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DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.
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Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the syntax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce l -notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL: higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

ix
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CCS, p: concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.
Part III introduces some basic material on process algebraic models and temporal

and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as p-calculus, are just overviewed. The material in Part III can be used
in conjunction with other textbooks, e.g., on model checking or p-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part IV outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:
Imperative

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Functional
Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Concurrent
Chapter 11

Chapter 12

Chapter 13

Chapter 11

Chapter 12

Chapter 13

Probabilistic
Chapter 11

Chapter 12

Chapter 13

lambda 
notation

induction 
and 

structural 
recursion

CPO and
fixpoint

LTS and 
bisimulation

HM logic

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.
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CPO and fixpoint: the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

Lambda-notation: l -notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

LTS and bisimulation: Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

HM-logic: Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at
the end of the book.

Pisa, Roberto Bruni
February 2016 Ugo Montanari



DRAFT
Acknowledgements

We want to thank our friend and colleague Pierpaolo Degano for encouraging us to
prepare this book and submit it to the EATCS monograph series. We thank Ronan
Nugent and all the people at Springer for their editorial work. We acknowledge all
the students of the course on Models of Computation (MOD) in Pisa for helping us
to refine the presentation of the material in the book and to eliminate many typos
and shortcomings from preliminary versions of this text. Last but not least, we thank
Lorenzo Galeotti, Andrea Cimino, Lorenzo Muti, Gianmarco Saba, Marco Stronati,
former students of the course on Models of Computation, who helped us with the
LATEX preparation of preliminary versions of this book, in the form of lecture notes.

xiii



DRAFT
Contents

Part I Preliminaries

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Structure and Meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Syntax, Types and Pragmatics . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Mathematical Models of Computation . . . . . . . . . . . . . . . . . . . 6

1.2 A Taste of Semantics Methods: Numerical Expressions . . . . . . . . . . . 9
1.3 Applications of Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Key Topics and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Induction and Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Semantic Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.3 Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.4 Temporal and Modal Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.5 Probabilistic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Chapters Contents and Reading Guide . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 Signatures and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.3 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.4 Unification Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Inference Rules and Logical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3 Logic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Part II IMP: a simple imperative language

xv



DRAFT

xvi Contents

3 Operational Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 Syntax of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1.1 Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.2 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.1.3 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.4 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Operational Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1 Memory State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.2 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Abstract Semantics: Equivalence of Expressions and Commands . . . 66
3.3.1 Examples: Simple Equivalence Proofs . . . . . . . . . . . . . . . . . . . 67
3.3.2 Examples: Parametric Equivalence Proofs . . . . . . . . . . . . . . . 69
3.3.3 Examples: Inequality Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.4 Examples: Diverging Computations . . . . . . . . . . . . . . . . . . . . . 73

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Induction and Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 Noether Principle of Well-founded Induction . . . . . . . . . . . . . . . . . . . 79

4.1.1 Well-founded Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1.2 Noether Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.3 Weak Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.4 Strong Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.5 Structural Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.1.6 Induction on Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.1.7 Rule Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Well-founded Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Partial Orders and Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.1 Orders and Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.1.2 Hasse Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.1.3 Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.4 Complete Partial Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Continuity and Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.2.1 Monotone and Continuous Functions . . . . . . . . . . . . . . . . . . . . 116
5.2.2 Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Immediate Consequence Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.1 The Operator bR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.2 Fixpoint of bR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



DRAFT

Contents xvii

6 Denotational Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.1 l -Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1.1 l -Notation: Main Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding

Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Denotational Semantics of IMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2.2 Denotational Semantics of Boolean Expressions: The
Function B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.3 Denotational Semantics of Commands: The Function C . . . . 138
6.3 Equivalence Between Operational and Denotational Semantics . . . . 143

6.3.1 Equivalence Proofs For Expressions . . . . . . . . . . . . . . . . . . . . 143
6.3.2 Equivalence Proof for Commands . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Computational Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Part III HOFL: a higher-order functional language

7 Operational Semantics of HOFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.1 Syntax of HOFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.1.1 Typed Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.1.2 Typability and Typechecking . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Operational Semantics of HOFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8 Domain Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.1 The Flat Domain of Integer Numbers Z? . . . . . . . . . . . . . . . . . . . . . . . 177
8.2 Cartesian Product of Two Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.3 Functional Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
8.4 Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.5 Function’s Continuity Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.6 Apply, Curry and Fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9 Denotational Semantics of HOFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.1 HOFL Semantic Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9.2 HOFL Interpretation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.2.1 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2.3 Arithmetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2.4 Conditional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.2.5 Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.2.6 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
9.2.7 Lambda Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.2.8 Function Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



DRAFT

xviii Contents

9.2.9 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.2.10 Eager semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.2.11 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.3 Continuity of Meta-language’s Functions . . . . . . . . . . . . . . . . . . . . . . . 200
9.4 Substitution Lemma and Other Properties . . . . . . . . . . . . . . . . . . . . . . 202
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10 Equivalence between HOFL denotational and operational semantics . 207
10.1 HOFL: Operational Semantics vs Denotational Semantics . . . . . . . . . 207
10.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
10.3 Agreement on Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
10.4 Operational and Denotational Equivalences of Terms . . . . . . . . . . . . . 214
10.5 A Simpler Denotational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Part IV Concurrent Systems

11 CCS, the Calculus for Communicating Systems . . . . . . . . . . . . . . . . . . . . 223
11.1 From Sequential to Concurrent Systems . . . . . . . . . . . . . . . . . . . . . . . . 223
11.2 Syntax of CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
11.3 Operational Semantics of CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

11.3.1 Inactive Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
11.3.2 Action Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
11.3.3 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.3.4 Relabelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.3.5 Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
11.3.6 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.3.7 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
11.3.8 CCS with Value Passing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
11.3.9 Recursive Declarations and the Recursion Operator . . . . . . . . 238

11.4 Abstract Semantics of CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.4.1 Graph Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
11.4.2 Trace Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
11.4.3 Strong Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

11.5 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
11.5.1 Strong Bisimilarity is a Congruence . . . . . . . . . . . . . . . . . . . . . 255

11.6 A Logical View to Bisimilarity: Hennessy-Milner Logic . . . . . . . . . . 257
11.7 Axioms for Strong Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
11.8 Weak Semantics of CCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

11.8.1 Weak Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
11.8.2 Weak Observational Congruence . . . . . . . . . . . . . . . . . . . . . . . 266
11.8.3 Dynamic Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269



DRAFT

Contents xix

12 Temporal Logic and the µ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
12.1 Specification and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
12.2 Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

12.2.1 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
12.2.2 Computation Tree Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

12.3 µ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
12.4 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

13 p-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
13.1 Name Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
13.2 Syntax of the p-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
13.3 Operational Semantics of the p-calculus . . . . . . . . . . . . . . . . . . . . . . . 294

13.3.1 Inactive Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
13.3.2 Action Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
13.3.3 Name Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
13.3.4 Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
13.3.5 Parallel Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
13.3.6 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
13.3.7 Scope Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
13.3.8 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
13.3.9 A Sample Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

13.4 Structural Equivalence of p-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 299
13.4.1 Reduction semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

13.5 Abstract Semantics of the p-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 301
13.5.1 Strong Early Ground Bisimulations . . . . . . . . . . . . . . . . . . . . . 302
13.5.2 Strong Late Ground Bisimulations . . . . . . . . . . . . . . . . . . . . . . 303
13.5.3 Compositionality and Strong Full Bisimilarities . . . . . . . . . . . 304
13.5.4 Weak Early and Late Ground Bisimulations . . . . . . . . . . . . . . 305

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Part V Probabilistic Systems

14 Measure Theory and Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
14.1 Probabilistic and Stochastic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 311
14.2 Probability Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

