
DRAFT
Roberto Bruni, Ugo Montanari

Models of Computation

– Monograph –

May 16, 2016

Springer

DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.

DRAFT
Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the syntax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce l -notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL: higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

ix

DRAFT

x Preface

CCS, p: concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.
Part III introduces some basic material on process algebraic models and temporal

and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as p-calculus, are just overviewed. The material in Part III can be used
in conjunction with other textbooks, e.g., on model checking or p-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part IV outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:
Imperative

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Functional
Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Concurrent
Chapter 11

Chapter 12

Chapter 13

Chapter 11

Chapter 12

Chapter 13

Probabilistic
Chapter 11

Chapter 12

Chapter 13

lambda
notation

induction
and

structural
recursion

CPO and
fixpoint

LTS and
bisimulation

HM logic

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.

DRAFT

Preface xi

CPO and fixpoint: the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

Lambda-notation: l -notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

LTS and bisimulation: Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

HM-logic: Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at
the end of the book.

Pisa, Roberto Bruni
February 2016 Ugo Montanari

DRAFT
Acknowledgements

We want to thank our friend and colleague Pierpaolo Degano for encouraging us to
prepare this book and submit it to the EATCS monograph series. We thank Ronan
Nugent and all the people at Springer for their editorial work. We acknowledge all
the students of the course on Models of Computation (MOD) in Pisa for helping us
to refine the presentation of the material in the book and to eliminate many typos
and shortcomings from preliminary versions of this text. Last but not least, we thank
Lorenzo Galeotti, Andrea Cimino, Lorenzo Muti, Gianmarco Saba, Marco Stronati,
former students of the course on Models of Computation, who helped us with the
LATEX preparation of preliminary versions of this book, in the form of lecture notes.

xiii

DRAFT
Contents

Part I Preliminaries

1 Introduction . 3
1.1 Structure and Meaning . 3

1.1.1 Syntax, Types and Pragmatics . 4
1.1.2 Semantics . 4
1.1.3 Mathematical Models of Computation 6

1.2 A Taste of Semantics Methods: Numerical Expressions 9
1.3 Applications of Semantics . 17
1.4 Key Topics and Techniques . 20

1.4.1 Induction and Recursion . 20
1.4.2 Semantic Domains . 22
1.4.3 Bisimulation . 24
1.4.4 Temporal and Modal Logics . 25
1.4.5 Probabilistic Systems . 25

1.5 Chapters Contents and Reading Guide . 26
1.6 Further Reading . 28
References . 30

2 Preliminaries . 33
2.1 Notation . 33

2.1.1 Basic Notation . 33
2.1.2 Signatures and Terms . 34
2.1.3 Substitutions . 35
2.1.4 Unification Problem . 35

2.2 Inference Rules and Logical Systems . 37
2.3 Logic Programming . 45
Problems . 47

Part II IMP: a simple imperative language

xv

DRAFT

xvi Contents

3 Operational Semantics of IMP . 53
3.1 Syntax of IMP . 53

3.1.1 Arithmetic Expressions . 54
3.1.2 Boolean Expressions . 54
3.1.3 Commands . 55
3.1.4 Abstract Syntax . 55

3.2 Operational Semantics of IMP . 56
3.2.1 Memory State . 56
3.2.2 Inference Rules . 57
3.2.3 Examples . 62

3.3 Abstract Semantics: Equivalence of Expressions and Commands . . . 66
3.3.1 Examples: Simple Equivalence Proofs 67
3.3.2 Examples: Parametric Equivalence Proofs 69
3.3.3 Examples: Inequality Proofs . 71
3.3.4 Examples: Diverging Computations . 73

Problems . 75

4 Induction and Recursion . 79
4.1 Noether Principle of Well-founded Induction 79

4.1.1 Well-founded Relations . 79
4.1.2 Noether Induction . 85
4.1.3 Weak Mathematical Induction . 86
4.1.4 Strong Mathematical Induction . 87
4.1.5 Structural Induction . 87
4.1.6 Induction on Derivations . 90
4.1.7 Rule Induction . 91

4.2 Well-founded Recursion . 95
Problems . 100

5 Partial Orders and Fixpoints . 105
5.1 Orders and Continuous Functions . 105

5.1.1 Orders . 106
5.1.2 Hasse Diagrams . 108
5.1.3 Chains . 112
5.1.4 Complete Partial Orders . 113

5.2 Continuity and Fixpoints . 116
5.2.1 Monotone and Continuous Functions . 116
5.2.2 Fixpoints . 118

5.3 Immediate Consequence Operator . 121
5.3.1 The Operator bR . 122
5.3.2 Fixpoint of bR . 123

Problems . 126

DRAFT

Contents xvii

6 Denotational Semantics of IMP . 129
6.1 l -Notation . 129

6.1.1 l -Notation: Main Ideas . 130
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding

Substitution . 133
6.2 Denotational Semantics of IMP . 135

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A . 136

6.2.2 Denotational Semantics of Boolean Expressions: The
Function B . 137

6.2.3 Denotational Semantics of Commands: The Function C 138
6.3 Equivalence Between Operational and Denotational Semantics 143

6.3.1 Equivalence Proofs For Expressions . 143
6.3.2 Equivalence Proof for Commands . 144

6.4 Computational Induction . 151
Problems . 154

Part III HOFL: a higher-order functional language

7 Operational Semantics of HOFL . 159
7.1 Syntax of HOFL . 159

7.1.1 Typed Terms . 160
7.1.2 Typability and Typechecking . 162

7.2 Operational Semantics of HOFL . 166
Problems . 173

8 Domain Theory . 177
8.1 The Flat Domain of Integer Numbers Z? . 177
8.2 Cartesian Product of Two Domains . 178
8.3 Functional Domains . 180
8.4 Lifting . 183
8.5 Function’s Continuity Theorems . 185
8.6 Apply, Curry and Fix . 188
Problems . 192

9 Denotational Semantics of HOFL . 193
9.1 HOFL Semantic Domains . 193
9.2 HOFL Interpretation Function . 194

9.2.1 Constants . 194
9.2.2 Variables . 195
9.2.3 Arithmetic Operators . 195
9.2.4 Conditional . 195
9.2.5 Pairing . 196
9.2.6 Projections . 196
9.2.7 Lambda Abstraction . 197
9.2.8 Function Application . 197

