Overview

Introduction Modelling parallel systems Transition systems Modeling hard- and software systems Parallelism and communication Linear Time Properties **Regular Properties** Linear Temporal Logic Computation-Tree Logic Equivalences and Abstraction

PC2.2-24

PC2.2-24

- communication over shared variables
- synchronous message passing
- asynchronous message passing

PC2.2-24

- communication over shared variables
- synchronous message passing } communication
 asynchronous message passing } over channels

PC2.2-24

- communication over shared variables
- synchronous message passing) communication
- asynchronous message passing) over channels

PC2.2-24

representation of data-dependent parallel systems with

- communication over shared variables
- synchronous message passing) communication
- asynchronous message passing ∫ over channels

channel types: synchronous or FIFO

PC2.2-24

- communication over shared variables
- synchronous message passing) communication
- asynchronous message passing ∫ over channels

PC2.2-24

- communication over shared variables
- synchronous message passing ← capacity 0
- asynchronous message passing ← capacity ≥ 1

representation of data-dependent parallel systems with

- communication over shared variables
- synchronous message passing \ communication
- asynchronous message passing ∫ over channels

formalization through program graphs for $\mathcal{P}_1, ..., \mathcal{P}_n$

representation of data-dependent parallel systems with

- communication over shared variables
- synchronous message passing \ communication
- asynchronous message passing
 ∫ over channels

formalization through program graphs for $\mathcal{P}_1, ..., \mathcal{P}_n$

• with conditional transitions $\ell_i \stackrel{g:\alpha}{\longleftrightarrow} \ell'_i$ (as before)

representation of data-dependent parallel systems with

- communication over shared variables
- synchronous message passing \ communication
- asynchronous message passing ∫ over channels

formalization through program graphs for $\mathcal{P}_1, ..., \mathcal{P}_n$

- with conditional transitions $\ell_i \stackrel{g:\alpha}{\longleftrightarrow} \ell'_i$ (as before)
- and communication actions

$$\begin{array}{c} \ell_i \stackrel{c!v}{\longleftrightarrow} \ell'_i & \text{sending value } v \text{ via channel } c \\ \ell_i \stackrel{c?x}{\longleftrightarrow} \ell'_i & \text{receiving a value for variable } x \\ \text{via channel } c \end{array}$$

Typed variables and channels

typed variable: variable x with data domain Dom(x)

typed channel: channel c with capacity $cap(c) \in \mathbb{N} \cup \{\infty\}$ and domain Dom(c)

typed channel: channel c with capacity $cap(c) \in \mathbb{N} \cup \{\infty\}$ and domain Dom(c)evaluation for a set Chan of typed channels: type-consistent function $\xi : Chan \rightarrow Values^*$

typed channel: channel c with capacity $cap(c) \in \mathbb{N} \cup \{\infty\}$ and domain Dom(c)evaluation for a set Chan of typed channels: type-consistent function $\xi : Chan \rightarrow Values^*$ s.t. $\xi(c)$ is a word over Dom(c) of length $\leq cap(c)$ Channel system (CS) PC2.2-25 $\left[\mathcal{P}_{1} | \mathcal{P}_{2} | ... | \mathcal{P}_{n} \right]$ where \mathcal{P}_{i} are program graphs

Channel system (CS)

$\begin{bmatrix} \mathcal{P}_1 | \mathcal{P}_2 | ... | \mathcal{P}_n \end{bmatrix}$ where \mathcal{P}_i are program graphs over a pair (*Var*, *Chan*)

Channel system (CS) PC2.2-25 $[\mathcal{P}_1 | \mathcal{P}_2 | ... | \mathcal{P}_n]$ where \mathcal{P}_i are program graphs over a pair (Var, Chan) Var set of typed variables Chan set of typed channels with capacities $cap(\cdot)$ and domains $Dom(\cdot)$ **Channel system (CS)** PC2.2-25 $\left[\mathcal{P}_{1} \mid \mathcal{P}_{2} \mid ... \mid \mathcal{P}_{n}\right]$ where \mathcal{P}_{i} are program graphs over a pair (*Var*, *Chan*)

