Introduction to Model Checking

Lecture # 1: Motivation, Background, and Course Organization

Prof. Dr. Ir. Joost-Pieter Katoen

Lehrstuhl Software Modellierung and Verifikation

RWTHAACHEN
UNIVERSITY

April 19, 2010

Software Errors

Therac-25 Radiation Overdosing (1985-87)

@ Radiation machine for treatment of
cancer patients

@ At least 6 cases of overdosis in period
1985-1987 (~ 100-times dosis)

@ Three cancer patients died

@ Source: Design error in the control
software (race condition)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Errors

AT&T Telephone Network Outage (1990)

@ January 1990: problem in New York
City leads to 9 h-outage of large parts
of U.S. telephone network

o Costs: several 100 million US$

@ Source: software flaw (wrong
interpretation of break statement in
¢)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Errors

Ariane 5 Crash (1996)

Crash of the european Ariane 5-missile in
June 1996

Costs: more than 500 million US$

Source: software flaw in the control software

A data conversion from a 64-bit floating
point to 16-bit signed integer

Efficiency considerations had led to the
disabling of the software handler (in Ada)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Errors

Pentium FDIV Bug (1994)

o FDIV = floating point division unit

o Certain floating point division
operations performed produced
incorrect results

@ Byte: 1 in 9 billion floating point
divides with random parameters would
produce inaccurate results

@ Loss: ~ 500 million US$ (all flawed

processors were replaced) + enormous
image loss of Intel Corp.

Source: flawless realization of
floating-point division

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

The Quest for Software Correctness

Speech@©@50-years Celebration CWI Amsterdam

“It is fair to state, that in this digital era
correct systems for information processing
are more valuable than gold.”

o

Henk Barendregt

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

The Importance of Software Correctness

Rapidly increasing in different applications

@ embedded systems

@ communication protocols

@ transportation systems

= reliability incrasingly depends on software!

Defects can be and extremely

@ products subject to mass-production

@ safety-critical systems

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

What is System Verification?

Folklore “definition”

System verification amounts to check whether a system fulfills
the qualitative requirements that have been identified

Verification # validation

@ Verification = “check that we are building the thing right”
o Validation = “check that we are building the right thing"

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Software Verification Techniques

Peer reviewing
@ static technique: manual code inspection, no software execution
@ detects between 31 and 93% of defects with median of about 60%

@ subtle errors (concurrency and algorithm defects) hard to catch

@ dynamic technique in which software is executed

Some figures

@ 30% to 50% of software project costs devoted to testing
@ more time and effort is spent on validation than on construction

@ accepted defect density: about 1 defects per 1,000 code lines

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Bug Hunting: the Sooner, the Better

Analysis ':';‘:"“Pm" Programming Uit Testing | System Testing | Operation
esign
% - v 125
inbroduced M“"d¢ _,/. \- i/ i
ems {im By . eost ol
e o m %) i JI,-"n:nu'l.-\:ll.m. T
w4 peremor
W (im 1,000 §
W% T | T8
2% - -5
s 4 M 28
[= i } E—— a

Time {won-linear)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Formal Methods

Intuitive description

Formal methods are the

“applied mathematics for modelling and analysing ICT systems”

Formal methods offer a large potential for:

@ obtaining an early integration of verification in the design process

@ providing more effective verification techniques (higher coverage)

@ reducing the verification time

Usage of formal methods
Highly recommended by IEC, FAA, and NASA for safety-critical software

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Formal Verification Techniques for Property P

Deductive methods
@ method: provide a formal proof that P holds
@ tool: theorem prover/proof assistant or proof checker

@ applicable if: system has form of a mathematical theory

Model checking

@ method: systematic check on P in all states

@ tool: model checker (SPIN, NUSMV, UPPAAL, ...)

@ applicable if: system generates (finite) behavioural model

Model-based simulation or testing

@ method: test for P by exploring possible behaviours

Introduction to Model Checking

Prof. Dr. Ir. Joost-Pieter Katoen

Software Correctness

Simulation and Testing

Basic procedure:

@ take a model (simulation) or a realisation (testing)
@ stimulate it with certain inputs, i.e., the tests

@ observe reaction and check whether this is “desired”

Important drawbacks:

@ number of possible behaviours is very large (or even infinite)

@ unexplored behaviours may contain the fatal bug

About testing ...

testing/simulation can show the presence of errors, not their absence

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Milestones in Formal Verification

@ Mathematical program correctness (Turing, 1949)

@ Syntax-based technique for sequential programs (Hoare, 1969)
o for a given input, does a computer program generate the

correct output?
e based on compositional proof rules expressed in predicate logic