DRAFT

xviii Contents

9.2.9 Recursion . 198
9.2.10 Eager semantics . 198
9.2.11 Examples . 199

9.3 Continuity of Meta-language’s Functions . 200
9.4 Substitution Lemma and Other Properties . 202
Problems . 203

10 Equivalence between HOFL denotational and operational semantics . 207
10.1 HOFL: Operational Semantics vs Denotational Semantics 207
10.2 Correctness . 208
10.3 Agreement on Convergence . 211
10.4 Operational and Denotational Equivalences of Terms 214
10.5 A Simpler Denotational Semantics . 215
Problems . 216

Part IV Concurrent Systems

11 CCS, the Calculus for Communicating Systems . 223
11.1 From Sequential to Concurrent Systems . 223
11.2 Syntax of CCS . 229
11.3 Operational Semantics of CCS . 230

11.3.1 Inactive Process . 230
11.3.2 Action Prefix . 230
11.3.3 Restriction . 231
11.3.4 Relabelling . 231
11.3.5 Choice . 231
11.3.6 Parallel Composition . 232
11.3.7 Recursion . 233
11.3.8 CCS with Value Passing . 237
11.3.9 Recursive Declarations and the Recursion Operator 238

11.4 Abstract Semantics of CCS . 239
11.4.1 Graph Isomorphism . 239
11.4.2 Trace Equivalence . 241
11.4.3 Strong Bisimilarity . 243

11.5 Compositionality . 254
11.5.1 Strong Bisimilarity is a Congruence . 255

11.6 A Logical View to Bisimilarity: Hennessy-Milner Logic 257
11.7 Axioms for Strong Bisimilarity . 261
11.8 Weak Semantics of CCS . 263

11.8.1 Weak Bisimilarity . 264
11.8.2 Weak Observational Congruence . 266
11.8.3 Dynamic Bisimilarity . 267

Problems . 268

DRAFT

Contents xix

12 Temporal Logic and the µ-Calculus . 273
12.1 Specification and Verification . 273
12.2 Temporal Logic . 274

12.2.1 Linear Temporal Logic . 275
12.2.2 Computation Tree Logic . 277

12.3 µ-Calculus . 280
12.4 Model Checking . 284
Problems . 286

13 p-Calculus . 289
13.1 Name Mobility . 289
13.2 Syntax of the p-calculus . 293
13.3 Operational Semantics of the p-calculus . 294

13.3.1 Inactive Process . 295
13.3.2 Action Prefix . 295
13.3.3 Name Matching . 296
13.3.4 Choice . 296
13.3.5 Parallel Composition . 296
13.3.6 Restriction . 297
13.3.7 Scope Extrusion . 297
13.3.8 Replication . 298
13.3.9 A Sample Derivation . 298

13.4 Structural Equivalence of p-calculus . 299
13.4.1 Reduction semantics . 299

13.5 Abstract Semantics of the p-calculus . 300
13.5.1 Strong Early Ground Bisimulations . 301
13.5.2 Strong Late Ground Bisimulations . 302
13.5.3 Compositionality and Strong Full Bisimilarities 303
13.5.4 Weak Early and Late Ground Bisimulations 304

Problems . 305

Part V Probabilistic Systems

14 Measure Theory and Markov Chains . 309
14.1 Probabilistic and Stochastic Systems . 309
14.2 Probability Space . 310

14.2.1 Constructing a s -field . 311
14.3 Continuous Random Variables . 313

14.3.1 Stochastic Processes . 318
14.4 Markov Chains . 319

14.4.1 Discrete and Continuous Time Markov Chain 319
14.4.2 DTMC as LTS . 320
14.4.3 DTMC Steady State Distribution . 323
14.4.4 CTMC as LTS . 324
14.4.5 Embedded DTMC of a CTMC . 325

DRAFT

xx Contents

14.4.6 CTMC Bisimilarity . 326
14.4.7 DTMC Bisimilarity . 327

Problems . 328

15 Markov Chains with Actions and Non-determinism 333
15.1 Discrete Markov Chains With Actions . 333

15.1.1 Reactive DTMC . 334
15.1.2 DTMC With Non-determinism . 336

Problems . 339

16 PEPA - Performance Evaluation Process Algebra 341
16.1 From Qualitative to Quantitative Analysis . 341
16.2 CSP . 342

16.2.1 Syntax of CSP . 342
16.2.2 Operational Semantics of CSP . 343

16.3 PEPA. 344
16.3.1 Syntax of PEPA . 344
16.3.2 Operational Semantics of PEPA . 346

Problems . 351

Glossary . 355

Solutions . 357

DRAFT
Acronyms

⇠ operational equivalence in IMP (see Definition 3.3)
⌘den denotational equivalence in HOFL (see Definition 10.4)
⌘op operational equivalence in HOFL (see Definition 10.3)
' CCS strong bisimilarity (see Definition 11.5)
⇡ CCS weak bisimilarity (see Definition 11.16)
u CCS weak observational congruence (see Section 11.8.2)
⇠= CCS dynamic bisimilarity (see Definition 11.18)
⇠E p-calculus strong early bisimilarity (see Definition 13.3)
⇠L p-calculus strong late bisimilarity (see Definition 13.4)
'E p-calculus strong early full bisimilarity (see Section 13.5.3)
'L p-calculus strong late full bisimilarity (see Section 13.5.3)
⇡E p-calculus weak early bisimilarity (see Section 13.5.4)
⇡L p-calculus weak late bisimilarity (see Section 13.5.4)
A interpretation function for the denotational semantics of IMP arithmetic

expressions (see Section 6.2.1)
ack Ackermann function (see Example 4.18)
Aexp set of IMP arithmetic expressions (see Chapter 3)
B interpretation function for the denotational semantics of IMP boolean

expressions (see Section 6.2.2)
Bexp set of IMP boolean expressions (see Chapter 3)
B set of booleans
C interpretation function for the denotational semantics of IMP com-

mands (see Section 6.2.3)
CCS Calculus of Communicating Systems (see Chapter 11)
Com set of IMP commands (see Chapter 3)
CPO Complete Partial Order (see Definition 5.11)
CPO? Complete Partial Order with bottom (see Definition 5.12)
CSP Communicating Sequential Processes (see Section 16.2)
CTL Computation Tree Logic (see Section 12.2.2)
CTMC Continuous Time Markov Chain (see Definition 14.15)
DTMC Discrete Time Markov Chain (see Definition 14.14)