14.2.1 Constructing a s -field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
14.3 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

14.3.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
14.4 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

14.4.1 Discrete and Continuous Time Markov Chain . . . . . . . . . . . . 322
14.4.2 DTMC as LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
14.4.3 DTMC Steady State Distribution . . . . . . . . . . . . . . . . . . . . . . . 325
14.4.4 CTMC as LTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
14.4.5 Embedded DTMC of a CTMC . . . . . . . . . . . . . . . . . . . . . . . . . 327



DRAFT

xx Contents

14.4.6 CTMC Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
14.4.7 DTMC Bisimilarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

15 Discrete Time Markov Chains with Actions and Non-determinism . . . 335
15.1 Reactive and Generative Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
15.2 Reactive DTMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

15.2.1 Larsen-Skou Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
15.3 DTMC with Non-determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

15.3.1 Segala Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
15.3.2 Simple Segala Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
15.3.3 Non-determinism, Probability and Actions . . . . . . . . . . . . . . . 341

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

16 PEPA - Performance Evaluation Process Algebra . . . . . . . . . . . . . . . . . . 345
16.1 From Qualitative to Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . 345
16.2 CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

16.2.1 Syntax of CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
16.2.2 Operational Semantics of CSP . . . . . . . . . . . . . . . . . . . . . . . . . 347

16.3 PEPA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
16.3.1 Syntax of PEPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
16.3.2 Operational Semantics of PEPA . . . . . . . . . . . . . . . . . . . . . . . . 350

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361



DRAFT
Acronyms

⇠ operational equivalence in IMP (see Definition 3.3)
⌘den denotational equivalence in HOFL (see Definition 10.4)
⌘op operational equivalence in HOFL (see Definition 10.3)
' CCS strong bisimilarity (see Definition 11.5)
⇡ CCS weak bisimilarity (see Definition 11.16)
u CCS weak observational congruence (see Section 11.8.2)
⇠= CCS dynamic bisimilarity (see Definition 11.18)
⇠E p-calculus strong early bisimilarity (see Definition 13.3)
⇠L p-calculus strong late bisimilarity (see Definition 13.4)
'E p-calculus strong early full bisimilarity (see Section 13.5.3)
'L p-calculus strong late full bisimilarity (see Section 13.5.3)
⇡E p-calculus weak early bisimilarity (see Section 13.5.4)
⇡L p-calculus weak late bisimilarity (see Section 13.5.4)
A interpretation function for the denotational semantics of IMP arithmetic

expressions (see Section 6.2.1)
ack Ackermann function (see Example 4.18)
Aexp set of IMP arithmetic expressions (see Chapter 3)
B interpretation function for the denotational semantics of IMP boolean

expressions (see Section 6.2.2)
Bexp set of IMP boolean expressions (see Chapter 3)
B set of booleans
C interpretation function for the denotational semantics of IMP com-

mands (see Section 6.2.3)
CCS Calculus of Communicating Systems (see Chapter 11)
Com set of IMP commands (see Chapter 3)
CPO Complete Partial Order (see Definition 5.11)
CPO? Complete Partial Order with bottom (see Definition 5.12)
CSP Communicating Sequential Processes (see Section 16.2)
CTL Computation Tree Logic (see Section 12.2.2)
CTMC Continuous Time Markov Chain (see Definition 14.15)
DTMC Discrete Time Markov Chain (see Definition 14.14)

xxi



DRAFT

xxii Acronyms

Env set of HOFL environments (see Chapter 9)
fix (least) fixpoint (see Definition 5.2.2)
FIX (greatest) fixpoint
gcd greatest common divisor
HML Hennessy-Milner modal Logic (see Section 11.6)
HM-Logic Hennessy-Milner modal Logic (see Section 11.6)
HOFL A Higher-Order Functional Language (see Chapter 7)
IMP A simple IMPerative language (see Chapter 3)
int integer type in HOFL (see Definition 7.2)
Loc set of locations (see Chapter 3)
LTL Linear Temporal Logic (see Section 12.2.1)
LTS Labelled Transition System (see Definition 11.2)
lub least upper bound (see Definition 5.7)
N set of natural numbers
P set of closed CCS processes (see Definition 11.1)
PEPA Performance Evaluation Process Algebra (see Chapter 16)
Pf set of partial functions on natural numbers (see Example 5.13)
PI set of partial injective functions on natural numbers (see Problem 5.12)
PO Partial Order (see Definition 5.1)
PTS Probabilistic Transition System (see Section 14.4.2)
R set of real numbers
T set of HOFL types (see Definition 7.2)
Tf set of total functions from N to N? (see Example 5.14)
Var set of HOFL variables (see Chapter 7)
Z set of integers



DRAFT
Part IV

Concurrent Systems



DRAFT
This part focuses on models and logics for concurrent, interactive systems. Chap-
ter 11 defines the syntax, operational semantics and abstract semantics of CCS, a
calculus of communicating systems. Chapter 12 introduces several logics for the
specification and verification of concurrent systems, namely LTL, CTL and the µ-
calculus. Chapter 13 studies the p-calculus, an enhanced version of CCS, where new
communication channels can be created dynamically and communicated to other
processes.
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CCS, the Calculus for Communicating Systems

I think it’s only when we move to concurrency that we have
enough to claim that we have a theory of computation which is
independent of mathematical logic or goes beyond what logicians
have studied, what algorithmists have studied. (Robin Milner)

Abstract In the case of sequential paradigms like IMP and HOFL we have seen
that all computations are deterministic and that any two non-terminating programs
are equivalent. This is not necessarily the case for concurrent, interacting systems,
which can exhibit different observable behaviours while they compute, also along
infinite runs. Consider, e.g., the software governing a web server or the processes
of an operating system. In this chapter we introduce a language, called CCS, whose
focus is the interaction between concurrently running processes. CCS can be used
both as an abstract specification language and as a programming language, allowing
seamless comparison between system specifications (desired behaviour) and con-
crete implementations. We shall see that non-determinism and non-termination are
desirable semantics features in this setting. We start by presenting the operational
semantics of CCS in terms of a labelled transition system. Then we define some ab-
stract equivalences between CCS terms, and investigate their properties with respect
to compositionality and algebraic axiomatisation. In particular we study bisimilarity,
a milestone abstract equivalence with large applicability and interesting theoretical
properties. We also define a suitable modal logic, called Hennessy-Milner logic,
whose induced logical equivalence is shown to coincide with strong bisimilarity.
Finally, we characterise strong bisimilarity as a fixpoint of a monotone operator and
explore some alternative abstract equivalences where internal, invisible actions are
abstracted away.

11.1 From Sequential to Concurrent Systems

In the last decade computer science technologies have boosted the growth of large
scale concurrent and distributed systems. Their formal study introduces several
aspects which are not present in the case of sequential programming languages like
those studied in previous chapters. In particular, it emerges the necessity to deal with:

223
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Non-determinism: Non-determinism is needed to model time races between dif-
ferent signals and to abstract away from programming details
which are irrelevant for the interaction behaviour of systems.

Parallelism: Parallelism allows agents to perform tasks independently. For
our purposes, this will be modelled by using non-deterministic
interleaving of concurrent transitions.

Interaction: Interaction allows us to describe the behaviour of the system
from an abstract point of view (e.g., the behaviour that the
system exhibits to an external observer).

Infinite runs: Accounting for different non-terminating behaviours at the
semantic level allows us to distinguish different classes of non-
terminating processes, when they have different interaction
capabilities.

Accordingly, some additional efforts must be spent to extend in a proper way the
semantics of sequential systems to that of concurrent systems.