@ Syntax-based technique for concurrent programs (Pnueli, 1977)
e handles properties referring to states during the computation
e based on proof rules expressed in temporal logic

@ Automated verification of concurrent programs

e model-based instead of proof-rule based approach
o does the concurrent program satisfy a given (logical) property?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Example Proof Rules

{ZAb} P{T}
{Ale/x]} x = e {A} (T} while bdo P {Z A —b}
{A} P{B} {B} Q{C} A=A {AYP{B} B =B
{A} P;Q {C} | {A} P {B}

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

The ACM Turing Award

Alan M. Turing (1912 - 1 1954)
@ Mathematician, logician, crypto-specialist

@ Computational model: Turing Machine

Some Turing Award Winners

o Edsger Dijkstra (1972)

e Donald Knuth (1974)

@ Michael Rabin and Dana Scott (1976)

o Stephen Cook (1982)
@ Rivest, Shamir and Adleman (2002)

ese-/Schreinkapl

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

ACM Turing Award 2007

Recipients in February 2008

e Edmund M. Clarke jr. (CMU, USA)
@ Allen E. Emerson (Texas at Austin, USA)
@ Joseph Sifakis (IMAG Grenoble, F)

v

Jury justification

“For their roles in developing Model-Checking
into a highly effective verification technology,

widely adopted in the hardware and software

industries.”

N

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Model Checking Overview

Formalizing

“*not biased towards the

most probable scenarios™

Maodeling

Model Checking

Simulation

Insufficient

memory

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

What is Model Checking?

Informal description

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds

for (a given state in) that model.

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

What are Models?

Prof. Dr. Ir. Joost-Pieter Katoen ion to Model Checking

Model Checking

What are Models?

Transition systems

@ States labeled with basic propositions
@ Transition relation between states
@ Action-labeled transitions to facilitate composition

@ Programs are transition systems

@ Multi-threading programs are transition systems
@ Communicating processes are transition systems
@ Hardware circuits are transition systems

@ What else?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

What are Properties?

Example properties

@ Can the system reach a deadlock situation?
@ Can two processes ever be simultaneously in a critical section?

@ On termination, does a program provide the correct output?

Temporal logic

@ Propositional logic
@ Modal operators such as [“always” and { “eventually”
o Interpreted over state sequences (linear)

@ Or over infinite trees of states (branching)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

NASA's Deep Space-1 Spacecraft

Model checking

has been applied to several
modules of this spacecraft

Plasma Experiment
o

nnnnnn

mmmmmmmmmmmmmmm

ttttttttt

Prof. Dr. Ir. Joost-Pieter Katoen

and propulsi on module

launched in October 1998

Introduction to Model Checking

Model Checking

A Small Program Fragment

process Inc = while true do if x < 200 then x :=x+ 1 od
process Dec = while true do if x > 0 then x := x — 1 od

process Reset = while true do if x = 200 then x := 0 od

is x always between (and including) 0 and 2007

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Modeling in NanoPromela

int = = 0;

proctype Inci) {
do :: true -= if 11 (x < 200) - x = x + 1 fi od

}
proctype Dec() {

do 1 true -= 1if 1z (x> 0) - x = x - 1 fi eod
}
proctype Reset() {

do :: true - if 1@ (x == 200) -» x = 0 fi od
}
init {

atomic{ run Inc{) j rum Deci) ; run Reseti) }

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

How to Check?

Extend the model with a “monitor” process that checks 0 < » < 2000

proctype check() {
assert (x == 0 && = == 200)

}

init {
atomic{ run Inc() ; run Dec(}) ; run Reset() ; run Check() }

}

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

A Counterexample

&605: proc 1 (Inc) line 9 "pan_in" (state 2) [((x<200))]
&06: proc 1 (Inc) line 3 "pan_in=® (state 3) [x = (x+l)]
607: proc 2 (Dec) lime 5 "pan_in" (state 2) [if= = 01
&08B: proc 1 (Inc) line 9 "pan_in" (state 1) [(1l}]

60%9: proc 23 (Reset) line 13 "pan in" (state 2} [({x==200))]
610: proc 3 (Reset) line 13 "pan_in” (state 3) [x = 0]

6ll: proc 3 (Reset) line 13 "pan in™ (state 1) [(1}]

6l2: proc 2 (Dec) line 5 "pan_in" (state 3) [x = (x-1)]
6l3: proc 2 (Dec) line 5 "pan_in= (state 1) [(1l}]

spin: line 17 "pan_in", Error: assertion viclated
spin: text of failed assertion: assert(((x==0)&&(x==200)))