xxi

DRAFT

xxii Acronyms

Env set of HOFL environments (see Chapter 9)
fix (least) fixpoint (see Definition 5.2.2)
FIX (greatest) fixpoint
gcd greatest common divisor
HML Hennessy-Milner modal Logic (see Section 11.6)
HM-Logic Hennessy-Milner modal Logic (see Section 11.6)
HOFL A Higher-Order Functional Language (see Chapter 7)
IMP A simple IMPerative language (see Chapter 3)
int integer type in HOFL (see Definition 7.2)
Loc set of locations (see Chapter 3)
LTL Linear Temporal Logic (see Section 12.2.1)
LTS Labelled Transition System (see Definition 11.2)
lub least upper bound (see Definition 5.7)
N set of natural numbers
P set of closed CCS processes (see Definition 11.1)
PEPA Performance Evaluation Process Algebra (see Chapter 16)
Pf set of partial functions on natural numbers (see Example 5.13)
PI set of partial injective functions on natural numbers (see Problem 5.12)
PO Partial Order (see Definition 5.1)
PTS Probabilistic Transition System (see Section 14.4.2)
R set of real numbers
T set of HOFL types (see Definition 7.2)
Tf set of total functions from N to N? (see Example 5.14)
Var set of HOFL variables (see Chapter 7)
Z set of integers

DRAFT
Part IV

Concurrent Systems

DRAFT
This part focuses on models and logics for concurrent, interactive systems. Chap-
ter 11 defines the syntax, operational semantics and abstract semantics of CCS, a
calculus of communicating systems. Chapter 12 introduces several logics for the
specification and verification of concurrent systems, namely LTL, CTL and the µ-
calculus. Chapter 13 studies the p-calculus, an enhanced version of CCS, where new
communication channels can be created dynamically and communicated to other
processes.

DRAFT
Chapter 13
p-Calculus

What’s in a name? That which we call a rose by any other name
would smell as sweet. (William Shakespeare)

Abstract In this chapter we outline the basic theory of a calculus of processes, called
p-calculus. It is not an exaggeration to affirm that p-calculus plays for reactive
systems the same foundational role that l -calculus plays for sequential systems.
The key idea is to extend CCS with the ability to send channel names, i.e., p-
calculus processes can communicate communication means. The term coined to
refer this feature is name mobility. The operational semantics of p-calculus is only
a bit more involved than that of CCS, while the abstract semantics is considerably
more ingenuous, because it requires a careful handling of names appearing in the
transition labels. In particular, we show that two variants of strong bisimilarity
arise naturally, called early and late, with the former coarser than the latter. We
conclude by discussing weak variants of early and late bisimilarities together with
compositionality issues.

13.1 Name Mobility

The structures of today’s communication systems are not statically defined, but
they change continuously according to the needs of the users. The process algebra
we have studied in Chapter 11 is unsuitable for modelling such systems, since its
communication structure (the channels) cannot evolve dynamically. In this chapter
we present the p-calculus, an extension of CCS introduced by Robin Milner, Joachim
Parrow and David Walker in 1989, which allows to model mobile systems. The main
features of the p-calculus are its ability to create new channel names and to send
them in messages, allowing agents to extend their connections. For example, consider
the case of the CCS-like process (with value passing)

(p | q)\a | r

and suppose that p and q can communicate over the channel a, which is private
to them, and that p and r share a channel b for exchanging messages. If we allow

289

DRAFT

290 13 p-Calculus

channel names to be sent as message values, then it could be the case that: 1) p sends
the name a over the channel b, like in

p def
= ba.p0

for some p0; 2) that q waits for a message on a, like in

q def
= a(x).q0

for some q0 that can exploit x; and 3) that r wants to input a channel name on b,
where to send a message m, like in

r def
= b(y).ym.r0.

After the communication between p and r has taken place over the channel b, we
would like the scope of a be extended so to include the rightmost process, like in

((p0 | q) | am.r0[a/y])\a

so that q can then input m on a from the process am.r0:

((p0 | q0[m/x]) | r0[a/y])\a

All this cannot be achieved in CCS, where restriction is a static operator. Moreover,
suppose a process s is initially running in parallel with r, like in

(p | q)\a | (s | r)

After the communication over b between p and r, we would like the name a to be
private to p0,q and the continuation of r but not shared by s. Thus if a is already used
by s, it must be the case that after the scope extrusion a is renamed to a fresh private
name c, not available to s, like in

((p0[c/a] | q[c/a]) | (s | cm.r0[c/y]))\c

so that the message cm directed to q cannot be intercepted by s.

Remark 13.1 (New syntax for restriction). To differentiate between the static restric-
tion operator of CCS and its dynamic version used in the p-calculus, we write the
latter operator in prefix form as (a)p as opposed to the CCS syntax p\a. Therefore
the initial process of the above example is written

(a)(p | q) | (s | r)

and after the communication it becomes

(c)((p0[c/a] | q[c/a]) | (s | cm.r0[c/y])).

DRAFT

13.1 Name Mobility 291

The general mechanism for handling name mobility makes the formalisation
of the semantics of the p-calculus more complicated than that of CCS, especially
because of the side-conditions that serve to guarantee that certain names are fresh.

Let us start with an example which illustrates how the p-calculus can formalise a
mobile telephone system.

Example 13.1 (Mobile phones). The following figure represents a mobile phone
network: while the car travels, the phone can communicate with different bases in the
city, but just one at a time, typically the closest to its position. The communication
centre decides when the base must be changed and then the channel for accessing
the new base is sent to the car through the switch channel.

As in the dynamic stack Example 11.1 for CCS, also in this case we describe
agent behaviour by defining the reachable states:

CAR(talk,switch)
def
= talk.CAR(talk,switch) + switch(xt,xs).CAR(xt,xs).

A car can (recursively) talk on the channel assigned currently by the communication
centre (action talk). Alternatively the car can receive (action switch(xt,xs)) a new
pair of channels (e.g., talk0 and switch0) and change the base to which it is connected.

In the example there are two bases, numbered 1 and 2. A generic base i 2 [1,2]
can be in two possible states: BASEi or IDLEBASEi.

BASEi
def
= talki.BASEi + givei(xt,xs).switchi(xt,xs).IDLEBASEi

IDLEBASEi
def
= alerti.BASEi.

