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Promela semantics

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
    x!0 unless y!0
}

active proctype B()
{
    y?0 unless x?0
}

x!0 y!0

A

stop

y?0 x?0

B

stop

what precisely does this mean?
what are the possible executions?

two rendezvous handshakes seem possible:
y!0 <-> y?0

and
x!0 <-> x?0

can you tell which can happen without
running Spin....?

red arrows take priority
over white arrows...

if you use this method and
get a different answer from
the Spin simulator and the
Spin verifier, which answer
is right?
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the semantics of Promela
proctypes and automata

active proctype not_euclid()
{
S: if
   :: x == y ->    assert(x != y); goto L
   :: x > y  -> L: x = x - y
   :: x < y  ->    y = y - x
   fi;
E: printf(“%d\n”, x)
}

a Spin model defines a system of:
   states and state transformers (transitions)

state is maintained in
   sets of process counters (control flow states)
   local and global variables and
   message channels

‘;’, ‘->’, if-fi, do-od, goto, etc. are only used to
   define the transition structure
  (not the state transformers themselves)
   the only state transformers are the basic statements:
      assignment, (expr), printf, assert, send, receive

L:

x==y x<yx>y

assert

x=x-y y=y-x

printf(“%d\n”,x)

 

stop

start

S:

E:
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the semantics of Promela
proctypes and automata

active proctype not_euclid()
{
S: if
   :: x == y ->    assert(x != y); goto L
   :: x > y  -> L: x = x - y
   :: x < y  ->    y = y - x
   fi;
E: printf(“%d\n”, x)
}

a Spin model defines a system of:
   states and state transformers (transitions)

state is maintained in
   sets of process counters (control flow states)
   local and global variables and
   message channels

‘;’, ‘->’, if-fi, do-od, goto, etc. are only used to
   define the transition structure
  (not the state transformers themselves)
   the only state transformers are the basic statements:
      assignment, (expr), printf, assert, send, receive

L:

x==y x<yx>y

assert

x=x-y y=y-x

printf(“%d\n”,x)

 

stop

start

S:

E:



 Logic Model Checking  [14 of 18] 5

operational model
• to define the semantics of the modeling language, we can 

define an operational model in terms of states and state 
transformers (transitions)
– we have to define what a “global system state” is
– we have to define what a “state transition” is

• i.e., how the ‘next-state’ relation is defined

• global system states are defined in terms of a small number of 
primitive objects:

– we have to define: variables, messages, message channels, and processes

• state transitions are defined with the help of
– basic statements that label transitions

• the alphabet of the underlying automata
• there are only 6 types of labels in the alphabet: assignment, condition, etc.

– we have to define: transitions, transition selection, and transition execution
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transitions

given an arbitrary global state of
the system, determine the set of
possible immediate successor states 

s s’ ?

L1

Ln

Li

assignment statement
assert statement
condition statement
printf statement
send statement
receive statement this means determining 3 things:

   1. statement executability rules
   2. statement selection rules
   3. the effect of a statement execution 

we only have to define single-step 
semantics to define the full language 

the 3 parts of the semantics definition
are defined over 4 types of objects:

   1. variables

   2. messages

   3. message channels

   4. processes

we’ll define these first
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operational model
variables, messages, channels, processes, transitions, global states

• a promela variable is defined by a five-tuple

 {name,scope,domain,inival,curval}

short x=2, y=1;

active proctype not_euclid()
{
S: if
   :: x > y  -> L: x = x - y
   :: x < y  ->    y = y - x
   :: x == y ->    assert(x != y); goto L
   fi;
E: printf(“%d\n”, x)
}

name

scope: global
inival x: 2domain: e.g., -215..215-1

curval of x at E: 1

curval of x at S: 2
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operational model
variables, messages, channels, processes, transitions, global states

• a message is a finite, ordered set of variables
     (messages are stored in channels – defined next)

mtype = { req, resp, ack };

chan q = [2] of { mtype, bit };

active proctype not_very_useful()
{  bit p;

   do
   :: q?req,p  -> q!resp,p
   :: q?resp,p -> q!ack,1-p
   :: q?ack,_
   :: timeout -> break
   od
}

parallel value assignment

domains:
mtype
bit

place names for values held in
message channel:

slot1.field1

slot1.field2
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operational model
variables, messages, channels, processes, transitions, global states

• a message channel is defined by a 3-tuple
{ch_id, nslots, contents}

chan q = [2] of { mtype, bit };