Var set of typed variables
Chan set of typed channels with
capacities cap(·) and domains Dom(·)

program graphs $\mathcal{P}_i = (Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{0,i}, g_0)$ with conditional transitions

 $\ell \stackrel{\boldsymbol{g}:\alpha}{\longrightarrow_{i}} \ell' \quad \text{guarded command}$

Channel system (CS) $|\mathcal{P}_1|\mathcal{P}_2|...|\mathcal{P}_n|$ where \mathcal{P}_i are program graphs

> Var set of typed variablesChan set of typed channels with capacities $cap(\cdot)$ and domains $Dom(\cdot)$

over a pair (Var, Chan)

PC2.2-25

program graphs $\mathcal{P}_i = (Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{0,i}, g_0)$ with conditional transitions

 $\ell \xrightarrow{g:\alpha}_{i} \ell'$ where $g \in Cond(Var)$, $\alpha \in Act_i$

Channel system (CS)

 $\begin{bmatrix} \mathcal{P}_1 \mid \mathcal{P}_2 \mid ... \mid \mathcal{P}_n \end{bmatrix} \text{ where } \mathcal{P}_i \text{ are program graphs} \\ \text{over a pair (Var, Chan)} \\ & \uparrow \\ \hline Var \quad \text{set of typed variables} \\ \hline Chan \quad \text{set of typed channels with} \\ \text{capacities } cap(\cdot) \text{ and domains } Dom(\cdot) \\ \hline \end{array}$

program graphs $\mathcal{P}_i = (Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{0,i}, g_0)$ with conditional transitions

- $\ell \stackrel{g:\alpha}{\longrightarrow}_{i} \ell'$ guarded command
- $\ell \stackrel{c!v}{\longleftrightarrow}_{i} \ell'$ sending value v via channel c

Channel system (CS)

capacities $cap(\cdot)$ and domains $Dom(\cdot)$

program graphs $\mathcal{P}_i = (Loc_i, Act_i, Effect_i, \hookrightarrow_i, Loc_{0,i}, g_0)$ with conditional transitions

- $\ell \stackrel{g:\alpha}{\longleftrightarrow}_{i} \ell'$ guarded command
- $\ell \stackrel{c!v}{\longleftrightarrow}_{i} \ell'$ sending value v via channel c

 $\ell \stackrel{c?x}{\longleftrightarrow_i} \ell'$ receiving a value for variable x via channel c

PC2.2-26

	enabled if	effect
sending c!v		
receiving c?x		

PC2.2-26

	enabled if	effect
sending c!v	channel c not full	add(<mark>c</mark> , v)
receiving c?x		

PC2.2-26

	enabled if	effect
sending <u>c</u> !v	channel c not full	add(<mark>c</mark> , v)
receiving c?x	channel <i>c</i> not empty <i>v</i> = <i>front</i> (<i>c</i>)	x := v remove(c)

PC2.2-26

	enabled if	effect
sending <u>c</u> !v	channel c not full	add(<mark>c</mark> , v)
receiving c?x	channel <i>c</i> not empty <i>v</i> = <i>front</i> (<i>c</i>)	x := v remove(c)

PC2.2-26

asynchronous message passing via channels of capacity ≥ 1

	enabled if	effect
sending c!v	channel c not full	add(c, v)
receiving c?x	channel <i>c</i> not empty <i>v = front(c</i>)	x := v $remove(c)$

- *c*!*v* and *c*?*x* are executed at the same time
- effect **x** := **v**

PC2.2-27

states of $\mathcal{T}_{\mathcal{C}}$ have the form

states $\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$ where ℓ_i location of program graph \mathcal{P}_i , $\eta \in Eval(Var)$ variable evaluation $\xi \in Eval(Chan)$ channel evaluation

states $\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$ where ℓ_i location of program graph \mathcal{P}_i , $\eta \in Eval(Var)$ variable evaluation $\xi \in Eval(Chan)$ channel evaluation

variable evaluation:

 $\eta: Var \longrightarrow \bigcup_{x \in Var} Dom(x)$ with $\eta(x) \in Dom(x)$ channel evaluation:

$$\xi: Chan \to \bigcup_{c \in Chan} Dom(c)^* \text{ with } \xi(c) \in Dom(c)^*$$

and $|\xi(c)| \leq cap(c)$

states $\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$ where ℓ_i location of program graph \mathcal{P}_i , $\eta \in Eval(Var)$ variable evaluation $\xi \in Eval(Chan)$ channel evaluation

variable evaluation:

 $\eta: Var \longrightarrow \bigcup_{x \in Var} Dom(x)$ with $\eta(x) \in Dom(x)$ channel evaluation:

$$\xi: Chan \to \bigcup_{\substack{c \in Chan}} Dom(c)^* \text{ with } \xi(c) \in Dom(c)^*$$

and $|\xi(c)| \leq cap(c)$
only channels *c* with $cap(c) > 1$ are relevant

Transition relation of channel systems

states $\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$ where $\ell_i \in Loc_i, \eta \in Eval(Var), \xi \in Eval(Chan)$

Transition relation of channel systems

states $\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$ where $\ell_i \in Loc_i, \eta \in Eval(Var), \xi \in Eval(Chan)$

transition relation \longrightarrow is given by SOS-rules:

- interleaving rules for $\alpha \in Act_i$
- rules for message passing along channels

Transition relation of channel systems

states $\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$ where $\ell_i \in Loc_i, \eta \in Eval(Var), \xi \in Eval(Chan)$

transition relation \longrightarrow is given by SOS-rules:

- interleaving rules for $\alpha \in Act_i$
- rules for message passing along channels

interleaving rule for actions $\alpha \in Act_i$:

$$\frac{\ell_{i} \stackrel{g:\alpha}{\longleftrightarrow_{i}} \ell_{i}' \land \eta \models g}{\langle \ell_{1}, .., \ell_{i}, ..., \ell_{n}, \eta, \xi \rangle \stackrel{\alpha}{\longrightarrow} \langle \ell_{1}, .., \ell_{i}', ..., \ell_{n}, \textit{Effect}_{i}(\alpha, \eta), \xi \rangle}$$
Transition relation of channel systems

states $\langle \ell_1, ..., \ell_n, \eta, \xi \rangle$ where $\ell_i \in Loc_i, \eta \in Eval(Var), \xi \in Eval(Chan)$

transition relation \longrightarrow is given by SOS-rules:

- interleaving rules for $\alpha \in Act_i$
- rules for message passing along channels

interleaving rule for actions $\alpha \in Act_i$:

$$\begin{array}{c} \ell_{i} \stackrel{g:\alpha}{\longrightarrow}_{i} \ell_{i}' \land \eta \models g \\ \hline \langle \ell_{1}, .., \ell_{i}, ..., \ell_{n}, \eta, \xi \rangle \stackrel{\alpha}{\longrightarrow} \langle \ell_{1}, .., \ell_{i}', ..., \ell_{n}, \textit{Effect}_{i}(\alpha, \eta), \xi \rangle \\ \hline \uparrow \\ \text{does not affect the channel evaluation } \xi \end{array}$$

for channel c with $cap(c) \ge 1$

for channel c with $cap(c) \ge 1$

receiving a message:

$$\frac{\ell_i \stackrel{\mathcal{C}?x}{\longrightarrow}_i \ell'_i \wedge \xi(\mathbf{c}) = \mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_k \wedge k \ge 1}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \stackrel{\mathcal{T}}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi' \rangle}$$

for channel c with $cap(c) \ge 1$

receiving a message:

$$\frac{\ell_i \stackrel{c?x}{\longleftrightarrow_i} \ell'_i \wedge \xi(c) = v_1 v_2 \dots v_k \wedge k \ge 1}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \stackrel{\tau}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi' \rangle}$$
where $\eta' = \eta[x := v_1]$

$$\eta[x := v_1](y) = \begin{cases} \eta(y) & \text{if } y \neq x \\ v_1 & \text{if } y = x \end{cases}$$

for channel c with $cap(c) \ge 1$

receiving a message:

$$\frac{\ell_i \stackrel{c?x}{\longleftrightarrow_i} \ell'_i \wedge \xi(c) = v_1 v_2 \dots v_k \wedge k \ge 1}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \stackrel{\tau}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi' \rangle}$$
where $\eta' = \eta[x := v_1]$ and $\xi' = \xi[c := v_2 \dots v_k]$

$$\eta[x := v_1](y) = \begin{cases} \eta(y) & \text{if } y \neq x \\ v_1 & \text{if } y = x \end{cases}$$

$$\xi[c := v_2 \dots v_k](d) = \begin{cases} \xi(d) & \text{if } d \neq c \\ v_2 \dots v_k & \text{if } d = c \end{cases}$$

for channel c with $cap(c) \ge 1$

receiving a message:

$$\frac{\ell_i \stackrel{\boldsymbol{c?x}}{\longleftrightarrow_i} \ell'_i \wedge \boldsymbol{\xi}(\boldsymbol{c}) = \boldsymbol{v_1} \boldsymbol{v_2} \dots \boldsymbol{v_k} \wedge \boldsymbol{k} \ge 1}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \boldsymbol{\xi} \rangle \stackrel{\boldsymbol{\tau}}{\longrightarrow} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \boldsymbol{\xi'} \rangle}$$

where
$$\eta' = \eta[x:=v_1]$$
 and $\xi' = \xi[c:=v_2...v_k]$

sending a message:

$$\frac{\ell_i \stackrel{c!v}{\longleftrightarrow_i} \ell'_i \wedge \xi(c) = v_1 \dots v_k \wedge k < cap(c)}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \stackrel{\tau}{\to} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta, \xi[c:=v_1 \dots v_k v] \rangle}$$

for synchronous channel *c*:

$$\frac{\ell_{i} \stackrel{c?x}{\longleftrightarrow_{i}} \ell_{i}^{\prime} \wedge \ell_{j} \stackrel{c!v}{\longleftrightarrow_{j}} \ell_{j}^{\prime} \wedge i \neq j}{\langle \ell_{1}, ..., \ell_{i}, ..., \ell_{j}, ..., \ell_{n}, \eta, \xi \rangle \stackrel{\tau}{\to} \langle \ell_{1}, ..., \ell_{i}^{\prime}, ..., \ell_{j}^{\prime}, ..., \ell_{n}, \eta^{\prime}, \xi^{\prime} \rangle}$$

for synchronous channel *c*:

$$\frac{\ell_i \stackrel{\boldsymbol{c?x}}{\longleftrightarrow_i} \ell'_i \wedge \ell_j \stackrel{\boldsymbol{c!v}}{\longleftrightarrow_j} \ell'_j \wedge i \neq j}{\langle \ell_1, ..., \ell_i, ..., \ell_j, ..., \ell_n, \eta, \boldsymbol{\xi} \rangle \stackrel{\boldsymbol{\tau}}{\to} \langle \ell_1, ..., \ell'_i, ..., \ell'_j, ..., \ell_n, \eta', \boldsymbol{\xi'} \rangle}$$

where
$$\eta' = \eta[x:=v]$$

for synchronous channel *c*:

$$\frac{\ell_{i} \stackrel{c?x}{\longleftrightarrow_{i}} \ell_{i}^{\prime} \wedge \ell_{j} \stackrel{c!v}{\longleftrightarrow_{j}} \ell_{j}^{\prime} \wedge i \neq j}{\langle \ell_{1}, ..., \ell_{i}, ..., \ell_{j}, ..., \ell_{n}, \eta, \xi \rangle \stackrel{\tau}{\to} \langle \ell_{1}, ..., \ell_{j}^{\prime}, ..., \ell_{j}^{\prime}, ..., \ell_{n}, \eta^{\prime}, \xi^{\prime} \rangle}$$

where $\eta' = \eta[x:=v]$ and $\xi' = \xi$

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

answer:

$$2*2*2*2*(2^{11}-1)*(2^{11}-1)$$

note: $2^{11}-1 = 1 + 2 + 2^2 + ... + 2^{10}$

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

answer:

$$2*2*2*2*(2^{11}-1)*(2^{11}-1) > 2^{24} > 25$$
 mio
note: $2^{11}-1 = 1 + 2 + 2^2 + ... + 2^{10}$

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

answer:

$$2*2*2*2*(2^{11}-1)*(2^{11}-1) > 2^{24} > 25$$
 mio
note: $2^{11}-1 = 1 + 2 + 2^2 + ... + 2^{10}$

... with an unbounded channel ?