In the first case the base is connected to the car, so either the phone can talk or the
base can receive two channels from the centre on channel givei, assign them to the
variables xt and xs and send them to the car on channel switchi for allowing it to
change base. In the second case the base i becomes idle, and remains so until it is
alerted by the communication centre.

DRAFT

292 13 p-Calculus

CENTRE1
def
= give1htalk2,switch2i.alert2.CENTRE2

CENTRE2
def
= give2htalk1,switch1i.alert1.CENTRE1.

The communication centre can be in different states according to which base is active.
In the example there are only two possible states for the communication centre
(CENTRE1 and CENTRE2), because only two bases are considered.

Finally we have the process which represents the entire system in the state where
the car is talking to the first base.

SYSTEM def
= CAR(talk1,switch1) | BASE1 | IDLEBASE2 | CENTRE1.

Then, suppose that: 1) the centre communicates the names talk2 and switch2 to
BASE1 by sending the message give1htalk2,switch2i; 2) the centre alerts BASE2 by
sending the message alert2; 3) BASE1 tells CAR to switch to channels talk2 and
switch2, by sending the message switchi(talk2,switch2). Correspondingly, we have:

SYSTEM t�! t�! t�! CAR(talk2,switch2) | IDLEBASE1 | BASE2 | CENTRE2.

Example 13.2 (Secret channel via trusted server). As another example, consider two
processes Alice (A) and Bob (B) that want to establish a secret channel using a trusted
server (S) with which they already have trustworthy communication link cAS (for
Alice to send private messages to the server) and cSB (for the server to send private
messages to Bob). The system can be represented by the expression:

SY S def
= (cAS)(cSB)(A | S | B)

where restrictions (cAS) and (cSB) guarantee that channels cAS and cSB are not visible
from the environment and where the processes A, S and B are specified as follows:

A def
= (cAB)cAScAB.cABm.A0 S def

=!cAS(x).cSBx.nil B def
= cSB(y).y(w).B0.

Alice defines a private name cAB that wants to use for communicating with B (see
the restriction (cAB)), then Alice sends the name cAB to the trusted server over their
private shared link cAS (output prefix cAScAB) and finally sends the message m on
the channel cAB (output prefix cABm) and continues as A0. The server continuously
waits for messages from Alice on channel cAS (input prefix cAS(x)) and forwards the
content to Bob (output prefix cSBx). Here the replication operator ! allows to serve
multiple requests from Alice by issuing multiple instances of the server process.
Bob waits to receive the name y from the server over the channel cSB (input prefix
cSB(y)) and then uses y to input the message from Alice (input prefix y(w)) and then
continues as B0[cAB/y,m /w].

DRAFT

13.2 Syntax of the p-calculus 293

13.2 Syntax of the p-calculus

The p-calculus has been introduced to model communicating systems where channel
names, representing addresses and links, can be created and forwarded. To this aim
we rely on a set of channel names x,y,z, ... and extend the CCS actions with the ability
to send and receive channel names. In these notes we present the monadic version of
the calculus, namely the version where names can be sent only one at a time. The
polyadic version, as used in Example 13.1, is briefly discussed in Problem 13.2.

Definition 13.1 (p-calculus processes). We introduce the p-calculus syntax, with
productions for processes p and actions p .

p ::= nil | p.p | [x = y]p | p+ p | p|p | (y)p | !p
p ::= t | x(y) | xy

The meaning of process operators is the following:

nil: is the inactive agent;
p.p: is an agent which can perform an action p and then act like p;
[x = y]p: is the conditional process; it behaves like p if x = y, otherwise stays idle;
p+q: is the non-deterministic choice between two processes;
p|q: is the parallel composition of two processes;
(y)p: denotes the restriction of the channel y with scope p;1
!p: is a replicated process: it behaves as if an unbounded number of con-

current occurrences of p were available, all running in parallel. It is the
analogous of the (unguarded) CCS recursive process rec x. (x|p).

The meaning of the actions p is the following:

t: is the invisible action, as usual;
x(y): is the input on channel x; the received value is stored in y;
xy: is the output on channel x of the name y.

In the above cases, we call x the subject of the communication (i.e., the channel
name where the communication takes place) and y the object of the communication
(i.e., the channel name that is transmitted or received). As in the l -calculus, in the
p-calculus we have bound and free occurrence of names. The bounding operators of
p-calculus are input and restriction: both in x(y).p and (y)p the name y is bound with
scope p. On the contrary, the output prefix is not binding, i.e., if we take the process
xy.p then the name y is free. Formally, we define the sets of free and bound names of
a process by structural recursion as in Figure 13.1. Note that for both x(y).p and xy.p
the name x is free in p. As usual, we consider processes up to a-renaming of bound
names and write p[y/x] for the capture-avoiding substitution of all free-occurrences
of the name x with the name y in p.

1 In the literature the restriction operator is sometimes written (ny)p to remark the fact the the name
y is “new” to p: we prefer not to use the symbol n to avoid any conflict with the maximal fixpoint
operator, as denoted, e.g., in the µ-calculus (see Chapter 12).

DRAFT

294 13 p-Calculus

fn(nil) def
= ? bn(nil) def

= ?
fn(t.p)

def
= fn(p) bn(t.p)

def
= bn(p)

fn(x(y).p)
def
= {x}[(fn(p)\{y}) bn(x(y).p)

def
= {y}[bn(p)

fn(xy.p)
def
= {x,y}[fn(p) bn(xy.p)

def
= bn(p)

fn([x = y].p)
def
= {x,y}[fn(p) bn([x = y].p)

def
= bn(p)

fn(p0 + p1)
def
= fn(p0)[fn(p1) bn(p0 + p1)

def
= bn(p0)[bn(p1)

fn(p0|p1)
def
= fn(p0)[fn(p1) bn(p0|p1)

def
= bn(p0)[bn(p1)

fn((y).p)
def
= fn(p)\{y} bn((y).p)

def
= {y}[bn(p)

fn(!p)
def
= fn(p) bn(!p)

def
= bn(p)

Fig. 13.1: Free names and bound names

Unlike for CCS, the scope of the name y in the restricted process (y)p is not
statically determined to coincide with p. In fact, in the p-calculus, channel names
are values that can be transmitted, so the process p can send the name y to another
process q which thus falls under the scope of y (see Section 13.1). The possibility
to enlarge the scope of a restricted name is a very useful feature of the p-calculus,
called name extrusion. It allows to modify the structure of private communications
between agents. Moreover, name extrusion is a convenient way to formalise secure
data transmission, as implemented, e.g., via cryptographic protocols.

