can be verifiable system properties

parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler

or requirements for environment

• can be verifiable system properties

liveness properties:fairness can be essentialsafety properties:fairness is irrelevant

Fairness

LF2.6-22

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often **a**" hold ?
Fairness

LF2.6-22

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often **a**" hold ? answer: **yes** as there is no fair path

Fairness

LF2.6-22

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often a" hold ?

answer: yes as there is no fair path

LF2.6-22

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often a" hold ?

answer: yes as there is no fair path

Realizability requires that each initial finite path fragment can be extended to a \mathcal{F} -fair path

LF2.6-22

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often a" hold ?

answer: yes as there is no fair path

Fairness assumption \mathcal{F} is said to be realizable for a transition system \mathcal{T} if for each reachable state s in \mathcal{T} there exists a \mathcal{F} -fair path starting in s

LF2.6-23

LF2.6-23

fairness assumption $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ for TS \mathcal{T}

LF2.6-23

fairness assumption $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ for TS \mathcal{T}

• unconditional fairness for $A \in \mathcal{F}_{ucond}$

- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

LF2.6-23

fairness assumption $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ for TS \mathcal{T}

• unconditional fairness for $A \in \mathcal{F}_{ucond}$ \rightsquigarrow might not be realizable

- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

LF2.6-23

fairness assumption $\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$ for TS \mathcal{T}

• unconditional fairness for $A \in \mathcal{F}_{ucond}$ \rightsquigarrow might not be realizable

- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

can always be guaranteed by a scheduler, i.e., an instance that resolves the nondeterminism in ${\cal T}$

LF2.6-24

Realizable fairness assumptions are irrelevant for safety properties

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathcal{E} a safety property then: $\mathcal{T} \models \mathcal{E}$ iff $\mathcal{T} \models_{\mathcal{F}} \mathcal{E}$

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathcal{E} a safety property then: $\mathcal{T} \models \mathcal{E}$ iff $\mathcal{T} \models_{\mathcal{F}} \mathcal{E}$

... wrong for non-realizable fairness assumptions

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathcal{E} a safety property then: $\mathcal{T} \models \mathcal{E}$ iff $\mathcal{T} \models_{\mathcal{F}} \mathcal{E}$

... wrong for non-realizable fairness assumptions

 \mathcal{F} : unconditional fairness for $\{\alpha\}$

Realizable fairness assumptions are irrelevant for safety properties

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathcal{E} a safety property then: $\mathcal{T} \models \mathcal{E}$ iff $\mathcal{T} \models_{\mathcal{F}} \mathcal{E}$

... wrong for non-realizable fairness assumptions

- \mathcal{F} : unconditional fairness for $\{\alpha\}$
 - E = invariant "always **a**"
 - $\mathcal{T} \not\models \mathcal{E}$, but $\mathcal{T} \models_{\mathcal{F}} \mathcal{E}$