{
 {slot1.field1, slot1.field2},
 {slot2.field1, slot2.field2}
} 

an ordered set of messages
maximally with nslots elements:

a ch_id is an integer 1..MAXQ that can be
stored in a variable 

(ch_id’s <= 0 or > MAXQ do not correspond
 to any instantiated channel, so the default
 initial value of a chan variable 0 is not a
 valid ch_id)

channels always
have global scope

but variables of type chan
are either local or global,

(so, ch_id’s are always meaningful
 when passed from one process
 to another)
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channel scope

chan r = [0] of { chan };

active proctype A()
{
   chan q = [0] of { int };

   r!q;
   q?100
}

active proctype B()
{
   chan s;

   r?s;
   s!100
}

global variable r
holds the ch_id of C1

C1 never disappears

local variable q in A
holds the ch_id of C2
(a global object)

C2 is created when A()
is instantiated
it disappears when A()
disappears

local variable s in B
is initialized to 0
(not a valid ch_id)

it is set to C2 in the
receive from r == C1

C2 is a globally visible
object with a limited
lifetime...

global objects

local
objects

r

q

C1

C2

s

in the initial system state
r, q, s, C1, and C2 all exist
r points to C1, q points to C2
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operational model
variables, messages, channels, processes, transitions, global states

• a process is defined by a six-tuple
{pid, lvars, lstates, inistate, curstate, transitions}

process
instantiation
number

finite set of
local variables

a finite set of integers
defining local proc states

the initial state a finite set of
transitions (to be defined)
between elements of lstates

the current state

 

process p
p.curstate
p.pid
etc.
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operational model
variables, messages, channels, processes, transitions, global states

• a transition is defined by a seven-tuple
{tri_id, source-state, target-state, cond, effect, priority, rv}

x<y

(x<y)

nil

predefined system variables that are
used to define the semantics of
unless and rendezvous

transition t:
t.source
t.target
t.cond
t.effect
etc.

condition and effect are
defined for each basic
statement, and they are
typically defined on
variable and channel
values, possibly also on
process states
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operational model
variables, messages, channels, processes, transitions, global states

• a global state is defined by a eight-tuple

{ gvars, procs, chans, exclusive, handshake, timeout, else, stutter}

a finite set of
global variables

a finite set of
processes

a finite set of
message channels

predefined integer system variables
that are used to define the
semantics of atomic, d_step, and
rendezvous

predefined Boolean
system variables

for stutter
extension rule

the global system state is called
the system “state vector”
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one-step semantics

given an arbitrary global state of
the system, determine the set of
possible immediate successor states 

s s’ ?

L1

Ln

Li

assignment statement
assert statement
condition statement
printf statement
send statement
receive statement

to define a one-step semantics,
we have to define 3 more things:
   1. transition executability rules
   2. transition selection rules
   3. the effect of transition 

we’ve defined the only 4 types of objects 
that hold state:
   1. variables
   2. messages
   3. channels and
   4. processes

we do so by defining an algorithm:
an implementation-independent semantics
interpretation “engine” for Spin
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defining the next-state relation
the Promela semantics engine

global states s, s’
processes     p, p’
transitions   t, t’
E a set of pairs {p,t}

 1 while ((E = executable(s)) != {}) 
 2 { 
 3      for-some (process p and transition t) from E  
 4      {    s' = apply(t.effect, s)  
 5  
 6           if (handshake == 0)  
 7           {    s = s'  
 8                p.curstate = t.target
 9           } else 
10           {     /* try to complete rv handshake */ 
11                E' = executable(s') 
12                /* if E' is {}, s is unchanged  */ 
13  
14                for-some (process p’ and transition t') from E' 
15                {    s = apply(t'.effect, s') 
16                     p.curstate  = t.target 
17                     p'.curstate = t'.target
18                     handshake = 0
19                }
20    }     }    
21 }    
23 while (stutter) { s = s } /* stutter extension rule */ 

the easy part:

state updating

to be defined
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executability rules

global states s, s’
processes     p, p’
transitions   t, t’

  1 Set
 2 executable(State s)
 3 {  new Set E
 4    new Set e
 5 
 6    E = {}
 7    timeout = false
 8 AllProcs:
 9    
 29
 30 
 31   if (E == {} and exclusive != 0)
 32   {   exclusive = 0
 33       goto AllProcs
 34   }
 35   if (E == {} and timeout == false)
 36   {   timeout = true
 37       goto AllProcs
 38   }
 39 
 40   return E     /* executable transitions */
 41 }

 9    for each active process p
 10   {  if (exclusive == 0
 11      or  exclusive == p.pid)
 12      {   for u from high to low   /* priority */
 13          {   e = {};  else = false
 14 OneProc:     for each transition t in p.trans
 15              {   if (t.source == p.curstate
 16                  and t.prty == u
 17                  and (handshake == 0
 18                  or   handshake == t.rv)
 19                  and  eval(t.cond) == true)
 20                  {     add (p,t) to set e
 21              }   }
 22              if (e != {})
 23              {   add all elements of e to E
 24                  break   /* on to next process */
 25              } else if (else == false)
 26              {   else = true
 27                  goto OneProc
 28              } /* else lower the priority */
 29    }  }  }

the hard part:

transition selection

continue

next:
extensions for

timeout, else
rendezvous, atomic,
unless, stutter
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executability rules
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executability rules

global states s, s’
processes     p, p’
transitions   t, t’

  1 Set
 2 executable(State s)
 3 {  new Set E
 4    new Set e
 5 
 6    E = {}
 7    timeout = false
 8 AllProcs:
 9    
 29
 30 
 31   if (E == {} and exclusive != 0)
 32   {   exclusive = 0
 33       goto AllProcs
 34   }
 35   if (E == {} and timeout == false)
 36   {   timeout = true
 37       goto AllProcs
 38   }
 39 
 40   return E     /* executable transitions */
 41 }

 9    for each active process p
 10   {  if (exclusive == 0
 11      or  exclusive == p.pid)
 12      {   for u from high to low   /* priority */
 13          {   e = {};  else = false
 14 OneProc:     for each transition t in p.trans
 15              {   if (t.source == p.curstate
 16                  and t.prty == u
 17                  and (handshake == 0
 18                  or   handshake == t.rv)
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 27                  goto OneProc
 28              } /* else lower the priority */
 29    }  }  }

the hard part:

transition selection

continue

next:
extension for rendezvous semantics
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adding semantics for rendezvous 1:2
the predefined variable handshake

global states s, s’
processes     p, p’
transitions   t, t’

 1 while ((E = executable(s)) != {}) 
 2 { 
 3      for-some (process p and transition t) from E  
 4      {    s' = apply(t.effect, s)  
 5  
 6           if (handshake == 0)  
 7           {    s = s'  
 8                p.curstate = t.target
 9           } else 
10           {     /* try to complete a rv handshake */ 
11                E' = executable(s') 
12                /* if E' is {}, s is unchanged  */ 
13  
14                for-some (process p’ and transition t') from E' 
15                {    s = apply(t'.effect, s') 
16                     p.curstate  = t.target 
17                     p'.curstate = t'.target 
19                }
18                handshake = 0
20      }     }   
21 } 
22 while (stutter) { s = s } /* stutter extension rule */ 

can set handshake
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adding semantics for rendezvous 2:2
 the predefined variable handshake

global states s, s’
processes     p, p’
transitions   t, t’

  1 Set
 2 executable(State s)
 3 {  new Set E
 4    new Set e
 5 
 6    E = {}
 7    timeout = false
 8 AllProcs:
 9    
 29
 30 
 31   if (E == {} and exclusive != 0)
 32   {   exclusive = 0
 33       goto AllProcs
 34   }
 35   if (E == {} and timeout == false)
 36   {   timeout = true
 37       goto AllProcs
 38   }
 39 
 40   return E     /* executable transitions */
 41 }

 9    for each active process p
 10   {  if (exclusive == 0
 11      or  exclusive == p.pid)
 12      {   for u from high to low   /* priority */
 13          {   e = {};  else = false
 14 OneProc:     for each transition t in p.trans
 15              {   if (t.source == p.curstate
 16                  and t.prty == u
 17                  and (handshake == 0
 18                  or   handshake == t.rv)
 19                  and  eval(t.cond) == true)
 20                  {     add (p,t) to set e
 21              }   }
 22              if (e != {})
 23              {   add all elements of e to E
 24                  break   /* on to next process */
 25              } else if (else == false)
 26              {   else = true
 27                  goto OneProc
 28              } /* else lower the priority */
 29    }  }  }

next:
extensions for atomic and d_step sequences
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adding semantics for atomic sequences
 the predefined variable exclusive

global states s, s’
processes     p, p’
transitions   t, t’

  1 Set
 2 executable(State s)
 3 {  new Set E
 4    new Set e
 5 
 6    E = {}
 7    timeout = false
 8 AllProcs:
 9    
 29
 30 
 31   if (E == {} and exclusive != 0)
 32   {   exclusive = 0
 33       goto AllProcs
 34   }
 35   if (E == {} and timeout == false)
 36   {   timeout = true
 37       goto AllProcs
 38   }
 39 
 40   return E     /* executable transitions */
 41 }

 9    for each active process p
 10   {  if (exclusive == 0
 11      or  exclusive == p.pid)
 12      {   for u from high to low   /* priority */
 13          {   e = {};  else = false
 14 OneProc:     for each transition t in p.trans
 15              {   if (t.source == p.curstate
 16                  and t.prty == u
 17                  and (handshake == 0
 18                  or   handshake == t.rv)
 19                  and  eval(t.cond) == true)
 20                  {     add (p,t) to set e
 21              }   }
 22              if (e != {})
 23              {   add all elements of e to E
 24                  break   /* on to next process */
 25              } else if (else == false)
 26              {   else = true
 27                  goto OneProc
 28              } /* else lower the priority */
 29    }  }  }

next:
extension for unless sequences
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adding semantics for unless
 statement priority levels

global states s, s’
processes     p, p’
transitions   t, t’

  1 Set
 2 executable(State s)
 3 {  new Set E
 4    new Set e
 5 
 6    E = {}
 7    timeout = false
 8 AllProcs:
 9    
 29
 30 
 31   if (E == {} and exclusive != 0)
 32   {   exclusive = 0
 33       goto AllProcs
 34   }
 35   if (E == {} and timeout == false)
 36   {   timeout = true
 37       goto AllProcs
 38   }
 39 
 40   return E     /* executable transitions */
 41 }

 9    for each active process p
 10   {  if (exclusive == 0
 11      or  exclusive == p.pid)
 12      {   for u from high to low   /* priority */
 13          {   e = {};  else = false
 14 OneProc:     for each transition t in p.trans
 15              {   if (t.source == p.curstate
 16                  and t.prty == u
 17                  and (handshake == 0
 18                  or   handshake == t.rv)
 19                  and  eval(t.cond) == true)
 20                  {     add (p,t) to set e
 21              }   }
 22              if (e != {})
 23              {   add all elements of e to E
 24                  break   /* on to next process */
 25              } else if (else == false)
 26              {   else = true
 27                  goto OneProc
 28              } /* else lower the priority */
 29    }  }  }

next:
adding the stutter extension rule
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the stutter extension rule

global states s, s’
processes     p, p’
transitions   t, t’

 1 while ((E = executable(s)) != {}) 
 2 { 
 3      for some (process p and transition t) from E  
 4      {    s' = apply(t.effect, s)  
 5  
 6           if (handshake == 0)  
 7           {    s = s'  
 8                p.curstate = t.target 
 9           } else 
10           {     /* try to complete rv handshake */ 
11                E' = executable(s') 
12                /* if E' is {}, s is unchanged  */ 
13  
14                for some (process p’ and transition t') from E' 
15                {    s = apply(t'.effect, s') 
16                     p.curstate  = t.target 
17                     p'.curstate = t'.target 
18                     handshake = 0 
19                     break     
20      }     }   }
21 } 
22 while (stutter) { s = s } /* stutter extension rule */ 
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example 1:3
using the semantics engine

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
    x?0 unless y!0
}

active proctype B()
{
    y?0 unless x!0
}

Q: what is the combined
system behavior?

A: a non-deterministic
selection between
  x!0;x?0
and
  y!0;y?0

end

x!0 y!0

y?0x?0

handshake=1 handshake=2

end

x?0 y!0

end

y?0 x!0

unless escapes have
higher priority
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example 2:3
using the semantics engine

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
    x!0 unless y!0
}

active proctype B()
{
    y?0 unless x?0
}

Q: what is the combined
system behavior?

is it
  x!0;x?0
    or
  y!0;y?0
?

end

x!0 y!0

end

y?0 x?0

unless escapes have
higher priority

end

y!0

y?0

handshake=2

A: only y!0;y?0 can happen
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example 3:3
using the semantics engine

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
    x!0 unless y?0
}

active proctype B()
{
    y!0 unless x?0
}

Q: what is the combined
system behavior?

is it
  x!0;x?0
    or
  y!0;y?0
?

end

x!0 y?0

end

y!0 x?0

unless escapes have
higher priority

end

x!0 y!0

y?0x?0

handshake=1 handshake=2

A: a non-deterministic
selection between
  x!0;x?0
and
  y!0;y?0
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compare

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
    x!0 unless y?0
}

active proctype B()
{
    y!0 unless x?0
}

end

x!0 y!0

y?0x?0

chan x = [0] of { bit };
chan y = [0] of { bit };

active proctype A()
{
    x?0 unless y!0
}

active proctype B()
{
    y?0 unless x!0
}

end

x!0 y!0

y?0x?0

same global behavior
but for very different
reasons....
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what about never claims, etc.?
meta-semantics

• correctness properties do not define new behavior, 
they just monitor it
– and complain bitterly when interesting things are seen

• a verification engine can make pronouncements on 
properties of behavior
– this is at a higher level of semantics: it interprets the 

goodness or badness of a behavior instead of defining the 
behavior itself 

• a never claim is designed to select those behaviors 
that could possibly lead to “interesting” behavior
– the distinction between “good” and “bad”, “interesting” and 

“uninteresting” is a meta-statement about behavior: not part 
of the behavior itself, and therefore not part of the 
operational semantics....
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