13.3 Operational Semantics of the p-calculus

We define the operational semantics of the p-calculus by deriving an LTS via in-
ference rules. Well-formed formulas are written p a�! q for suitable processes p,q
and label a . The syntax of labels is richer than the one used in the case of CCS, as
defined next.

Definition 13.2 (Action labels). The possible actions a that label the transitions are:

t: the silent action;
x(y): the input of a fresh name y on channel x;
xy: the free output of name y on channel x;
x(y): the bound output (called name extrusion) of a restricted name y on channel x.

The definition of free names fn(·), bound names bn(·) are extended to labels by
letting:

fn(t)
def
= ? bn(t)

def
= ?

fn(x(y)) def
= {x} bn(x(y)) def

= {y}
fn(xy) def

= {x,y} bn(xy) def
= ?

fn(x(y)) def
= {x} bn(x(y)) def

= {y}

DRAFT

13.3 Operational Semantics of the p-calculus 295

Moreover, we let n(a)
def
= fn(a)[bn(a) denote the set of names appearing in a .

We can now present the inference rules for the operational semantics of the
p-calculus and briefly comment on them.

13.3.1 Inactive Process

As in the case of CCS, there is no rule for the inactive process nil: it has no outgoing
transition.

13.3.2 Action Prefix

There are three rules for an action prefixed process p.p, one for each possible shape
of the prefix p .

(Tau)
t.p t�! p

The rule (Tau) allows to perform invisible actions.

(Out)
x y.p x y�! p

As we said, the p-calculus processes can exchange messages which can contain
information (i.e., channel names). The rule (Out) allows a process to send the name y
on the channel x.

(In) w 62 fn((y)p)

x(y).p
x(w)��! p[w/y]

The rule (In) allows to receive in input over x some channel name. The label x(w)
records that some formal name w is received, which is substituted for y in the
continuation process p. In order to avoid name clashes, we assume w does not appear
as a free name in (y)p, i.e., the transition is defined only when w is fresh. Of course,
as a special case, w can be y. The side-condition may appear unacceptable, as possibly
known names could be received, but this is convenient to express two different kinds
of abstract semantics over the same LTS, as we will discuss later in Sections 13.5.1
and 13.5.2. For example, we have the transitions

x(y).yz.nil x(w)��! wz.nil wz�! nil

but we do not have the transition (because z 2 fn((y)yz.nil))

x(y).yz.nil x(z)��! zz.nil .

DRAFT

296 13 p-Calculus

13.3.3 Name Matching

Name matching can be used to write a process that receives a name y and then tests
this name to choose what to do next. For example, a login process for an account
whose password is pwd could be written login(xp).[xp = pwd].p.

(Match)
p a�! p0

[x = x]p a�! p0

The rule (Match) allows to check the equality of names and to unblock the process
p if it is satisfied. If the matching condition is not satisfied we can not continue the
execution.

13.3.4 Choice

(SumL)
p a�! p0

p+q a�! p0
(SumR)

q a�! q0

p+q a�! q0

The rules (SumL) and (SumR) allow the system p + q to behave as either p or q.
They are completely analogous to the rules for choice in CCS.

13.3.5 Parallel Composition

There are six rules for parallel composition. Here we present the first four. The
remaining two rules deal with name extrusion and are presented in Section 13.3.7.

(ParL)
p a�! p0

bn(a)\ fn(q) = ?
p | q a�! p0 | q

(ParR)
q a�! q0

bn(a)\ fn(p) = ?
p | q a�! p | q0

As for CCS the two rules (ParL) and (ParR) allow the interleaved execution of two
p-calculus agents. The side conditions guarantee that the bound names in a (if any)
are fresh w.r.t. the idle process. For example, a valid transition is

x(y).yz.nil | w(u).nil x(v)��! vz.nil | w(u).nil .

Instead, we do not allow the transition

x(y).yz.nil | w(u).nil x(w)��! wz.nil | w(u).nil

because the received name w 2 bn(x(w)) clashes with the free name w 2 fn(w(u).nil).

DRAFT

13.3 Operational Semantics of the p-calculus 297

(ComL) p x z�! p0 q
x(y)��! q0

p | q t�! p0 | (q0[z/y])
(ComR) p

x(y)��! p0 q x z�! q0

p | q t�! p0[z/y] | q0

The rules (ComL) and (ComR) allow the synchronisation of two parallel process.
The formal name y is replaced with the actual name z in the continuation of the
receiver. For example, we can derive the transition

x(y).yz.nil |xu.y(v).nil t�! uz.nil |y(v).nil

13.3.6 Restriction

(Res)
p a�! p0

y 62 n(a)
(y)p a�! (y)p0

The rule (Res) expresses the fact that if a name y is restricted on top of the process p,
then any action that does not involve y can be performed by p.

13.3.7 Scope Extrusion

Now we present the most important rules of p-calculus, (Open) and (Close), dealing
with scope extrusion of channel names. Rule (Open) makes public a private channel
name, while rule (Close) restricts again the name, but with a broader scope.

(Open)
p x y�! p0

y 6= x ^ w 62 fn((y)p)

(y)p
x(w)��! p0[w/y]

The rule (Open) publishes the private name w, which is guaranteed to be fresh. Of
course, as a special case, we can take w = y.

(CloseL) p
x (w)���! p0 q

x(w)��! q0

p | q t�! (w)(p0 | q0)
(CloseR) p

x(w)��! p0 q
x (w)���! q0

p | q t�! (w)(p0 | q0)

The rules (CloseL) and (CloseR) transform the object w of the communication over
x in a private channel between p and q. Freshness of w is guaranteed by rules (In),
(Open), (ParL) and (ParR). For example, we have

x(y).yz.nil |(u)xu.y(v).nil t�! (u)(uz.nil |y(v).nil).

DRAFT

298 13 p-Calculus

13.3.8 Replication

(Rep)
p | !p a�! p0

!p a�! p0

The last rule deals with replication. It allows to replicate a process as many times as
needed, in a reentrant fashion, without consuming it. Notice that !p is able also to
perform the synchronisations between two copies of p, if any.

