
Logic Model Checking

Lecture Notes 14:18
Caltech 118

January-March 2006

Course Text:
The Spin Model Checker: Primer and Reference Manual

Addison-Wesley 2003, ISBN 0-321-22862-6, 608 pgs.

 Logic Model Checking [14 of 18] 2

Promela semantics

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
 x!0 unless y!0
}

active proctype B()
{
 y?0 unless x?0
}

x!0 y!0

A

stop

y?0 x?0

B

stop

what precisely does this mean?
what are the possible executions?

two rendezvous handshakes seem possible:
y!0 <-> y?0

and
x!0 <-> x?0

can you tell which can happen without
running Spin....?

red arrows take priority
over white arrows...

if you use this method and
get a different answer from
the Spin simulator and the
Spin verifier, which answer
is right?

 Logic Model Checking [14 of 18] 3

the semantics of Promela
proctypes and automata

active proctype not_euclid()
{
S: if
 :: x == y -> assert(x != y); goto L
 :: x > y -> L: x = x - y
 :: x < y -> y = y - x
 fi;
E: printf(“%d\n”, x)
}

a Spin model defines a system of:
 states and state transformers (transitions)

state is maintained in
 sets of process counters (control flow states)
 local and global variables and
 message channels

‘;’, ‘->’, if-fi, do-od, goto, etc. are only used to
 define the transition structure
 (not the state transformers themselves)
 the only state transformers are the basic statements:
 assignment, (expr), printf, assert, send, receive

L:

x==y x<yx>y

assert

x=x-y y=y-x

printf(“%d\n”,x)

stop

start

S:

E:

 Logic Model Checking [14 of 18] 4

the semantics of Promela
proctypes and automata

active proctype not_euclid()
{
S: if
 :: x == y -> assert(x != y); goto L
 :: x > y -> L: x = x - y
 :: x < y -> y = y - x
 fi;
E: printf(“%d\n”, x)
}

a Spin model defines a system of:
 states and state transformers (transitions)

state is maintained in
 sets of process counters (control flow states)
 local and global variables and
 message channels

‘;’, ‘->’, if-fi, do-od, goto, etc. are only used to
 define the transition structure
 (not the state transformers themselves)
 the only state transformers are the basic statements:
 assignment, (expr), printf, assert, send, receive

L:

x==y x<yx>y

assert

x=x-y y=y-x

printf(“%d\n”,x)

stop

start

S:

E:

 Logic Model Checking [14 of 18] 5

operational model
• to define the semantics of the modeling language, we can

define an operational model in terms of states and state
transformers (transitions)
– we have to define what a “global system state” is
– we have to define what a “state transition” is

• i.e., how the ‘next-state’ relation is defined

• global system states are defined in terms of a small number of
primitive objects:

– we have to define: variables, messages, message channels, and processes

• state transitions are defined with the help of
– basic statements that label transitions

• the alphabet of the underlying automata
• there are only 6 types of labels in the alphabet: assignment, condition, etc.

– we have to define: transitions, transition selection, and transition execution

 Logic Model Checking [14 of 18] 6

transitions

given an arbitrary global state of
the system, determine the set of
possible immediate successor states

s s’ ?

L1

Ln

Li

assignment statement
assert statement
condition statement
printf statement
send statement
receive statement this means determining 3 things:

 1. statement executability rules
 2. statement selection rules
 3. the effect of a statement execution

we only have to define single-step
semantics to define the full language

the 3 parts of the semantics definition
are defined over 4 types of objects:

 1. variables

 2. messages

 3. message channels

 4. processes

we’ll define these first

 Logic Model Checking [14 of 18] 7

operational model
variables, messages, channels, processes, transitions, global states

• a promela variable is defined by a five-tuple

 {name,scope,domain,inival,curval}

short x=2, y=1;

active proctype not_euclid()
{
S: if
 :: x > y -> L: x = x - y
 :: x < y -> y = y - x
 :: x == y -> assert(x != y); goto L
 fi;
E: printf(“%d\n”, x)
}

name

scope: global
inival x: 2domain: e.g., -215..215-1

curval of x at E: 1

curval of x at S: 2

 Logic Model Checking [14 of 18] 8

operational model
variables, messages, channels, processes, transitions, global states

