Models of computation (MOD) 2015/16

Exam - June 30, 2016
[Ex. 1] Suppose we extend IMP with the new command construct $c_{0} \Rightarrow c_{1}$, whose operational semantics is defined by the rules:

$$
\frac{\left\langle c_{0}, \sigma\right\rangle \rightarrow \sigma^{\prime \prime} \quad\left\langle c_{1}, \sigma^{\prime \prime}\right\rangle \rightarrow \sigma^{\prime}}{\left\langle c_{0} \Rightarrow c_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}} \quad \frac{\left\langle c_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}}{\left\langle c_{0} \Rightarrow c_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}}
$$

1. Prove that $\exists c_{0}, c_{1}, \sigma, \sigma^{\prime}$ such that $\left\langle c_{1}, \sigma\right\rangle \nrightarrow$ and $\left\langle c_{0} \Rightarrow c_{1}, \sigma\right\rangle \rightarrow \sigma^{\prime}$.
2. Prove that $\forall c_{0}, c_{1}, c_{2} .\left(c_{0} \Rightarrow\left(c_{1} ; c_{2}\right)\right) \sim\left(\left(c_{0} \Rightarrow c_{1}\right) ; c_{2}\right)$.
(Recall that \sim denotes operational equivalence).
[Ex. 2] Consider the HOFL term

$$
t \stackrel{\text { def }}{=} \lambda x . \text { rec } f . \lambda y \text {. if } x \text { then } y \text { else }(f y) \text {. }
$$

1. Under which hypothesis is t typable?
2. Let $t_{0}, t_{1}:$ int be two closed terms. Under which hypotheses $\left(\left(t_{0}\right) t_{1}\right) \downarrow$?
3. Compute the (lazy) denotational semantics of t.
[Ex. 3] Consider the CCS processes
$\begin{array}{ll}p & \stackrel{\text { def }}{=} \operatorname{rec} x .(\alpha \cdot x+\gamma \text {.nil }) \\ q & r \xlongequal{\text { def }} \operatorname{dec} y \cdot(\beta \cdot y+\gamma \cdot \text { nil }) \\ = & s \xlongequal{\text { def }} p \\ = & \operatorname{rec} z \cdot(\alpha \cdot z+\beta \cdot z+\gamma \cdot(z \backslash \alpha)+\gamma \cdot(z \backslash \beta))\end{array}$
4. Assuming the structural laws $s \backslash \alpha \backslash \beta \equiv s \backslash \beta \backslash \alpha$ and $s \backslash \alpha \backslash \alpha \equiv s \backslash \alpha$ (for any process s and actions α, β), draw the LTSs of processes r and s.
5. Prove that $r \nsim s$ (where \simeq denotes strong bisimilarity).
[Ex. 4] You have 3 umbrellas, some at home, some in the office. You keep moving between home and office. You take an umbrella with you from one place to another only if it rains. If it does not rain you do not carry any umbrella. It may happen that you must leave one place and it starts raining, but you do not have any umbrella with you, so you get wet. Suppose you have been doing this for several years and that the probability of rain is (and has always been) p. You are about to leave one place, what is the probability that you get wet? Use DTMCs to answer the question.
Hint: In the modeling of states, the fact that you are at home or in the office is irrelevant.