13.3.9 A Sample Derivation

We conclude this section by showing an example of the use of the rule system.

Example 13.3 (Scope extrusion). Let us consider the following system:

(((y)xy.p) | q) | x(z).r

where p,q,r are p-calculus processes. The process (y)x y.p would like to set up a
private channel with x(z).r, which however should remain hidden to q. By using the
inference rule of the operational semantics we can proceed in a goal-oriented fashion
to find a derivation for the corresponding transition:

(((y)xy.p) | q) | x(z).r a�! s

-(CloseL), a=t, s=(w)(s1 | r1) ((y)xy.p) | q
x(w)��! s1, x(z).r

x(w)��! r1

-(ParL), s1=p1 | q, w62fn(q) (y)xy.p
x(w)��! p1 x(z).r

x(w)��! r1

-(Open), p1=p2[w/y], w62fn((y).p) xy.p xy�! p2, x(z).r
x(w)��! r1

-⇤
(Out)+(In), r1=r[w/z], p2=p, w 62fn((z).r) ⇤

so we have:

p2 = p
p1 = p2[

w/y] = p[w/y]

r1 = r[w/z]

s1 = p1 | q = p[w/y] | q
s = (w)(s1 | r1) = (w)((p[w/y] | q) | (r[w/z]))

In conclusion:

(((y)xy.p) | q) | x(z).r t�! (w)((p[w/y] | q) | (r[w/z]))

under the condition that w is fresh, i.e., that w 62 fn(q)[fn((y)p)[fn((z)r).

DRAFT

13.4 Structural Equivalence of p-calculus 299

13.4 Structural Equivalence of p-calculus

As we have already noticed for CCS, there are different terms representing essentially
the same process. As the complexity of the calculus increases, it is more and more
convenient to manipulate terms up to some intuitive structural axioms. In the follow-
ing we denote by ⌘ the least congruence2 over p-calculus processes that includes
a-conversion of bound names and that is induced by the following set of axioms.
The relation ⌘ is called structural equivalence.

p+nil ⌘ p p+q ⌘ q+ p (p+q)+ r ⌘ p+(q+ r)
p | nil ⌘ p p | q ⌘ q | p (p | q) | r ⌘ p | (q | r)
(x)nil ⌘ nil (y)(x)p ⌘ (x)(y)p (x)(p | q) ⌘ p | (x)q if x /2 fn(p)

[x = y]nil ⌘ nil [x = x] p ⌘ p p | !p ⌘ !p

13.4.1 Reduction semantics

The operational semantics of p-calculus is much more complicated than that of
CCS because it needs to handle name passing and scope extrusion. By exploiting
structural equivalence we can define a so-called reduction semantics that is simpler
to understand. The idea is to define an LTS with silent labels only, that models all the
interactions that can take place in a process, without considering interactions with
the environment. This is accomplished by first rewriting the process to a structurally
equivalent normal form and then by applying basic reduction rules. In fact it can be
proved that for each p-calculus process p there exists:

• a finite number of names x1,x2, ...,xk;
• a finite number of guarded sums3 s1,s2, ...,sn;
• and a finite number of processes p1, p2, ..., pm, such that

P ⌘ (x1) · · ·(xk)(s1 | · · · | sn | !p1 | · · · | !pm)

Then, a reduction is either a silent action performed by some si or a communication
from an input prefix of say si with an output prefix of say s j. We write the reduction
relation as a binary relation on processes using the notation p 7! q for indicating that
p reduces to q in one step. The rules defining the relation 7! are the following:

t.p+ s 7! p (x(y).p1 + s1)|(xz.p2 + s2) 7! p1[z/y]|p2

p 7! p0

p|q 7! p0|q

p 7! p0

(x)p 7! (x)p0

p ⌘ q q 7! q0 q0 ⌘ p0

p 7! p0

2 This means that ⌘ is reflexive, symmetric, transitive and closed under context embedding.
3 They are non-deterministic choices whose arguments are action prefixed processes, i.e., they take
the form p1.p1 + · · ·+ph.ph.

DRAFT

300 13 p-Calculus

The reduction semantics can be put in correspondence with the (silent transitions
of the) labelled operational semantics by the following theorem.

Lemma 13.1 (Harmony Lemma). For any p-calculus processes p, p0 and any ac-
tion a we have that:

1. 9q. p ⌘ q a�! p0 implies that 9q0. p a�! q0 ⌘ p0

2. p 7! p0 if and only if 9q0. p t�! q0 ⌘ p0.

Proof. We only sketch the proof.

1. The first fact can be proved by showing that the thesis holds for each single appli-
cation of any structural axiom and then proving the general case by mathematical
induction on the length of the proof of structural equivalence of p and q.

2. The second fact requires to prove the two implications separately:

)) We prove first that, if p 7! p0, then we can find equivalent processes r ⌘ p
and r0 ⌘ p0 in suitable form, such that r t�! r0. Finally, from p ⌘ r t�! r0 we
conclude by the first fact that 9q0 ⌘ r0 such that p t�! q0, since q0 ⌘ p0 by
transitivity of ⌘.

() After showing that, for any p,q, whenever p a�! q then we can find suitable
processes p0 ⌘ p and q0 ⌘ q in normal form, we prove that, for any p, p0,
if p t�! p0, then p 7! p0 by rule induction on p t�! p0, from which the thesis
follows immediately. ut

13.5 Abstract Semantics of the p-calculus

Now we present an abstract semantics of p-calculus, namely we disregard the syntax
of processes but focus on their behaviours. As we saw in CCS, one of the main
goals of abstract semantics is to find the correct degree of abstraction, depending
on the properties that we want to study. Thus also in this case there are many kinds
of bisimulations that lead to different bisimilarities, which are useful in different
circumstances.

We start from strong bisimulation of p-calculus which is an extended version of the
strong bisimulation of CCS, here complicated by the side-conditions on bound names
of actions and by the fact that, after an input, we want the continuation processes to
be equivalent for any received name. An important new feature of p-calculus is the
choice of the time when the names used as objects of input transitions are assigned
their actual values. If they are assigned before the choice of the (bi)simulating
transition, namely if the choice of the transition may depend on the assigned value,
we get the early bisimulation. Instead, if the choice must hold for all possible
names, we have the late bisimulation case. As we will see in short, the second
option leads to a finer semantics. Finally, we will present the weak bisimulation for
p-calculus. In all the above cases, the congruence property is not satisfied by the
largest bisimulations, so that the equivalences must be closed under suitable contexts
to get the corresponding observational congruences.