• a message is a finite, ordered set of variables
 (messages are stored in channels – defined next)

mtype = { req, resp, ack };

chan q = [2] of { mtype, bit };

active proctype not_very_useful()
{ bit p;

 do
 :: q?req,p -> q!resp,p
 :: q?resp,p -> q!ack,1-p
 :: q?ack,_
 :: timeout -> break
 od
}

parallel value assignment

domains:
mtype
bit

place names for values held in
message channel:

slot1.field1

slot1.field2

 Logic Model Checking [14 of 18] 9

operational model
variables, messages, channels, processes, transitions, global states

• a message channel is defined by a 3-tuple
{ch_id, nslots, contents}

chan q = [2] of { mtype, bit };

{
 {slot1.field1, slot1.field2},
 {slot2.field1, slot2.field2}
}

an ordered set of messages
maximally with nslots elements:

a ch_id is an integer 1..MAXQ that can be
stored in a variable

(ch_id’s <= 0 or > MAXQ do not correspond
 to any instantiated channel, so the default
 initial value of a chan variable 0 is not a
 valid ch_id)

channels always
have global scope

but variables of type chan
are either local or global,

(so, ch_id’s are always meaningful
 when passed from one process
 to another)

 Logic Model Checking [14 of 18] 10

channel scope

chan r = [0] of { chan };

active proctype A()
{
 chan q = [0] of { int };

 r!q;
 q?100
}

active proctype B()
{
 chan s;

 r?s;
 s!100
}

global variable r
holds the ch_id of C1

C1 never disappears

local variable q in A
holds the ch_id of C2
(a global object)

C2 is created when A()
is instantiated
it disappears when A()
disappears

local variable s in B
is initialized to 0
(not a valid ch_id)

it is set to C2 in the
receive from r == C1

C2 is a globally visible
object with a limited
lifetime...

global objects

local
objects

r

q

C1

C2

s

in the initial system state
r, q, s, C1, and C2 all exist
r points to C1, q points to C2

 Logic Model Checking [14 of 18] 11

operational model
variables, messages, channels, processes, transitions, global states

• a process is defined by a six-tuple
{pid, lvars, lstates, inistate, curstate, transitions}

process
instantiation
number

finite set of
local variables

a finite set of integers
defining local proc states

the initial state a finite set of
transitions (to be defined)
between elements of lstates

the current state

process p
p.curstate
p.pid
etc.

 Logic Model Checking [14 of 18] 12

operational model
variables, messages, channels, processes, transitions, global states

• a transition is defined by a seven-tuple
{tri_id, source-state, target-state, cond, effect, priority, rv}

x<y

(x<y)

nil

predefined system variables that are
used to define the semantics of
unless and rendezvous

transition t:
t.source
t.target
t.cond
t.effect
etc.

condition and effect are
defined for each basic
statement, and they are
typically defined on
variable and channel
values, possibly also on
process states

 Logic Model Checking [14 of 18] 13

operational model
variables, messages, channels, processes, transitions, global states

• a global state is defined by a eight-tuple

{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter}

a finite set of
global variables

a finite set of
processes

a finite set of
message channels

predefined integer system variables
that are used to define the
semantics of atomic, d_step, and
rendezvous

predefined Boolean
system variables

for stutter
extension rule

the global system state is called
the system “state vector”

 Logic Model Checking [14 of 18] 14

one-step semantics

given an arbitrary global state of
the system, determine the set of
possible immediate successor states

s s’ ?

L1

Ln

Li

assignment statement
assert statement
condition statement
printf statement
send statement
receive statement

to define a one-step semantics,
we have to define 3 more things:
 1. transition executability rules
 2. transition selection rules
 3. the effect of transition

we’ve defined the only 4 types of objects
that hold state:
 1. variables
 2. messages
 3. channels and
 4. processes

we do so by defining an algorithm:
an implementation-independent semantics
interpretation “engine” for Spin

 Logic Model Checking [14 of 18] 15

defining the next-state relation
the Promela semantics engine

global states s, s’
processes p, p’
transitions t, t’
E a set of pairs {p,t}

 1 while ((E = executable(s)) != {})
 2 {
 3 for-some (process p and transition t) from E
 4 { s' = apply(t.effect, s)
 5
 6 if (handshake == 0)
 7 { s = s'
 8 p.curstate = t.target
 9 } else
10 { /* try to complete rv handshake */
11 E' = executable(s')
12 /* if E' is {}, s is unchanged */
13
14 for-some (process p’ and transition t') from E'
15 { s = apply(t'.effect, s')
16 p.curstate = t.target
17 p'.curstate = t'.target
18 handshake = 0
19 }
20 } }
21 }
23 while (stutter) { s = s } /* stutter extension rule */

the easy part:

state updating

to be defined

 Logic Model Checking [14 of 18] 16

executability rules

global states s, s’
processes p, p’
transitions t, t’