- 2 processes with 2 locations each
- 2 Boolean variables
- 2 channels of capacity 10 and Boolean values

answer:

$$2*2*2*2*(2^{11}-1)*(2^{11}-1) > 2^{24} > 25$$
 mio
note: $2^{11}-1 = 1 + 2 + 2^2 + ... + 2^{10}$

... with an unbounded channel ?

answer: ∞

Protocol for the sender

If both channels are unreliable ...

If both channels are unreliable ...

PC2.2-34

channel system: [Sender | Timer | Receiver]

PC2.2-34

channel system: [Sender | Timer | Receiver]

synchronous message passing between *Timer* and *Sender*

asynchronous message passing between *Receiver* and *Sender*

PC2.2-34

channel system: [Sender | Timer | Receiver]

synchronous message passing between
Timer and Sender ← channels e and f
asynchronous message passing between
Receiver and Sender ← channels c, d

PC2.2-34

channel system: [Sender | Timer | Receiver]

PC2.2-34

e!timer_on e!timer_off f?z'

specify the sender by a program graph using

- asynchronous channels *c* and *d*
- synchronous channels *e* and *f*

specify the sender by a program graph using

- asynchronous channels *c* and *d*
- synchronous channels **e** and **f**

simply write !timeout ?timer_on ?timer_off

specify the sender by a program graph using

- asynchronous channels c and d
- synchronous channels **e** and **f**
- Boolean variable x for the acknowledgement bit sent by the receiver

generate message(0) try to send(0)

Program graph for the receiver

Generate(0) off Wait(0) $c = \varepsilon d = \varepsilon$

Generate(0) Send(0) Timer_on(0) Wait(0) off Wait(0) $c = \varepsilon$ $d = \varepsilon$ off Wait(0) $c = \varepsilon$ $d = \varepsilon$ message lost off Wait(0) $c = \varepsilon$ $d = \varepsilon$ on Wait(0) $c = \varepsilon$ $d = \varepsilon$

Generate(0) Send(0)Timer_on(0)Wait(0)

on

off Wait(0) $c = \varepsilon \quad d = \varepsilon$ off Wait(0) $c = \varepsilon d = \varepsilon$ message lost off Wait(0) $c = \varepsilon d = \varepsilon$ Wait(0) $c = \varepsilon d = \varepsilon$ timeout

Generate(0) Send(0) Timer_on(0) Wait(0) Send(0) off Wait(0) $c = \varepsilon$ $d = \varepsilon$ off Wait(0) $c = \varepsilon$ $d = \varepsilon$ message lost off Wait(0) $c = \varepsilon$ $d = \varepsilon$ on Wait(0) $c = \varepsilon$ $d = \varepsilon$ timeout off Wait(0) $c = \varepsilon$ $d = \varepsilon$

try again

Generate(0) off Wait(0) $c = \varepsilon$ $d = \varepsilon$

Generate(0) Send(0) Timer_on(0) Wait(0)

off Wait(0) off Wait(0) off Wait(0) on Wait(0) $\begin{array}{ccc} c = \varepsilon & d = \varepsilon \\ c = \varepsilon & d = \varepsilon \\ c = 0 & d = \varepsilon \\ c = 0 & d = \varepsilon \end{array}$

message <mark>0</mark> sent

Generate(0) Send(0) Timer_on(0) Wait(0)

off Wait(0) off Wait(0) off Wait(0) on Wait(0) $\begin{array}{ccc} c = \varepsilon & d = \varepsilon \\ c = \varepsilon & d = \varepsilon \\ c = 0 & d = \varepsilon \\ c = 0 & d = \varepsilon \end{array}$

e message <mark>0</mark> sent e timeout

Generate(0) Send(0) Timer_on(0) Wait(0) Send(0) off Wait(0) off Wait(0) off Wait(0) on Wait(0) off Wait(0) *c*=ε *c*=ε *c*=0 *c*=0 *c*=0

 $d = \varepsilon$ $d = \varepsilon$ message 0 sent $d = \varepsilon$ $d = \varepsilon$ timeout $d = \varepsilon$

Generate(0) Send(0) Timer_on(0) Wait(0) Send(0) Timer_on(0) off Wait(0) off Wait(0) off Wait(0) on Wait(0) off Wait(0) off Wait(0)

 $\begin{array}{ccc} c = \varepsilon & d = \varepsilon \\ c = \varepsilon & d = \varepsilon \\ c = 0 & d = \varepsilon \\ c = 0 & d = \varepsilon \\ c = 0 & d = \varepsilon \\ c = 00 & d = \varepsilon \end{array}$

message 0 sent timeout 0 sent again

Generate(0) Send(0)Timer_on(0) Wait(0) Send(0) $Timer_on(0)$ Timer_on(0

off Wait(0) off Wait(0 off Wait(0 Wait(0 on off Wait(0 off Wait(0) off Proc(0

- $c = \varepsilon$ $c = \varepsilon$ c=0c=0c=0*c*=00 c=0 $d = \varepsilon$
 - $d = \varepsilon$ $d = \varepsilon$

message 0 sent

- timeout
 - 0 sent again
 - message received

Generate(0) Send(0) Timer_on(0) Wait(0) Send(0) Timer_on(0) Timer_on(0) Timer_on(0) off Wait(0) off Wait(0 off Wait(0 Wait(0 on off Wait(0 off Wait(0) off Proc(0)off Ack(0)

- $c = \varepsilon$ c = 0 c = 0 c = 0 c = 0 c = 0 c = 0 c = 0 c = 0
 - $d = \varepsilon$ $d = \varepsilon$ $d = \varepsilon$

message 0 sent

- timeout
 - 0 sent again
 - message received

Generate(0) Send(0) Timer_on(0) Wait(0) Send(0) Timer_on(0) Timer_on(0) Timer_on(0) off Wait(0) off Wait(0 off Wait(0 Wait(0 on off Wait(0 off Wait(0) off Proc(0)off Ack(0)

- $d = \varepsilon$ $c = \varepsilon$ $d = \varepsilon$ $c = \varepsilon$ $d = \varepsilon$ c=0c=0 $d = \varepsilon$ c=0 $d = \varepsilon$ *c*=00 $d = \varepsilon$ c=0 $d = \varepsilon$ c=0 $d = \varepsilon$
- message **0** sent timeout
- 0 sent again
- message received send ack via *d*

. Wait(0) Send(0) Timer_on(0) Timer_on(0) Timer_on(0) : : on Wait(0) off Wait(0) off Wait(0) off Proc(0) off Ack(0) off Wait(1)

 $d = \varepsilon t$ $d = \varepsilon 0$ $d = \varepsilon$ $d = \varepsilon r$

 $d = \varepsilon$

d=0

timeout

0 sent again

message received send ack via *d* receiver changes its mode

 $\begin{array}{c} \vdots & \vdots & \vdots & \vdots \\ \mathsf{Timer_on}(0) & \mathsf{off} & \mathsf{Wait}(1) & \boldsymbol{c=0} & \boldsymbol{d=0} \end{array}$

: : : : : : : : : Timer_on(0) off Wait(1) c=0 d=0 receiver reads the same message again Timer_on(0) off Proc(1) $c=\varepsilon$ d=0 receiver discards the message Timer_on(0) off Wait(1) $c=\varepsilon$ d=0

Alternating bit protocol (ABP)

PC2.2-37C

number of states in the TS:

 $10 \cdot 2 \cdot 6 \cdot \#$ channel evaluations

Alternating bit protocol (ABP)

PC2.2-37C

number of states in the TS: $10 \cdot 2 \cdot 6 \cdot \#$ channel evaluations $> 10^8$ for FIFOs with capacity 10

PC2.2-38

• conditional communication actions $\ell \xrightarrow{g:c?x}{\ell'}$

e.g.

PC2.2-38

- conditional communication actions $\ell \xrightarrow{g:c?x}{\ell'}$
- generalized sending instructions *clexpr* instead of *clv*

e.g.

PC2.2-38

- conditional communication actions $\ell \xrightarrow{g:c?x}{\ell'}$
- generalized sending instructions *clexpr* instead of *clv*

• communication as conditions $\ell \stackrel{c?x:\alpha}{\longrightarrow} \ell'$

d?x

c!2x+7

e.g.

PC2.2-38

- conditional communication actions
- generalized sending instructions clexpr instead of clv

communication as conditions $\ell \stackrel{c?x:\alpha}{\longrightarrow} \ell'$

d?x

c!2x+7

 \rightarrow more compact TS-representations

PC2.2-38

- conditional communication actions $\ell \xrightarrow{g:c?x}{\ell'}$
- generalized sending instructions *clexpr* instead of *clv*
- communication as conditions $\ell \stackrel{c?x:\alpha}{\longrightarrow} \ell'$
- open channel systems *P*₁ | ... | *P_n* instead of *closed* channel systems [*P*₁ | ... | *P_n*]
Variants of channel systems

- conditional communication actions $\ell \xrightarrow{g:c?x}{\ell'}$
- generalized sending instructions clexpr instead of clv
- communication as conditions $\ell \stackrel{c?x:\alpha}{\longrightarrow} \ell'$
- open channel systems *P*₁ | ... | *P_n* instead of *closed* channel systems [*P*₁ | ... | *P_n*]

PC2.2-39

(pure) interleaving for TS $T_1 \parallel \parallel T_2$

- only concurrency, no communication
- not applicable for competing systems

(pure) interleaving for TS $T_1 \parallel \parallel T_2$

- only concurrency, no communication
- not applicable for competing systems

synchronous message passing for TS $T_1 \parallel_{Syn} T_2$

- interleaving for concurrent actions
- synchronization via actions in Syn

(pure) interleaving for TS $T_1 \parallel \parallel T_2$

- only concurrency, no communication
- not applicable for competing systems

synchronous message passing for TS $T_1 \parallel_{Syn} T_2$

- interleaving for concurrent actions
- synchronization via actions in Syn

interleaving for program graphs $\mathcal{P}_1 \parallel \mid \mathcal{P}_2$

- interleaving for concurrent actions
- communication via shared variables

(pure) interleaving for TS $T_1 \parallel T_2$

- only concurrency, no communication
- not applicable for competing systems

synchronous message passing for TS $T_1 \parallel_{Syn} T_2$

- interleaving for concurrent actions
- synchronization via actions in Syn

interleaving for program graphs $\mathcal{P}_1 \parallel \mid \mathcal{P}_2$

- interleaving for concurrent actions
- communication via shared variables

channel systems: open $\mathcal{P}_1 | \dots | \mathcal{P}_n$ or closed $[\mathcal{P}_1 | \dots | \mathcal{P}_n]$

• interleaving, shared variables, message passing

Parallel operators

(pure) interleaving for TS $T_1 \parallel \parallel T_2$

• only concurrency, no communication

synchronous message passing for TS $T_1 \parallel_{Syn} T_2$

• interleaving, synchronization via actions in Syn

interleaving for program graphs $\mathcal{P}_1 \parallel \mid \mathcal{P}_2$

• interleaving, shared variables

channel systems: open $\mathcal{P}_1 | \dots | \mathcal{P}_n$ or closed $[\mathcal{P}_1 | \dots | \mathcal{P}_n]$

- interleaving, shared variables
- synchronous and asynchronous message passing

synchronous product for TS $T_1 \otimes T_2$

• no interleaving, "pure" synchronization

for parallel systems with fully synchronized processes

$$\begin{array}{l} \mathcal{T}_1 = (S_1, Act_1, \longrightarrow_1, ...) \\ \mathcal{T}_2 = (S_2, Act_2, \longrightarrow_2, ...) \end{array} \} \text{ two TS} \end{array}$$

synchronous product:

 $\mathcal{T}_1 \otimes \mathcal{T}_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$

for parallel systems with fully synchronized processes

$$\begin{array}{l} \mathcal{T}_1 = (S_1, Act_1, \longrightarrow_1, ...) \\ \mathcal{T}_2 = (S_2, Act_2, \longrightarrow_2, ...) \end{array} \} \text{ two TS} \end{array}$$

synchronous product:

$$\mathcal{T}_1 \otimes \mathcal{T}_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$$

where the action set Act is given by a function

$$Act_1 \times Act_2 \longrightarrow Act, \quad (\alpha, \beta) \mapsto \alpha \ast \beta$$

action name for the concurrent execution of α and β

for parallel systems with fully synchronized processes

$$\begin{array}{l} T_1 = (S_1, Act_1, \longrightarrow_1, ...) \\ T_2 = (S_2, Act_2, \longrightarrow_2, ...) \end{array} \} \text{ two TS} \end{array}$$

synchronous product:

$$\mathcal{T}_1 \otimes \mathcal{T}_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$$

where the action set Act is given by a function

$$Act_1 \times Act_2 \longrightarrow Act, \quad (\alpha, \beta) \mapsto \alpha \ast \beta$$

action name for the concurrent execution of α and β

if action names are irrelevant: $Act_1 = Act_2 = Act = \{\tau\}$

for parallel systems with fully synchronized processes

$$\begin{array}{l} \mathcal{T}_1 = (S_1, Act_1, \longrightarrow_1, ...) \\ \mathcal{T}_2 = (S_2, Act_2, \longrightarrow_2, ...) \end{array} \} \text{ two TS} \end{array}$$

synchronous product:

$$\mathcal{T}_1 \otimes \mathcal{T}_2 = (S_1 \times S_2, Act, \longrightarrow, ...)$$

transition relation \longrightarrow :

$$\frac{\mathbf{s_1} \stackrel{\alpha}{\longrightarrow}_1 \mathbf{s'_1} \land \mathbf{s_2} \stackrel{\beta}{\longrightarrow}_2 \mathbf{s'_2}}{\langle \mathbf{s_1}, \mathbf{s_2} \rangle \stackrel{\alpha * \beta}{\longrightarrow} \langle \mathbf{s'_1}, \mathbf{s'_2} \rangle}$$

Synchronous product for composing circuits

PC2.2-40

2 sequential circuits

Synchronous product for composing circuits

PC2.2-52

initially: $r_1 = 0$

transition function: $\delta_{r_1} = \neg r_1$

PC2.2-52

transition function: $\delta_{r_1} = \neg r_1$ transition function: $\delta_{r_2} = r_2 \lor x$

- infinite for systems with
 - * variables of infinite domains, e.g., $\mathbb N$
 - * infinite data structures, e.g., stacks, queues, lists,...

- infinite for systems with
 - * variables of infinite domains, e.g., $\mathbb N$
 - * infinite data structures, e.g., stacks, queues, lists,...
- if finite: exponential growth in

- infinite for systems with
 - * variables of infinite domains, e.g., $\mathbb N$
 - * infinite data structures, e.g., stacks, queues, lists,...
- if finite: exponential growth in
 - * number of parallel components, e.g., state space of $T_1 \parallel ... \parallel T_n$ is $S_1 \times ... \times S_n$

TS for reactive systems can be enormously large

- infinite for systems with
 - * variables of infinite domains, e.g., $\mathbb N$
 - * infinite data structures, e.g., stacks, queues, lists,...

- if finite: exponential growth in
 - number of parallel components,
 e.g., state space of *T*₁ || ... || *T*_n is *S*₁×...×*S*_n
 - number of variables and channels

TS for reactive systems can be enormously large

- infinite for systems with
 - * variables of infinite domains, e.g., \mathbb{N}
 - * infinite data structures, e.g., stacks, queues, lists,...
- if finite: exponential growth in
 - * number of parallel components, e.g., state space of $T_1 \parallel ... \parallel T_n$ is $S_1 \times ... \times S_n$
 - number of variables and channels

e.g., for channel systems: size of the state space is $|Loc_1| \cdot ... \cdot |Loc_n| \cdot \prod_{x \in Var} |Dom(x)| \cdot \prod_{c \in Chan} |Dom(c)|^{cap(c)}$

Model checking

Model checking

Model checking