DRAFT

13.5 Abstract Semantics of the p-calculus 301

13.5.1 Strong Early Ground Bisimulations

In early bisimulation we require that for each name w that an agent can receive on a
channel x there exists a state q0 in which the bisimilar agent will be after receiving w
on x. This means that the bisimilar agent can choose a different transition (and thus a
different state q0) depending on the observed name w.

Formally, a binary relation S on p-calculus agents is a strong early ground bisim-
ulation if:

8p,q. p S q)

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

8p0. if p t�! p0 then 9q0. q t�! q0 and p0 S q0

8x,y, p0. if p xy�! p0 then 9q0. q xy�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 9q0. q
x(y)��! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)��! q0 and p0[w/y] S q0[w/y]

(and vice versa)

Of course, “vice versa” means that other four cases are present, where q challenges p
to (bi)simulate its transitions. Note that in the case of silent label t or output labels xy
the definition of bisimulation is as expected. The case of bound output labels x(y) has
the additional condition y 62 fn(q) as it makes sense to consider only moves where
y is fresh for both p and q.4 The more interesting case is that of input labels x(y):
here we have the same condition y 62 fn(q) as in the case of bound output (for exactly
the same reason), but additionally we require that p0 and q0 are compared w.r.t. all
possible received names p0[w/y] S q0[w/y]. Notice that, as obvious for a generic input,
also names which are not fresh (namely that appear free in p0 and q0) can replace
variable y. This is the reason why we required y to be fresh in the first place. It
is important to remark that different moves of q can be chosen depending on the
received value w: this is the main feature of early bisimilarity.

The very same definition of strong early ground bisimulation can be written more
concisely by grouping together the three cases of silent label, output labels and bound
output labels in the same clause:

8p,q. p S q)

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)��! q0 and p0[w/y] S q0[w/y]

(and vice versa)

4 In general, a bisimulation can relate processes whose sets of free names are different, as they
are not necessarily used. For example, we want to relate p and p | q when q is deadlock, even if
fn(q) 6= ?, so the condition y 62 fn(p | q) is necessary to allow p | q to (bi)simulate all bound output
moves of p, if any.

DRAFT

302 13 p-Calculus

Definition 13.3 (Early bisimilarity ⇠E). Two p-calculus agents p and q are early
bisimilar, written p ⇠E q, if there exists a strong early ground bisimulation S such
that p S q.

Example 13.4 (Early bisimilar processes). Let us consider the processes:

p def
= x(y).t.nil + x(y).nil q def

= p + x(y).[y = z]t.nil

whose transitions are (for any fresh name u):

p
x(u)��! t.nil q

x(u)��! t.nil
p

x(u)��! nil q
x(u)��! nil

q
x(u)��! [u = z]t.nil

The two processes p and q are early bisimilar. On the one hand, it is obvious that q
can simulate all moves of p. On the other hand, let q perform an input operation on
x by choosing the rightmost option. Then, we need to find, for each received name

w to be substituted for u, a transition p
x(u)��! p0 such that p0[w/u] is early bisimilar

to [w = z]t.nil. If the received name is w = z, then the match is satisfied and p can
choose to perform the left input operation to reach the state t.nil, which is early
bisimilar to [z = z]t.nil. Otherwise, if w 6= z, then the match condition is not satisfied
and [w = z]t.nil is deadlock, so p can choose to perform the right input operation
and reach the deadlock state nil. Notably, in the early bisimulation game, the received
name is known prior to the choice of the transition by the defender.

13.5.2 Strong Late Ground Bisimulations

In the case of late bisimulation, we require that, if an agent p has an input transition
to p0, then there exists a single input transition of q to q0 such that p0 and q0 are
related for any received value, i.e., q must choose the transition without knowing
what the received value will be.

Formally, a binary relation S on p-calculus agents is a strong late ground bisimu-
lation if (in concise form):

8p,q. p S q)

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 9q0. q
x(y)��! q0 and 8w. p0[w/y] S q0[w/y]

(and vice versa)

The only difference w.r.t. the definition of strong early ground bisimulation is that,
in the second clause, the order of quantifiers 9q0 and 8w is inverted.

DRAFT

13.5 Abstract Semantics of the p-calculus 303

Definition 13.4 (Late bisimilarity ⇠L). Two p-calculus agents p and q are said to
be late bisimilar, written p ⇠L q if there exists a strong late ground bisimulation S
such that p S q.

The next example illustrates the difference between late and early bisimilarities.

Example 13.5 (Early vs late bisimulation). Let us consider again the early bisimilar
processes p and q from Example 13.3. When late bisimilarity is considered, then
the two agents are not equivalent. In fact p should find a state which can handle all
the possible names received on x. If the leftmost choice is selected, then t.nil is
equivalent to [w = z].t.nil only when when the received value w = z but not in the
other cases. On the other hand, if the right choice is selected, then t.nil is equivalent
to [w = z].t.nil only when w 6= z.

As the above example suggests, it is possible to prove that early bisimilarity is
strictly coarser than late: if p and q are late bisimilar, then they are early bisimilar.

13.5.3 Compositionality and Strong Full Bisimilarities

Unfortunately both early and late ground bisimilarities are not congruences, even in
the strong case, as shown by the following counterexample.

Example 13.6 (Ground bisimilarities are not congruences). Let us consider the fol-
lowing agents:

p def
= xx.nil | x0(y).nil q def

= xx.x0(y).nil + x0(y).xx.nil

The agents p and q are bisimilar (according to both early and late bisimilarities),
as they generate isomorphic transition systems. Now, in order to show that ground
bisimulations are not congruences, we define the following context:

C[·] = z(x0).[·]

by plugging p and q inside the hole of C[·] we get:

C[p] = z(x0).(xx.nil | x0(y).nil) C[q] = z(x0).(xx.x0(y).nil + x0(y).xx.nil)

C[p] and C[q] are not early bisimilar (and thus not late bisimilar). In fact, suppose
the name x is received on z: we need to compare the agents

p0 def
= xx.nil | x(y).nil xx.x(y).nil + x(y).xx.nil

Now p0 can perform a t-transition, but q0 cannot.