 1 Set
 2 executable(State s)
 3 { new Set E
 4 new Set e
 5
 6 E = {}
 7 timeout = false
 8 AllProcs:
 9
 29
 30
 31 if (E == {} and exclusive != 0)
 32 { exclusive = 0
 33 goto AllProcs
 34 }
 35 if (E == {} and timeout == false)
 36 { timeout = true
 37 goto AllProcs
 38 }
 39
 40 return E /* executable transitions */
 41 }

 9 for each active process p
 10 { if (exclusive == 0
 11 or exclusive == p.pid)
 12 { for u from high to low /* priority */
 13 { e = {}; else = false
 14 OneProc: for each transition t in p.trans
 15 { if (t.source == p.curstate
 16 and t.prty == u
 17 and (handshake == 0
 18 or handshake == t.rv)
 19 and eval(t.cond) == true)
 20 { add (p,t) to set e
 21 } }
 22 if (e != {})
 23 { add all elements of e to E
 24 break /* on to next process */
 25 } else if (else == false)
 26 { else = true
 27 goto OneProc
 28 } /* else lower the priority */
 29 } } }

the hard part:

transition selection

continue

next:
extensions for

timeout, else
rendezvous, atomic,
unless, stutter

 Logic Model Checking [14 of 18] 17

executability rules

global states s, s’
processes p, p’
transitions t, t’

 1 Set
 2 executable(State s)
 3 { new Set E
 4 new Set e
 5
 6 E = {}
 7 timeout = false
 8 AllProcs:
 9
 29
 30
 31 if (E == {} and exclusive != 0)
 32 { exclusive = 0
 33 goto AllProcs
 34 }
 35 if (E == {} and timeout == false)
 36 { timeout = true
 37 goto AllProcs
 38 }
 39
 40 return E /* executable transitions */
 41 }

 9 for each active process p
 10 { if (exclusive == 0
 11 or exclusive == p.pid)
 12 { for u from high to low /* priority */
 13 { e = {}; else = false
 14 OneProc: for each transition t in p.trans
 15 { if (t.source == p.curstate
 16 and t.prty == u
 17 and (handshake == 0
 18 or handshake == t.rv)
 19 and eval(t.cond) == true)
 20 { add (p,t) to set e
 21 } }
 22 if (e != {})
 23 { add all elements of e to E
 24 break /* on to next process */
 25 } else if (else == false)
 26 { else = true
 27 goto OneProc
 28 } /* else lower the priority */
 29 } } }

the hard part:

transition selection

continue

next:
extension for else

 Logic Model Checking [14 of 18] 18

executability rules

global states s, s’
processes p, p’
transitions t, t’

 1 Set
 2 executable(State s)
 3 { new Set E
 4 new Set e
 5
 6 E = {}
 7 timeout = false
 8 AllProcs:
 9
 29
 30
 31 if (E == {} and exclusive != 0)
 32 { exclusive = 0
 33 goto AllProcs
 34 }
 35 if (E == {} and timeout == false)
 36 { timeout = true
 37 goto AllProcs
 38 }
 39
 40 return E /* executable transitions */
 41 }

 9 for each active process p
 10 { if (exclusive == 0
 11 or exclusive == p.pid)
 12 { for u from high to low /* priority */
 13 { e = {}; else = false
 14 OneProc: for each transition t in p.trans
 15 { if (t.source == p.curstate
 16 and t.prty == u
 17 and (handshake == 0
 18 or handshake == t.rv)
 19 and eval(t.cond) == true)
 20 { add (p,t) to set e
 21 } }
 22 if (e != {})
 23 { add all elements of e to E
 24 break /* on to next process */
 25 } else if (else == false)
 26 { else = true
 27 goto OneProc
 28 } /* else lower the priority */
 29 } } }

the hard part:

transition selection

continue

next:
extension for rendezvous semantics

 Logic Model Checking [14 of 18] 19

adding semantics for rendezvous 1:2
the predefined variable handshake

global states s, s’
processes p, p’
transitions t, t’