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Breaking the Error

int = = 0;

proctype Inc() {
do :: true -> atomic{ if ::

proctype Dec() {
do :: true -> atomic{ 1L ::

proctype Reset() {
do :: true -> atomic{ if

init {

atomic{ run Inc{) ; run Dec()

< 200 -> x = x + 1 fi } od

0 -x=x-1£i} od

== 200 -» x = 0 fi } od

;j Tun Reset() }

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

The Model Checking Process

@ Modeling phase
e model the system under consideration
e as a first sanity check, perform some simulations
o formalise the property to be checked
@ Running phase
e run the model checker to check the validity of the property in
the model
@ Analysis phase

o property satisfied? — check next property (if any)
e property violated? —
@ analyse generated counterexample by simulation
@ refine the model, design, or property ... and repeat the entire
procedure

e out of memory? — try to reduce the model and try again

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

The Pros of Model Checking

widely applicable (hardware, software, protocol systems, ...)
allows for partial verification (only most relevant properties)
potential “push-button” technology (software-tools)

rapidly increasing industrial interest

in case of property violation, a counterexample is provided
sound and interesting mathematical foundations

not biased to the most possible scenarios (such as testing)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

The Cons of Model Checking

@ main focus on control-intensive applications (less
data-oriented)

@ model checking is only as “good” as the system model
@ no guarantee about completeness of results

@ impossible to check generalisations (in general)

Nevertheless:

Model checking is a effective technique
to expose potential design errors

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Striking Model-Checking Examples

@ Security: Needham-Schroeder encryption protocol
e error that remained undiscovered for 17 years unrevealed

@ Transportation systems
e train model containing 10476 states

@ Model checkers for C, Java and C++
o used (and developed) by Microsoft, Digital, NASA
e successful application area: device drivers

@ Dutch storm surge barrier in Nieuwe Waterweg

@ Software in the current/next generation of space missiles
o NASA's Mars Pathfinder, Deep Space-1, JPL LARS group

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Topics

What are appropriate ?

@ transition systems
@ from programs to transition systems

from circuits to transition systems

o
@ multi-threading, communication, ...
o

nanoPromela: an example modeling language

o safety: “something bad never happen”
@ liveness: “something good eventually happens”
o fairness: "“if something may happen frequently, it will happen”

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Topics

How to check properties?

@ finite-state automata and regular safety properties
@ Biichi automata and w-regular properties

@ model checking: nested depth-first search

How to express properties

@ Linear-time Temporal Logic (LTL): syntax and semantics
@ What can be expressed in LTL?
@ LTL model checking: algorithms, complexity

@ How to treat fairness in LTL

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Topics

How to express properties ?

e Computation Tree Logic (CTL): syntax and semantics
@ What can be expressed in CTL?

@ CTL model checking: algorithms, complexity

@ How to treat fairness in CTL

How to make models smaller?

@ Equivalences and pre-orders on transition systems

@ Which properties are preserved?

@ Minimization algorithms

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Material

Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany, and
University of Twente, the Netherlands

Gerard J. Holzmann, NASA JPL, Pasadena:
Erineip | AT el thecne “This book offers one of the most comprehensive

Christel Baier and Joost-Pieter Katoen introductions to logic model checking techniques

available today. The authors have found a way to
explain both basic concepts and foundational

theory thoroughly and in crystal clear prose.”
Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Lectures

@ Mon 12:30 - 14:00 (AH3), Tue 08:15-09:45 (AH2)

@ Check regularly course webpage for possible “no shows”

<

@ Lecture slides (with gaps) are made available on webpage

@ Copies of the book are available in the CS library

moves.rwth-aachen.de/i2/424

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Exercises and Exam

Exercise Classes

@ Wed 13:30 - 15:00 in AH3 (start: April 28)

@ Instructors: Tingting Han and Alexandru Mereacre

Weekly exercise series

@ Intended for groups of 2 students

@ New series: every Wed on course webpage (start: April 21)
@ Solutions: Wed (before 13:30) one week later

@ Student assistants: Silvio de Carolis

@ July 30, 2010 and September 27, 2010 (written exam)

@ participation if > 50% of all exercise points are gathered

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Embedding

Aim of the course
It's about the foundations of model checking, not its usage!

@ Automata and language theory
@ Algorithms and data structures

@ Computability and complexity theory

Some follow-up courses

Advanced model checking (WS 2010/11)

@ Practical exercises model checking (WS 2010/11)
@ Automata and reactive systems (Thomas)

e Satisfiability checking (Abraham)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

	Software Errors
	Software Correctness
	Model Checking
	Course Details