The problem illustrated by the previous example is due to aliasing, and it appears
often in programming languages with both global variables and parameter passing to

DRAFT

304 13 p-Calculus

procedures. It can be solved by defining a finer relation between agents called strong
early full bisimilarity and defined as follows:

p 'E q , ps ⇠E qs for every substitution s

where a substitution s is a function from names to names that is equal to the identity
function almost everywhere (i.e., it differs from the identity function only on a finite
number of elements of the domain).

Analogously, we can define strong late full bisimilarity 'L by letting

p 'L q , ps ⇠L qs for every substitution s

13.5.4 Weak Early and Late Ground Bisimulations

As for CCS, we can define the weak versions of transitions a
=) and of bisimulation

relations. The definition of weak transitions is the same as CCS: 1) we write p t
=) q

if p can reach q via a, possibly empty, sequence of t-transitions; and 2) we write
p a

=) q for a 6= t if there exist p0,q0 such that p t
=) p0 a�! q0 t

=) q.
The definition of weak early ground bisimulation S is then the following:

8p,q. p S q)

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a
=) q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)
==) q0 and p0[w/y] S q0[w/y]

(and vice versa)

So we define the corresponding weak early bisimilarity ⇡E as follows:

p ⇡E q , p S q for some weak early ground bisimulation S.

It is possible to define weak late ground bisimulation and weak late bisimilarity
⇡L in a similar way (see Problem 13.9).

As the reader can expect, weak (early and late) bisimilarities are not congruences
due to aliasing, as it was already the case for strong bisimilarities. In addition, weak
(early and late) bisimilarities are not congruences for a choice context, as it was
already the case for CCS. Both problems can be fixed by combining the solutions
we have shown for weak observational congruence in CCS and for strong (early and
late) full bisimilarities.

DRAFT

13.5 Abstract Semantics of the p-calculus 305

Problems

13.1. The asynchronous p-calculus allows only outputs with no continuation, i.e.,
it allows output atoms of the form xhyi but not output prefixes, yielding a smaller
calculus.5 Show that any process in the original p-calculus can be represented in
the asynchronous p-calculus using an extra (fresh) channel to simulate explicit
acknowledgement of name transmission. Since a continuation-free output can model
a message-in-transit, this fragment shows that the original p-calculus, which is
intuitively based on synchronous communication, has an expressive asynchronous
communication model inside its syntax.

13.2. The polyadic p-calculus allows communicating more than one name in a single
action:

xhz1, ...zni.P (polyadic output) and x(z1, ...zn).P (polyadic input).

Show that this polyadic extension can be encoded in the monadic calculus (i.e., the
ordinary p-caculus) by passing the name of a private channel through which the
multiple arguments are then transmitted, one-by-one, in sequence.

13.3. A higher order p-calculus can be defined where not only names but processes
are sent through channels, i.e., action prefixes of the form x(Y).p and xhPi.p are
allowed where Y is a process variable and P a process. Davide Sangiorgi established
the surprising result that the ability to pass processes does not increase the expressivity
of the p-calculus: passing a process P can be simulated by just passing a name that
points to P instead. Formalise this intuition by showing how to encode higher-order
processes in ordinary ones.

13.4. Prove that x 62 fn(p) implies (x)p ⌘ p, where ⌘ is the structural congruence.

13.5. Exhibit two p-calculus agents p and q such that p 'E q but fn(p) 6= fn(q).

13.6. As needed in the proof of the Harmony Lemma 13.1, prove that for any
structural equivalence axiom p ⌘ q and for any transition q a�! p0 then there exists a
transition p a�! q0 for some q0 ⌘ p0.

13.7. Prove the following properties for the p-calculus, where ⇠E is the strong early
ground bisimilarity:

(x)(p | q) ⇠E p | (x)q if x 62 fn(p) (x)(p | q) ⇠E p | (x)q (x)(p | q) ⇠E ((x)p) | (x)q.

offering counterexamples if the properties do not hold.

5 Equivalently, one can take the fragment of the p-calculus such that for any subterm of the form
xy.p it must be p = nil.

DRAFT

306 13 p-Calculus

13.8. Prove that strong early ground bisimilarity is a congruence for the restriction
operator. Distinguish the case of input action. Assume that if S is a bisimulation, also
S0 = {(s(x),s(y))|(x,y) 2 S} is a bisimulation, where s is a one-to-one renaming.

13.9. Spell out the definition of weak late ground bisimulation and weak late bisimi-
larity ⇡L.

13.10. In the p-calculus, infinite branching is a serious drawback for finite verifica-
tion. Show that agents

p def
= x(y).yy.nil q def

= (y)xy.yynil

are infinitely branching. Modify the input axiom, the open rule, and possibly the
parallel composition rule by limiting to one the number of different fresh names
which can be assigned to the new name. Modify also the input clause for the early
bisimulation by limiting the set of possible continuations by substituting all the free
names and only one fresh name. Discuss the possible criteria for choosing the fresh
name, e.g., the first, in some order, name which is not free in the agent. Check if your
criteria make agents p and r bisimilar or not, where

r def
= x(y).(yy.nil | (z)zw.nil)

(note that (z)zw.nil is just a deadlock component).

	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax, Types and Pragmatics
	Semantics
	Mathematical Models of Computation

	A Taste of Semantics Methods: Numerical Expressions
	Applications of Semantics
	Key Topics and Techniques
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide
	Further Reading
	References

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems

	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of R"0362R

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems

	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Apply, Curry and Fix
	Problems

	Denotational Semantics of HOFL
	HOFL Semantic Domains
	HOFL Interpretation Function
	Constants
	Variables
	Arithmetic Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion
	Eager semantics
	Examples

	Continuity of Meta-language's Functions
	Substitution Lemma and Other Properties
	Problems

	Equivalence between HOFL denotational and operational semantics
	HOFL: Operational Semantics vs Denotational Semantics
	Correctness
	Agreement on Convergence
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems

	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	From Sequential to Concurrent Systems
	Syntax of CCS
	Operational Semantics of CCS
	Inactive Process
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Strong Bisimilarity

	Compositionality
	Strong Bisimilarity is a Congruence

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and the -Calculus
	Specification and Verification
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Inactive Process
	Action Prefix
	Name Matching
	Choice
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Compositionality and Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems

	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Probability Space
	Constructing a -field

	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions

