Models of computation (MOD) 2016/17

Exam – June 15, 2017

[Ex. 1] (1st mid-term / regular exam)

Let IMP^{*} be the variant of IMP where the **while-do** construct is replaced by the construct c^* , whose operational semantics is defined by the rules

$$\frac{\langle c, \sigma \rangle \to \sigma'}{\langle c^*, \sigma \rangle \to \sigma} \qquad \frac{\langle c, \sigma \rangle \to \sigma''}{\langle c^*, \sigma \rangle \to \sigma'}$$

- 1. Let $P(c) \stackrel{\text{def}}{=} \forall \sigma. \exists \sigma'. \langle c, \sigma \rangle \rightarrow \sigma'$. Prove that the predicate P(c) holds for any command c of IMP^{*}.
- 2. Give a command c of IMP^{*} and a state σ such that there are infinitely many different σ' with $\langle c^*, \sigma \rangle \to \sigma'$.
- 3. Define the notion of operational equivalence and show that the command x := 0 and $(x := 0)^*$ are not operationally equivalent.

[Ex. 2] (1st mid-term / regular exam)

A down-set of a partial order (P, \sqsubseteq_P) is a set $X \subseteq P$ such that

$$\forall x \in X. \ \forall p \in P. \ p \sqsubseteq_P x \Rightarrow p \in X.$$

Given any two partial orders (P, \sqsubseteq_P) and (Q, \sqsubseteq_Q) and a monotone function $f: P \to Q$ prove that if Y is a down-set of (Q, \sqsubseteq_Q) then its counterimage

$$f^{-1}(Y) = \{ x \in P \mid f(x) \in Y \}$$

is a down-set of (P, \sqsubseteq_P) .

[Ex. 3] (1st mid-term only)

Prove that the statement in Exercise 2 can be reversed. Namely, given any two partial orders (P, \sqsubseteq_P) and (Q, \sqsubseteq_Q) and a function $f : P \to Q$ prove that: if the counterimage $f^{-1}(Y)$ of any down-set Y of (Q, \sqsubseteq_Q) is itself a down-set of (P, \sqsubseteq_P) , then f is monotone.

[Ex. 4] (2nd mid-term / regular exam)

Prove that for any variable x, any environment ρ any term t and any closed term t_0 we have that

$$\llbracket (\lambda x. t) t_0 \rrbracket \rho = \llbracket t[^{t_0}/_x] \rrbracket \rho$$

according to the lazy denotational semantics of HOFL. Justify each passage of the proof.

[Ex. 5] (2nd mid-term / regular exam)

Given a renaming ϕ , consider the CCS processes

$$p \stackrel{\text{def}}{=} \mathbf{rec} \ x. \ ((\alpha.x)[\phi]) \qquad q \stackrel{\text{def}}{=} (\mathbf{rec} \ x. \ \alpha.x)[\phi]$$

- 1. Draw the LTSs (at least in part) of p and q.
- 2. Define a concrete renaming ϕ such that $p \not\simeq q$ (i.e., p and q are not strong bisimilar).
- 3. Under which hypothesis on ϕ are p and q strong bisimilar?

[Ex. 6] (2nd mid-term only)

Suppose a machine lifecycle alternates between states s_1 (working), s_2 (malfunction) and s_3 (on repair), as modeled by the CTMC below.

- 1. Write the infinitesimal generator matrix and the embedded DTMC.
- 2. What is the probability to leave the state s_1 within t units of time?
- 3. What is the probability to find the machine working after many units of time?