 1 while ((E = executable(s)) != {})
 2 {
 3 for-some (process p and transition t) from E
 4 { s' = apply(t.effect, s)
 5
 6 if (handshake == 0)
 7 { s = s'
 8 p.curstate = t.target
 9 } else
10 { /* try to complete a rv handshake */
11 E' = executable(s')
12 /* if E' is {}, s is unchanged */
13
14 for-some (process p’ and transition t') from E'
15 { s = apply(t'.effect, s')
16 p.curstate = t.target
17 p'.curstate = t'.target
19 }
18 handshake = 0
20 } }
21 }
22 while (stutter) { s = s } /* stutter extension rule */

can set handshake

 Logic Model Checking [14 of 18] 20

adding semantics for rendezvous 2:2
 the predefined variable handshake

global states s, s’
processes p, p’
transitions t, t’

 1 Set
 2 executable(State s)
 3 { new Set E
 4 new Set e
 5
 6 E = {}
 7 timeout = false
 8 AllProcs:
 9
 29
 30
 31 if (E == {} and exclusive != 0)
 32 { exclusive = 0
 33 goto AllProcs
 34 }
 35 if (E == {} and timeout == false)
 36 { timeout = true
 37 goto AllProcs
 38 }
 39
 40 return E /* executable transitions */
 41 }

 9 for each active process p
 10 { if (exclusive == 0
 11 or exclusive == p.pid)
 12 { for u from high to low /* priority */
 13 { e = {}; else = false
 14 OneProc: for each transition t in p.trans
 15 { if (t.source == p.curstate
 16 and t.prty == u
 17 and (handshake == 0
 18 or handshake == t.rv)
 19 and eval(t.cond) == true)
 20 { add (p,t) to set e
 21 } }
 22 if (e != {})
 23 { add all elements of e to E
 24 break /* on to next process */
 25 } else if (else == false)
 26 { else = true
 27 goto OneProc
 28 } /* else lower the priority */
 29 } } }

next:
extensions for atomic and d_step sequences

 Logic Model Checking [14 of 18] 21

adding semantics for atomic sequences
 the predefined variable exclusive

global states s, s’
processes p, p’
transitions t, t’

 1 Set
 2 executable(State s)
 3 { new Set E
 4 new Set e
 5
 6 E = {}
 7 timeout = false
 8 AllProcs:
 9
 29
 30
 31 if (E == {} and exclusive != 0)
 32 { exclusive = 0
 33 goto AllProcs
 34 }
 35 if (E == {} and timeout == false)
 36 { timeout = true
 37 goto AllProcs
 38 }
 39
 40 return E /* executable transitions */
 41 }

 9 for each active process p
 10 { if (exclusive == 0
 11 or exclusive == p.pid)
 12 { for u from high to low /* priority */
 13 { e = {}; else = false
 14 OneProc: for each transition t in p.trans
 15 { if (t.source == p.curstate
 16 and t.prty == u
 17 and (handshake == 0
 18 or handshake == t.rv)
 19 and eval(t.cond) == true)
 20 { add (p,t) to set e
 21 } }
 22 if (e != {})
 23 { add all elements of e to E
 24 break /* on to next process */
 25 } else if (else == false)
 26 { else = true
 27 goto OneProc
 28 } /* else lower the priority */
 29 } } }

next:
extension for unless sequences

 Logic Model Checking [14 of 18] 22

adding semantics for unless
 statement priority levels

global states s, s’
processes p, p’
transitions t, t’

 1 Set
 2 executable(State s)
 3 { new Set E
 4 new Set e
 5
 6 E = {}
 7 timeout = false
 8 AllProcs:
 9
 29
 30
 31 if (E == {} and exclusive != 0)
 32 { exclusive = 0
 33 goto AllProcs
 34 }
 35 if (E == {} and timeout == false)
 36 { timeout = true
 37 goto AllProcs
 38 }
 39
 40 return E /* executable transitions */
 41 }

 9 for each active process p
 10 { if (exclusive == 0
 11 or exclusive == p.pid)
 12 { for u from high to low /* priority */
 13 { e = {}; else = false
 14 OneProc: for each transition t in p.trans
 15 { if (t.source == p.curstate
 16 and t.prty == u
 17 and (handshake == 0
 18 or handshake == t.rv)
 19 and eval(t.cond) == true)
 20 { add (p,t) to set e
 21 } }
 22 if (e != {})
 23 { add all elements of e to E
 24 break /* on to next process */
 25 } else if (else == false)
 26 { else = true
 27 goto OneProc
 28 } /* else lower the priority */
 29 } } }

next:
adding the stutter extension rule

 Logic Model Checking [14 of 18] 23

the stutter extension rule

global states s, s’
processes p, p’
transitions t, t’

 1 while ((E = executable(s)) != {})
 2 {
 3 for some (process p and transition t) from E
 4 { s' = apply(t.effect, s)
 5
 6 if (handshake == 0)
 7 { s = s'
 8 p.curstate = t.target
 9 } else
10 { /* try to complete rv handshake */
11 E' = executable(s')
12 /* if E' is {}, s is unchanged */
13
14 for some (process p’ and transition t') from E'
15 { s = apply(t'.effect, s')
16 p.curstate = t.target
17 p'.curstate = t'.target
18 handshake = 0
19 break
20 } } }
21 }
22 while (stutter) { s = s } /* stutter extension rule */

 Logic Model Checking [14 of 18] 24

example 1:3
using the semantics engine

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
 x?0 unless y!0
}

active proctype B()
{
 y?0 unless x!0
}

Q: what is the combined
system behavior?

A: a non-deterministic
selection between
 x!0;x?0
and
 y!0;y?0

end

x!0 y!0

y?0x?0

handshake=1 handshake=2

end

x?0 y!0

end

y?0 x!0

unless escapes have
higher priority

 Logic Model Checking [14 of 18] 25

example 2:3
using the semantics engine

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
 x!0 unless y!0
}

active proctype B()
{
 y?0 unless x?0
}

Q: what is the combined
system behavior?

is it
 x!0;x?0
 or
 y!0;y?0
?

end

x!0 y!0

end

y?0 x?0

unless escapes have
higher priority

end

y!0

y?0

handshake=2

A: only y!0;y?0 can happen

 Logic Model Checking [14 of 18] 26

example 3:3
using the semantics engine

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
 x!0 unless y?0
}

active proctype B()
{
 y!0 unless x?0
}

Q: what is the combined
system behavior?

is it
 x!0;x?0
 or
 y!0;y?0
?

end

x!0 y?0

end

y!0 x?0

unless escapes have
higher priority

end

x!0 y!0

y?0x?0

handshake=1 handshake=2

A: a non-deterministic
selection between
 x!0;x?0
and
 y!0;y?0

 Logic Model Checking [14 of 18] 27

compare

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
 x!0 unless y?0
}

active proctype B()
{
 y!0 unless x?0
}

end

x!0 y!0

y?0x?0

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
 x?0 unless y!0
}

active proctype B()
{
 y?0 unless x!0
}

end

x!0 y!0

y?0x?0

same global behavior
but for very different
reasons....

 Logic Model Checking [14 of 18] 28

what about never claims, etc.?
meta-semantics

• correctness properties do not define new behavior,
they just monitor it
– and complain bitterly when interesting things are seen

• a verification engine can make pronouncements on
properties of behavior
– this is at a higher level of semantics: it interprets the

goodness or badness of a behavior instead of defining the
behavior itself

• a never claim is designed to select those behaviors
that could possibly lead to “interesting” behavior
– the distinction between “good” and “bad”, “interesting” and

“uninteresting” is a meta-statement about behavior: not part
of the behavior itself, and therefore not part of the
operational semantics....

	Logic Model Checking
	Promela semantics
	the semantics of Promela proctypes and automata
	Pagina 4
	operational model
	transitions
	operational model variables, messages, channels, processes, transitions, global states
	Pagina 8
	Pagina 9
	channel scope
	Pagina 11
	Pagina 12
	Pagina 13
	one-step semantics
	defining the next-state relation the Promela semantics engine
	executability rules
	Pagina 17
	Pagina 18
	adding semantics for rendezvous 1:2 the predefined variable handshake
	adding semantics for rendezvous 2:2 the predefined variable handshake
	adding semantics for atomic sequences the predefined variable exclusive
	adding semantics for unless statement priority levels
	the stutter extension rule
	example 1:3 using the semantics engine
	example 2:3 using the semantics engine
	example 3:3 using the semantics engine
	compare
	what about never claims, etc.? meta-semantics