In this chapter we introduce CCS, a specification language which allows to
describe concurrent communicating systems. Such systems are composed of agents
(also processes) that communicate through channels.

The semantics of sequential languages can be given by defining functions. In the
presence of non-deterministic behaviour, functions do not seem to provide the right
tool to abstract the behaviour of concurrent systems. As we will see, this problem
is worked out by modelling the system behaviour as a labelled transition system,
i.e., as a set of states equipped with a transition relation which keeps track of the
interactions between the system and its environment. Transitions are labelled with
symbolic actions that model the kind of computational step that is performed. In
addition, recall that the denotational semantics is based on fixpoint theory over CPOs,
while it turns out that several interesting properties of non-deterministic systems with
non-trivial infinite behaviours are not inclusive (as it is the case of fairness, described
in Example 6.9), thus the principle of computational induction does not apply to such
properties. As a consequence, defining a satisfactory denotational semantics for CCS
is far more complicated than for the sequential case.

Non-terminating sequential programs, as expressed in IMP and HOFL, are as-
signed the same semantics, For example, we recall that, in the denotational se-
mantics, any sequential program that does not terminate (e.g., the IMP command
while true do skip and the HOFL term rec x. x) is assigned the denotation ?, hence
all diverging programs are considered as equivalent. Labelled transition systems
allow to assign different semantics to non-terminating concurrent programs.

Last, but not least, labelled transition systems are often equipped with a modal
logic counterpart, which allows to express and prove the relevant properties of the
modelled system.

Let us show how CCS works with an example.

Example 11.1 (Dynamic concurrent stack). Let us consider the problem of modelling
an extensible stack. The idea is to represent the stack as a collection of cells that are
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dynamically created and disposed and that communicate by sending and receiving
data over some channels:1

• the send operation of data v over channel a is denoted by av;
• the receive operation of data x over channel a is denoted by ax.

We have one process (or agent) for each cell of the stack. Each process can
store one incoming value or send a stored value to other processes. All processes
involved in the implementation of the extensible stack follow essentially the same
communication pattern. We represent graphically one of such processes as follows:

CELL

� �

� �

The figure shows that a CELL has four channels a,b ,g,d that can be used to
communicate with other cells. A stack is obtained by aligning the necessary cells in a
sequence. In general, a process can perform bidirectional operations on its channels.
Instead, in this particular case, each cell will use each channel for either input or
output operations (but not both) as suggested by the arrows in the above figure:

Channel a: is the input channel to receive data from either the external environ-
ment or the left neighbour cell;

Channel g: is the channel used to send data to either the external environment or
the left neighbour cell;

Channel b : is the channel used to send data to the right neighbour cell and to
manage the end of the stack;

Channel d : is the channel used to receive data from the right neighbour cell and
to manage the end of the stack.

In the following, we specify the possible states (CELL0, CELL1, CELL2 and
ENDCELL) that a cell can have, each corresponding to some specific behaviour.
Note that some states are parametric to certain values that represent, e.g., the particular
values stored in that cell. The four possible states are described below.

CELL0
def
= dx. if x = $ then ENDCELL else CELL1(x)

The state CELL0 represents the empty cell. The agent CELL0 waits for some data
from the channel d and stores it in x. When a value is received the agent checks if it
is equal to a special termination character $. If the received data is $ this means that
the agent is becoming the last cell of the stack, so it switches to the ENDCELL state.
Otherwise, if x is a valid value, the agent moves to the state CELL1(x).

1 In the literature, alternative notations for send and receive operations can be found, such as a!v
for sending the value v over a and a?(x) or just a(x) for receiving a value over a and binding it to
the variable x.
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CELL1(v)
def
= ay.CELL2(y,v) + gv.CELL0

The state CELL1(v) represents a cell that contains the value v. In this case the cell
can non-deterministically wait for new data on a or send the stored data v on g . In
the first case, the cell stores the new value in y and enters the state CELL2(y,v). The
second case happens when the stored value v is extracted from the cell; then the
cell sends the value v on g and it becomes empty by switching to the state CELL0.
Note that the operator + represents a non-deterministic choice performed by the
agent. However a particular choice could be forced on a cell by the behaviour of its
neighbours.

CELL2(u,v) def
= bv.CELL1(u)

The cell in state CELL2(u,v) carries two parameters u (the last received value) and v
(the previously stored value). The agent must cooperate with its neighbours to shift
the data to the right. To this aim, the agent communicates to the right neighbour the
old stored value v on b and enters the state CELL1(u).

ENDCELL def
= az.(CELL1(z) _

^ ENDCELL| {z }
a new bottom cell

) + g$.nil

The state ENDCELL represents the bottom of the stack. An agent in this state can
perform two actions in a non-deterministic way. First, if a new value is received on
a (in order to perform a right-bound shift), then the new data is stored in z and the
agent moves to state CELL1(z). At the same time, a new agent is created, whose
initial state is ENDCELL, that becomes the new bottom cell of the stack. Note that
we want the newly created agent ENDCELL to be able to communicate with its
neighbour CELL1(z) only. We will explain later how this can be achieved, when
giving the exact definition of the linking operation _

^ (see Example 11.3). Informally,
the b and d channels of CELL1(z) are linked, respectively, to the a and g channels
of ENDCELL and the communication over them is kept private with respect to the
environment: only the channels a and g of CELL1(z) will be used to communicate
with neighbours cells and all the other communications are kept local. The second
alternative is that the agent can send the special symbol $ to the left neighbour cell,
provided it is able to receive this value. This is possible only if the left neighbour
cell is empty (see state CELL0) and after receiving the symbol $ on its channel
d it becomes the new ENDCELL. Then the present agent concludes its execution
becoming the inactive process nil.

Notice that ENDCELL cannot send or receive messages on its b and d channels.
In fact, ENDCELL should possess no such channels. Also, the behaviour of the stack
is correct only if the initial state of the agent is ENDCELL.

Now we will show how the stack works. Let us start from an empty stack. We
have only one cell in the state ENDCELL, whose channels b and d are made private,
written ENDCELL\b\d : no neighbour will be linked to the right side of the cell.
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Suppose we want to perform a push operation in order to insert the value 1 in
the stack. This can be achieved by sending the value 1 on the channel a to the cell
ENDCELL (see Figure 11.1).

�

�

ENDCELL

�1

Fig. 11.1: ENDCELL\b\d receiving the value 1 on channel a

Once the cell receives the new value it generates a new bottom process ENDCELL
for the stack and changes its state to CELL1(1). The result of this operation is the
configuration shown in Figure 11.2.

�

�

CELL1(1) ENDCELL

�3

Fig. 11.2: (CELL1(1) _
^ ENDCELL)\b\d receiving the value 3 on channel a

When the stack is stabilised we can perform another push operation, say with
value 3. In this case the first cell moves to state CELL2(3,1) in order to perform a
right-bound shift of the previously stored value 1 (see Figure 11.3).

�

�

ENDCELLCELL2(3, 1)

1

Fig. 11.3: (CELL2(3,1) _
^ ENDCELL)\b\d before right-shifting the value 1

Then, when the rightmost cell (ENDCELL) receives the value 1 on its channel
a , privately connected to the channel b of the leftmost cell (CELL2(3,1)) via the
linking operation _

^, it will change its state to CELL1(1) and will spawn a new
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ENDCELL, while the leftmost cell moves from the state CELL2(3,1) to the state
CELL1(3) (see Figure 11.4). Note that the linking operation is associative.

�

�

CELL1(1) ENDCELLCELL1(3)

�3

Fig. 11.4: CELL1(3) _
^ CELL1(1) _

^ ENDCELL\b\d before a pop operation

Now suppose we perform a pop operation, which will return the last value pushed
into the stack (i.e., 3). The corresponding operation is an output to the environment
(on channel g) of the leftmost cell. In this case the leftmost cell changes its state
to CELL0, and waits for a value through its channel d (privately connected to the
channel g of the middle cell). The situation is depicted in Figure 11.5.

�

�

CELL1(1) ENDCELLCELL0

$1

Fig. 11.5: (CELL0
_
^ CELL1(1) _

^ ENDCELL)\b\d before left-shifting value 1

When the middle cell sends the value 1 to the leftmost cell, it changes its state to
CELL0, and waits for the value sent from the rightmost cell. Then, since the received
value from ENDCELL is $, the middle cell changes its state to ENDCELL, while
the rightmost cell reduces to nil, as illustrated in Figure 11.6 (where the nil agent is
just omitted, because it is the unit of composition).

�

�

CELL1(1) ENDCELL

Fig. 11.6: (CELL1(1) _
^ ENDCELL _

^ nil)\b\d
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The above example shows that processes can synchronise in pairs, by perform-
ing dual (input/output) operations. In this chapter, we focus on a pure version of
CCS, where we abstract away from the values communicated on channels. The
correspondence with value passing CCS is briefly discussed in Section 11.3.8.

11.2 Syntax of CCS

The CCS was introduced by Turing awarded Robin Milner (1934–2010) in the early
eighties. We fix the following notation:

D = {a,b , ...}: denotes the set of channels and, by coercion, input actions;
D = {a,b , ...}: denotes the set of output actions, with D \D = ?;
L = D [D : denotes the set of observable actions;
t 62 L : denotes a distinguished, unobservable action (also called silent).

We extend the “bar” operation to all the elements in L by letting a = a for all
a 2 D . As we have seen in the dynamic stack example, pairs of dual actions (e.g., a
and a) are used to synchronise two processes. The unobservable action t denotes
a special action that is internal to some agent and that can no longer be used for
synchronisation. Moreover we will use the following conventions:

µ 2 L [{t} : denotes a generic action;
l 2 L : denotes a generic observable action;
l 2 L : denotes the dual action of l ;
f : D ! D : denotes a generic permutation of channel names, called a relabelling.

We extend f to all actions by letting:

f(a)
def
= f(a) f(t)

def
= t.

Now we are ready to present the syntax of CCS.

Definition 11.1 (CCS agents). A CCS agent (also process) is a term generated by
the grammar:

p,q ::= x | nil | µ.p | p\a | p[f ] | p+q | p | q | rec x. p

We shortly comment the various syntactic elements:

x: represents a process name;
nil: is the empty (inactive) process;
µ.p: denotes a process p prefixed by the action µ , the process µ.p can execute

µ and become p;
p\a: is a restricted process, making the channel a private to p, the process

p\a allows synchronisations on a that are internal to p, but disallows
external interaction on a;
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p[f ]: is a relabelled process that behaves like p after having renamed its
channels as indicated by f .

p+q: is a process that can choose non-deterministically to behave as p or q;
once the choice is made, the other alternative is discarded;

p | q: is the process obtained as the parallel composition of p and q; the actions
of p and q can be interleaved and also synchronised;

rec x. p: is a recursively defined process, that binds the occurrences of x in p.

As usual, we consider only the closed terms of this language, i.e., all processes such
that any process name x always occur under the scope of some recursive definition
for x. We name P the set of closed CCS processes.

11.3 Operational Semantics of CCS

The operational semantics of CCS is defined by a suitable labelled transition system.

Definition 11.2 (Labelled transition system). A labelled transition system (LTS) is
a triple (P,L,!), where P is the set of states of the system, L is the set of labels and
!✓ P⇥L⇥P is the transition relation. We write p1

l�! p2 for (p1, l, p2) 2!.

The LTS that defines the operational semantics of CCS has agents as states and
has transitions labelled by actions in L [{t}, denoted by µ . Formally, the LTS is
given by (P,L [{t},!), where the transition relation ! is the least one generated
by a set of inference rules. The LTS is thus defined by a rule system whose formulas
take the form p1

µ�! p2 meaning that the process p1 can perform the action µ and
reduce to p2. We call p1

µ�! p2 a µ-transition of p1
While the LTS is unique for all CCS processes, when we say “the LTS of a process

p” we mean the restriction of the LTS to consider only the states that are reachable
from p by a sequence of (oriented) transitions. Although a term can be the parallel
composition of many processes, its operational semantics is represented by a single
global state in the LTS. Next we introduce the inference rules for CCS.

11.3.1 Inactive Process

There is no rule for the inactive process nil: it has no outgoing transition.

11.3.2 Action Prefix

There is only one axiom in the rule system and it is related to action prefix.
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(Act)
µ.p

µ�! p

It states that the process µ.p can perform the action µ and reduce to p. For

example, we have transitions a.b .nil a�! b .nil and b .nil b�! nil.

11.3.3 Restriction

If the process p is executed under a restriction ·\a , then it can perform only actions
that do not carry the restricted name a as a label.

(Res)
p

µ�! q
µ 6= a,a

p\a µ�! q\a

Note that this restriction does not affect the communication internal to the pro-
cesses, i.e., when µ = t the move is not blocked by the restriction. For example, the

process (a.nil)\a is deadlock, while (b .nil)\a b�! nil\a .

11.3.4 Relabelling

Let f be a permutation of channel names. The µ-transitions of p are renamed to
f(µ)-transitions by p[f ].

(Rel)
p

µ�! q

p[f ]
f(µ)���! q[f ]

We remind that the silent action cannot be renamed by f , i.e., f(t) = t for any f .

For example, if f(a) = b , then (a.nil)[f ]
b�! nil[f ].

11.3.5 Choice

The next pair of rules deals with non-deterministic choice.
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(Sum)
p

µ�! p0

p+q
µ�! p0

q
µ�! q0

p+q
µ�! q0

Process p + q can choose to behave like either p or q. However, note that the
choice can be performed only when an action is executed, e.g., in order to discard
the alternative q, the process p must be capable of performing some action µ . For
example, if f(a) = g , f(b ) = b and p def

= ((a.nil+b .nil)[f ]+a.nil)\a we have

p
g�! nil[f ]\a and p

b�! nil[f ]\a but not p a�! nil\a.

11.3.6 Parallel Composition

Also in the case of parallel composition some form of non-determinism appears.
Unlike the case of sum, where non-determinism is a characteristic of the modelled
system, here non-determinism is a characteristic of the semantic style that allows p
and q to interleave their actions in p | q, i.e., non-determinism is exploited to model
the parallel behaviour of the system.

(Par)
p

µ�! p0

p | q
µ�! p0 | q

q
µ�! q0

p | q
µ�! p | q0

The two rules above allows p and q to evolve independently in p | q. There is
also a third rule for parallel composition, which allows processes to perform internal
synchronisations.

(Com) p1
l�! p2 q1

l�! q2

p1 | q1
t�! p2 | q2

The processes p1 and p2 communicate by using the channel l in complementary
ways. The name of the channel is not shown in the label after the synchronisation by
recording the action t instead.

In general, if p1 and p2 can perform a and a , respectively, then their parallel
composition can perform a , a or t . When parallel composition is used in combina-
tion with the restriction operator, like in (p1 | p2)\a , then synchronisation on a , if
possible, is forced. For example, the LTS for p def

= (a.nil+b .nil) | (a.nil+g.nil) is:
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p
g &&

a
88

b

⌧⌧

a

⇥⇥

t

##

(a.nil+b .nil) | nil

a

⌧⌧

b

⇥⇥
nil | (a.nil+g.nil)

a &&

g
88

nil | nil

while the LTS for process q def
= p\a is:

q
g ''

b

⌧⌧

t

$$

((a.nil+b .nil) | nil)\a

b

⇥⇥
(nil | (a.nil+g.nil))\a

g
77

(nil | nil)\a

When comparing the LTSs for p and q, it is evident that the transitions with labels a
and a are not present in the LTS for q. Still the t-labelled transition q t�! (nil | nil)\a
that originated from an internal synchronisation over a is present in the LTS of q.

11.3.7 Recursion

The rule for recursively defined processes is similar to the one seen for HOFL terms.

(Rec)
p[rec x. p/x]

µ�! q

rec x. p
µ�! q

The recursive process rec x. p can perform all and only the transitions that the
process p[rec x. p/x] can perform, where p[rec x. p/x] denotes the process obtained
from p by replacing all free occurrences of the process name x with its full recursive
definition rec x. p (of course, the substitution is capture-avoiding). For example, the
possible transitions of the recursive process rec x. a.x are the same ones as those of
(a.x)[rec x. a.x/x] = a.rec x. a.x. Namely, since

a.rec x. a.x a�! rec x. a.x
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is the only transition of a.rec x. a.x, there is exactly one transition

rec x. a.x a�! rec x. a.x.

p

a

⌅⌅

b

⇢⇢
rec x. a.x

a

ZZ rec x. b .x

b

XX

qa :: bdd r acc

b

✏✏
nil

Fig. 11.7: The LTSs of three recursively defined processes

It is interesting to compare the LTSs for the processes below (see Figure 11.7):

p def
= (rec x. a.x)+(rec x. b .x) q def

= rec x. (a.x+b .x) r def
= rec x. (a.x+b .nil)

In the first case, p can execute either a sequence of only a-transitions or a sequence
of b -transitions. In the second case, q can execute any sequence made of a- and
b -transitions. Finally, r admits only sequences of a actions, possibly concluded by a
b action. Note that p and q never terminate, while r may or may not terminate.

Remark 11.1 (Guarded agents). The form of recursion allowed in CCS is very gen-
eral. As it is common, we restrict our attention to the class of guarded agents, namely
agents where, for any recursive sub-terms rec x. p, each free occurrence of x in
p occurs under an action prefix (like in all the examples above). This allows us
to exclude terms like rec x. (x | p) which can lead (in one step) to an unbounded
number of parallel repetitions of the same agent, making the LTS infinitely branching
(see Examples 11.12 and 11.13). Formally, we define the predicate G(p,X) for any
process p and set of process names X as follows:

G(nil,X)
def
= true G(p\a,X) = G(p[f ],X)

def
= G(p,X)

G(x,X)
def
= x 62 X G(p+q,X) = G(p | q,X)

def
= G(p,X)^G(q,X)

G(µ.p,X)
def
= G(p,?) G(rec x. p,X)

def
= G(p,X [{x})

The predicate G(p,X) is true if and only if (i) every process name in X is either not
free in p or free and prefixed by an action; and (ii) all recursively defined names in p
occur guarded in p.

all process names in X and all recursively defined names in p occur guarded in p.
A (closed) process p is guarded if G(p,?) holds true. It can be proved that, for any
process p and set of process names X :
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1. for any process name x: G(p,X [ {x}) ) G(p,X), so that, as a particular case,
G(p,X) implies G(p,?); moreover, G(p,X) ) G(p,X [{x}) if x does not occur
free in p;

2. guardedness is preserved by substitution, namely, for all processes p1, ..., pn and
process names x1, ...,xn:

G(p,X)^
^

i2[1,n]

G(pi,X) ) G(p[p1/x1 , · · · ,
pn /xn ],X);

3. guardedness is preserved by transitions, namely, for any process q and action µ:

G(p,X)^ p
µ�! q ) G(q,?).

The proof of items 1 and 2 is by structural induction on p, while the proof of item 3
is by rule induction on p

µ�! q.

Example 11.2 (Derivation). We show an example of the use of the derivation rules
we have introduced. Let us take the (guarded) CCS process: ((p | q) | r)\a , where:

p def
= rec x. (a.x+b .x) q def

= rec x. (a.x+ g.x) r def
= rec x. a.x.

First, let us focus on the behaviour of the simpler, deterministic agent r. We have:

rec x. a.x l�! r0 -Rec a.(rec x. a.x) l�! r0

-Act, l=a, r0=rec x. a.x 2

where we have annotated each derivation step with the name of the applied rule.
Thus, r a�! r and since there are no other rules applicable during the above derivation,
the LTS associated with r consists of a single state and one looping arrow with
label a . Correspondingly, the agent is able to perform the action a indefinitely.
However, when embedded in the larger system above, then the action a is blocked
by the topmost restriction ·\a . Therefore, the only opportunity for r to execute a
transition is by synchronising on channel a with either one or the other of the two
(non-deterministic) agents p and q. In fact the synchronisation on a produces an
action t which is not blocked by ·\a . Note that p and q are also available to interact
with some external agent on other non-restricted channels (b or g).

By using the rules of the operational semantics of CCS we have, e.g.:
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((p | q) | r)\a µ�! s -Res, s=s0\a (p | q) | r
µ�! s0, µ 6= a,a

-Com, µ=t, s0=s00 | r1 p | q l�! s00, r l�! r1

-Par, s00=p | q1 q l�! q1, r l�! r1

-Rec a.q+ g.q l�! q1, r l�! r1

-Sum a.q l�! q1, r l�! r1

-Act, l=a, q1=q r a�! r1

-Rec a.r a�! r1

-Act, r1=r ⇤

From which we derive:

r1 = r = rec x. a.x
q1 = q = rec x. a.x+ g.x

s00 = p | q1 = (rec x. a.x+b .x) | rec x. a.x+ g.x
s0 = s00 | r1 = ((rec x. a.x+b .x) | (rec x. a.x+ g.x)) | rec x. a.x

s = s0\a = (((rec x. a.x+b .x) | (rec x. a.x+ g.x)) | rec x. a.x)\a
µ = t

and thus:
((p | q) | r)\a t�! ((p | q) | r)\a

Note that during the derivation we had to choose several times between different
rules which could have been applied; while in general it may happen that wrong
choices can lead to dead ends, our choices have been made so to complete the
derivation satisfactorily, avoiding any backtracking. Of course other transitions are
possible for the agent ((p | q) | r)\a : we leave it as an exercise to identify all of them
and draw the complete LTS (see Problem 11.1).

Example 11.3 (Dynamic stack: linking operator). Let us consider again the extensible
stack from Example 11.1. We show how to formalise in CCS the linking operator _

^.
We need two new channels J and h , which will be private to the concatenated cells.
Then, we let:

p _
^ q = (p[fb ,d ] | q[fa,g ])\J\h

where fb ,d is the relabelling that switches b with J , d with h and is the identity
otherwise, while fa,g switches a with J , g with h and is the identity otherwise.
Notably, J and h are restricted, so that their scope is kept local to p and q, avoiding
any conflict on channel names from the outside. For example, messages sent on b by
p are redirected to J and must be received by q that views J as a . Instead, messages
sent on b by q are not redirected to J and will appear as messages sent on b by the
whole process p _

^ q (see Figure 11.8).



DRAFT

11.3 Operational Semantics of CCS 237

� �

� �

� �

� �
�

�

�

�

�

�

q

q

p

p

Fig. 11.8: Graphically illustration of the concatenation operator p _
^ q

11.3.8 CCS with Value Passing

Example 11.1 considers i/o operations where values can be received and transmitted.
This would correspond to extend the syntax of processes to allow action prefixes like
a(x).p, where p can use the value x received on channel a and av.p, where v is the
value sent on channel a . Note that, in this case, x is bound in p. Assuming a set of
possible values V as fixed, the corresponding operational semantics rules are:

(In)
v 2 V

a(x).p av�! p[v/x]
(Out)

av.p av�! p

However, when the set V is finite, we can encode the behaviour of a(x).p and av.p
just by introducing as many copies av of each channel a as the possible values v 2 V .
If V = {v1, ...,vn} then:

• an output avi.p is represented by the process avi .p
• an input a(x).p is represented by the process

av1 .p[v1/x]+av2 .p[v2/x]+ ...+avn .p[vn/x].

We can also represent quite easily an input followed by a test (for equality) on
the received value, like the one used in the encoding of CELL0 in the dynamic stack
example: a process like

a(x). if x = vi then p else q

can be represented by the CCS process

av1 .q[v1/x]+ ...+avi�1 .q[vi�1/x]+avi .p[vi/x]+avi+1 .q[vi+1/x]+ ...+avn .q[vn/x]
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Example 11.4. Suppose that V = {true, false} is the set of booleans. Then a process
that waits to receive true on the channel a before executing p, can be written as

rec x. (atrue.p+afalse.x)

11.3.9 Recursive Declarations and the Recursion Operator

In Example 11.1, we have also used recursive declarations, one for each possible
state of the cell. They can be expressed in CCS using the recursion operator rec. In
general, suppose we are given a series of recursive declarations, like:

8
>>><

>>>:

X1
def
= p1

X2
def
= p2
· · ·

Xn
def
= pn

where the symbols X1, ...,Xn can appear as constants in each of the terms p1, ..., pn.
For any i 2 {1, ...,n}, let

qi
def
= rec Xi. pi

be the process where all occurrences of Xi in pi are bound by the recursive operator
(while the instances of Xj occur freely if i 6= j). Then, we can let

rn
def
= qn

rn�1
def
= qn�1[

rn/Xn ]

· · ·
ri

def
= qi[

rn/Xn ]...[
ri+1/Xi+1 ]

· · ·
r1

def
= q1[

rn/Xn ]...[
r2/X2 ]

so that in ri all occurrences of Xj occur under a recursion operator rec Xj if j � i.
Then r1 is a closed CCS process that corresponds to X1. If we switch the order in
which the recursive declarations are listed, the same procedure can be applied to find
CCS processes that correspond to the other symbols X2, ...,Xn.

Example 11.5 (From recursive declarations to recursive processes). For example,
suppose we are given the recursive declarations:

X1
def
= a.X2 X2

def
= b .X1 + g.X3 X3

def
= d .X2.

Then we have
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q1
def
= rec X1. a.X2 q2

def
= rec X2. (b .X1 + g.X3) q3

def
= rec X3. d .X2

From which we derive

r3
def
= q3 = rec X3. d .X2

r2
def
= q2[

r3/X3 ] = rec X2. (b .X1 + g.rec X3. d .X2)

r1
def
= q1[

r3/X3 ][
r2/X2 ] = rec X1. a.rec X2. (b .X1 + g.rec X3. d .X2)

11.4 Abstract Semantics of CCS

In the previous section we have defined a mapping from CCS agents to LTSs, i.e., to
a special class of labelled graphs. It is easy to see that such operational semantics
is much more concrete and detailed than the semantics studied for IMP and HOFL.
For example, since the states of the LTS are named by agents it is evident that two
syntactically different processes like p | q and q | p are associated with different
graphs, even if intuitively one would expect that both exhibit the same behaviour.
Analogously for p+q and q+ p or for p+nil and p. Thus it is important to find a
good notion of equivalence, able to provide a more abstract semantics for CCS. As
it happens for the denotational semantics of IMP and HOFL, an abstract semantics
defined up to equivalence should abstract away from the syntax and execution details,
focusing on some external, visible behaviour. To this aim we can focus on the LTSs
associated with agents, disregarding the identity of agents.

In this section, we first show that neither graph isomorphism nor trace equivalence
offer fully satisfactory abstract semantics for CCS. Next, we introduce a more appro-
priate abstract semantics of CCS by defining a relation, called strong bisimilarity,
that captures the ability of processes to simulate each other.

Another important aspect to be taken into account is compositionality, i.e., the
ability to replace any process with an equivalent one inside any context without
changing the semantics. Formally, this amounts to define equivalences that are
preserved by all the operators of the algebra: they are called congruences. We discuss
compositionality issues in Section 11.5.

11.4.1 Graph Isomorphism

It is quite obvious to require that two agents are equivalent if their (LTSs) graphs are
isomorphic. Recall that two labelled graphs are isomorphic if there exists a bijection
f between the nodes of the graphs that preserves the graph structure, i.e., such that
v a�! v0 iff f (v) a�! f (v0).

Example 11.6 (Isomorphic agents). Let us consider the agents a.nil | b .nil and
a.b .nil+b .a.nil. Their LTSs are as follows:
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a.nil | b .nil
a

{{

b

##

a.b .nil+b .a.nil
a

{{

b

##
nil | b .nil

b ##

a.nil | nil

a
{{

b .nil

b
##

a.nil

a
{{

nil | nil nil

The two graphs are isomorphic, as shown by the bijective correspondence repre-
sented with dotted lines, thus the two agents should be considered as equivalent. This
result is surprising, since they have a rather different structure. In fact, the example
shows that concurrency can be reduced to non-determinism by graph isomorphism.
This is due to the interleaving of the actions performed by processes that are com-
posed in parallel, which is a peculiar characteristic of the operational semantics
which we have presented.

Graph isomorphism is a very simple and natural equivalence relation, but still leads
to an abstract semantics that is too concrete, i.e., graph isomorphism distinguishes
too much. We show this fact in the following examples.

Example 11.7 (Non-isomorphic agents). Let us consider the (guarded) recursive
agents rec x. a.x, rec x. a.a.x and a.rec x. a.x, whose LTSs are in Figure 11.9:

rec x. a.x

a

DD rec x. a.a.x

a
!!

a.rec x. a.a.x

a

`` a.rec x. a.x

a
✏✏

rec x. a.x

a

DD

Fig. 11.9: Three non-isomorphic agents

The three graphs are not isomorphic, but it is hardly possible to distinguish
between the agents according to their behaviour: they all are able to execute any
sequence of a-transitions.

Example 11.8 (Buffers). Let us denote by Bn
k a buffer of capacity n of which k

positions are busy. For example, for representing a buffer of capacity 1 in CCS one
could let (using recursive definitions):

B1
0

def
= in.B1

1 B1
1

def
= out.B1

0

The corresponding LTS is
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B1
0

in
55 B1

1

out
uu

Analogously, for a buffer of capacity 2, one could let:

B2
0

def
= in.B2

1 B2
1

def
= out.B2

0 + in.B2
2 B2

2
def
= out.B2

1

Another possibility for obtaining an (empty) buffer of capacity 2 is to use two (empty)
buffers of capacity 1 composed in parallel: B1

0 | B1
0. However the LTSs of B2

0 and
B1

0 | B1
0 are not isomorphic, because they have a different number of states:

B2
0

in
""
B2

1

in
""

out
bb

B2
2

out
bb

B1
0 | B1

0
in

��

in

⌘⌘
B1

1 | B1
0

in
//

out

88

B1
0 | B1

1

in
oo

out

ff

B1
1 | B1

1

out
ff

out
88

The LTS of B2
0 offers a minimal realisation of the behaviour of the buffer: the three

states B2
0, B2

1 and B2
2 cannot be identified, because they exhibit different behaviours

(e.g., B2
2 cannot perform an in action, unlike B2

1 and B2
0, while B2

0 can perform two
in actions in a row, unlike B2

1 and B2
2). Instead, the LTS of B1

0 | B1
0 has two different

states that should be considered as equivalent, namely B1
1 | B1

0 and B1
0 | B1

1 (in our
case, it does not matter which position of the buffer is occupied).

11.4.2 Trace Equivalence

A second approach, called trace equivalence, observes the set of traces of an agent,
namely the set of sequences of actions labelling all paths in its LTS. Trace equivalence
is analogous to language equivalence for ordinary automata, except for the fact that
in CCS there are no accepting states.

Formally, A finite trace of a process p is a sequence of actions µ1 · · ·µk (for k � 0)
such that there exists a sequence of transitions

p = p0
µ1�! p1

µ2�! · · · µk�1���! pk�1
µk�! pk

for some processes p1, ..., pk. Two agents are (finite) trace equivalent if they have the
same set of possible (finite) traces. Note that the set of traces associated with one
process p is prefix-closed, in the sense that if the trace µ1 · · ·µk belongs to the set
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of traces of p, then any of its prefixes µ1 · · ·µi with i  k also belongs to the set of
traces of p.2 For example, the empty trace e belongs to the semantics of any process.

Trace equivalence is strictly coarser than equivalence based on graph isomorphism,
since isomorphic graphs have the same traces. Conversely, Examples 11.7 and 11.8
show agents which are trace equivalent but whose graphs are not isomorphic. The
following example shows that trace equivalence is too coarse: it is not able to capture
the choice points within agent behaviour. In the example we exploit the notion of a
context.

Definition 11.3 (Context). A context is a term with a hole which can be filled by
inserting any other term of our language.

We write C[·] to indicate a context and C[p] to indicate the context C[·] whose
hole is filled with p.

Example 11.9. Let us consider the following agents:

p def
= a.(b .nil+g.nil) q def

= a.b .nil+a.g.nil

Their LTSs are as follows:

a.(b .nil+g.nil)

a
✏✏

b .nil+g.nil

b
  

g
~~

nil

a.b .nil+a.g.nil
a

{{

a

##
b .nil

b ##

g.nil

g
{{

nil

The agents p and q are trace equivalent: their set of traces is {e,a,ab ,ag}.
However the agents make their choices at different points in time. In the second
agent q the choice between b and g is made when the first transition is executed, by
selecting one of the two outbound a-transitions. In the first agent p, on the contrary,
the choice is made on a second time, after the execution of the unique a-transition.

The difference is evident if we consider, e.g., an agent

r def
= a.b .d .nil

running in parallel with p or with q, with actions a , b and g restricted on top:

(p | r)\a\b\g (q | r)\a\b\g.

The agent p is always able to carry out the complete interaction with r, because
after the synchronisation on a it is ready to synchronise on b ; vice versa, the agent q

2 A variant of trace equivalence, called completed trace semantics, is not prefix-closed and will be
discussed in Example 11.15.
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is only able to carry out the complete interaction with r if the left choice is performed
at the time of the first interaction on a , as otherwise g.nil and b .d .nil cannot interact.
Formally, if we consider the context

C[·] = (· | a.b .d .nil)\a\b\g

we have that C[p] and C[q] are trace equivalent, but C[q] can deadlock before execut-
ing d , while this is not the case for C[p]. Figure out how embarrassing could be the
difference if a would mean for a computer to ask the user if a file should be deleted,
and b ,g were the user’s yes/no answer: p would behave as expected, while q could
decide to delete the file in the first place, and then deadlock if the the user decides
otherwise. As another example, assume that p and q are possible alternatives for the
control of a vending machine, where a models the insertion of a coin and b and
g model the supply of a cup of coffee or a cup of tea: p would let the user choose
between coffee and tea, while q would choose for the user. We will consider again
processes p and q in Example 11.15, when discussing compositionality issues.

Given all the above, we can argue that neither graph isomorphism nor trace
equivalence are good candidates for our behavioural equivalence relation. Still, it
is obvious that: 1) isomorphic agents must be retained as equivalent; 2) equivalent
agents must be trace equivalent. Thus, our candidate equivalence relation must be
situated in between graph isomorphism and trace equivalence.

11.4.3 Strong Bisimilarity

In this section we introduce a class of relations between agents called strong bisim-
ulations and we define a behavioural equivalence relation between agents, called
strong bisimilarity, as the largest strong bisimulation. This equivalence relation is
intended to identify only those agents which intuitively have the same behaviour.

Let us start with an example that illustrates how bisimulation works.

Example 11.10 (Bisimulation game). In this example we use game theory in order to
show that the agents of the Example 11.9 should not be considered as behaviourally
equivalent. Imagine that two opposite players are arguing about the fact that a system
satisfies (or not) a given property. One of them, the attacker, argues that the system
does not satisfy the property. The other player, the defender, believes that the system
satisfies the property. If the attacker has a winning strategy this means that the system
does not satisfy the property. Otherwise, the defender wins, meaning that the system
satisfies the property.

The game is turn-based and, at any turn, we let the attacker move first and the
defender play back. In the case of bisimulation, the system is composed by two
processes p and q and the attacker wants to prove that they are not equivalent, while
the defender wants to convince the opponent that p and q are equivalent. Let Alice
be the attacker and Bob the defender. The rules of the game are very simple.
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Alice starts the game. At each turn:

• Alice chooses one of the processes and executes one of its outgoing transitions.
• Bob must then execute an outgoing transition of the other process, matching the

action label of the transition chosen by Alice.
• At the next turn, if any, the game will start again from the target processes of the

two transitions selected by Alice and Bob.

If Alice cannot find a move, then Bob wins, since this means that p and q are both
deadlock, and thus obviously equivalent. Alice wins if she can make a move that Bob
cannot imitate; or if she has a move that, no matter which is the answer by Bob, will
lead to a situation where she can make a move that Bob cannot imitate; and so on
for any number of moves. Bob wins if Alice has no such a (finite) strategy. Note that
the game does not necessarily terminate: also in this case Bob wins, because Alice
cannot disprove that p and q are equivalent.

From example 11.9, let us take

p def
= a.(b .nil+g.nil) q def

= a.b .nil+a.g.nil .

We show that Alice has a winning strategy. Alice starts by choosing p and by
executing its unique a-transition p a�! b .nil+g.nil. Then, Bob can choose one of
the two a-transitions leaving from q. Suppose that Bob chooses the a-transition q a�!
b .nil (but the case where Bob chooses the other transition leads to the same result
of the game). So the processes for the next turn of the game are b .nil+g.nil and
b .nil. At the second turn, Alice chooses the process b .nil+g.nil and the transition
b .nil+g.nil g�! nil, and Bob can not simulate this move from b .nil. Since Alice has
a winning, two-moves strategy, the two agents are not equivalent.

Now we define the same relation in a more formal way, as originally introduced
by Robin Milner. It is important to notice that the definition is not specific to CCS; it
applies to a generic LTS (P,L,!). The labelled transition systems whose states are
CCS agents is just a special instance. Below, for R ✓ P ⇥P a binary relation on
agents, we use the infix notation s1 R s2 to mean (s1,s2) 2 R.

Definition 11.4 (Strong Bisimulation). Let R be a binary relation on the set of states
of an LTS; then it is a strong bisimulation if

8s1,s2. s1 R s2 )
(

8µ,s0
1. s1

µ�! s0
1 implies 9s0

2. s2
µ�! s0

2 and s0
1 R s0

2; and
8µ,s0

2. s2
µ�! s0

2 implies 9s0
1. s1

µ�! s0
1 and s0

1 R s0
2.

Trivially, the empty relation is a strong bisimulation and it is easy to check that
the identity relation

Id def
= {(p, p) | p 2 P}

is a strong bisimulation. Interestingly, graph isomorphism defines a strong bisimula-
tion and the union R1 [R2 of two strong bisimulation relations R1 and R2 is also a
strong bisimulation relation. The inverse R�1 = {(s2,s1) | (s1,s2) 2 R} of a strong
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bisimulation R is also a strong bisimulation. Moreover, given the composition of
relations defined by

R1 �R2
def
= {(p,q) | 9r. p R1 r ^ r R2 q}

it can be shown that the relation R1 �R2 is a strong bisimulation whenever R1 and R2
are such (see Problem 11.4).

Definition 11.5 (Strong bisimilarity '). Let s1 and s2 be two states of an LTS, then
they are said to be strong bisimilar, written s1 ' s2 if and only if there exists a strong
bisimulation R such that s1 R s2.

The relation ' is called strong bisimilarity and is defined as follows:

' def
=

[

R is a strong bisimulation
R

Remark 11.2. In the literature, strong bisimilarity is often denoted by ⇠. We use the
symbol ' to make explicit that it is a congruence relation (see Section 11.5).

To prove that two processes p and q are strong bisimilar it is enough to define a
strong bisimulation that contains the pair (p,q).

Example 11.11. Examples 11.7 and 11.8 show agents which are trace equivalent but
whose graphs are not isomorphic. Here we show that they are also strong bisimilar.
In the case of the agents in Examples 11.7, let us consider the relations

R1
def
= {(rec x. a.x,rec x. a.a.x) , (rec x. a.x,a.rec x. a.a.x)}

R2
def
= {(rec x. a.x,a.rec x. a.x) , (rec x. a.x,rec x. a.x)}.

In the case of the agents in Example 11.8, let us consider the relation

R def
= {(B2

0,B
1
0 | B1

0) , (B
2
1,B

1
1 | B1

0) , (B
2
1,B

1
0 | B1

1) , (B
2
2,B

1
1 | B1

1)}.

We invite the reader to check that they are indeed strong bisimulations.

Theorem 11.1 proves that strong bisimilarity ' is an equivalence relation on CCS
processes. Below we recall the definition of equivalence relation.

Definition 11.6 (Equivalence Relation). Let ⌘ be a binary relation on a set X , then
we say that it is an equivalence relation if it has the following properties:

reflexivity: 8x 2 X . x ⌘ x;
symmetry: 8x,y 2 X . x ⌘ y ) y ⌘ x.
transitivity: 8x,y,z 2 X . x ⌘ y^ y ⌘ z ) x ⌘ z;

The equivalence induced by a relation R is the least equivalence that contains R: it
is denoted by ⌘R and is defined by the inference rules below
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x R y
x ⌘R y x ⌘R x

x ⌘R y
y ⌘R x

x ⌘R y y ⌘R z
x ⌘R z

Note that, in general, a strong bisimulation R is not necessarily reflexive, symmet-
ric or transitive (see, e.g., Example 11.11). However, given any strong bisimulation
R, its induced equivalence relation ⌘R is also a strong bisimulation.

Theorem 11.1. Strong bisimilarity ' is an equivalence relation.

We omit the proof of Theorem 11.1: it is based on the above mentioned properties
of strong bisimulations (see Problem 11.5).

Theorem 11.2. Strong bisimilarity ' is the largest strong bisimulation.

Proof. We need just to prove that ' is a strong bisimulation: by definition it contains
any other strong bisimulation. By Theorem 11.1, we know that ' is symmetric, so it
is sufficient to prove that if s1 ' s2 and s1

µ�! s0
1 then we can find s0

2 such that s2
µ�! s0

2

and s0
1 ' s0

2. Let s1 ' s2 and s1
µ�! s0

1. Since s1 ' s2, by definition of ', there exists a
strong bisimulation R such that s1 R s2. Therefore, there is s0

2 such that s2
µ�! s0

2 and
s0

1 R s0
2. Since R ✓ ' we have s0

1 ' s0
2. ut

We can then give a precise characterisation of strong bisimilarity.

Theorem 11.3. For any states s1 and s2 we have:

s1 ' s2 ,
(

8µ,s0
1. s1

µ�! s0
1 implies 9s0

2. s2
µ�! s0

2 and s0
1 ' s0

2; and
8µ,s0

2. s2
µ�! s0

2 implies 9s0
1. s1

µ�! s0
1 and s0

1 ' s0
2.

Proof. One implication ()) follows directly from Theorem 11.2.
The other implication (() is sketched here. Take s1 and s2 such that

8µ,s0
1. if s1

µ�! s0
1 then 9s0

2 such that s2
µ�! s0

2 and s0
1 ' s0

2

8µ,s0
2. if s2

µ�! s0
2 then 9s0

1 such that s1
µ�! s0

1 and s0
1 ' s0

2.

We want to show that s1 ' s2. This is readily done by showing that the relation

R def
= {(s1,s2)}[ '

is a strong bisimulation. By Theorem 11.2, all pairs in ' satisfy the requirement for
strong bisimulation. It is immediate to check that also the pair (s1,s2) 2 R satisfies
the condition. ut

Checking that a relation is a strong bisimulation requires checking that all the
pairs in it satisfy the condition in Definition 11.4. So it is very convenient to exhibit
relations that are as small as possible, e.g., we can avoid to add reflexive, symmetric
and transitive pairs, unless needed.

In the following, when we will consider relations that are equivalences, instead of
listing all pairs of processes in the relation, we will list just the induced equivalence
classes for brevity, i.e., we will work with quotient sets.
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Definition 11.7 (Equivalence classes and quotient sets). Given an equivalence re-
lation ⌘ on X and an element x 2 X we call the equivalence class of x the subset
[x]⌘ ✓ X defined as follows:

[x]⌘
def
= {y 2 X | x ⌘ y}

The set X/⌘ containing all the equivalence classes generated by a relation ⌘ on the
set X is called quotient set.

11.4.3.1 Strong Bisimilarity as a Fixpoint

Now we re-use fixpoint theory, which we have introduced in the previous chapters,
in order to define strong bisimilarity in a more effective way. Using fixpoint theory
we will construct, by successive approximations, the coarsest (largest, i.e.. that
distinguishes as least as possible) strong bisimulation between the states of an LTS.

As usual, we define the CPO? on which the approximation function works. The
CPO? is defined on the powerset √(P ⇥P) of pairs of CCS processes, i.e., the
set of all relations on P . We know that, for any set S, the structure (√(S),✓) is a
CPO?, but it is not exactly the one we are going to use.

Then we define a monotone function F that maps relations to relations and such
that any strong bisimulation is a pre-fixpoint of F. However we would like to take the
largest relation, not the least one, because strong bisimilarity distinguishes as least as
possible. Therefore, we need a CPO? in which a set with more pairs is considered
“smaller” than one with fewer pairs. This way, we can start from the coarsest relation,
which considers all the states equivalent and, by using the approximation function,
we can compute the relation that identifies only strong bisimilar agents.

We define the order relation v on √(P ⇥P) by letting

R v R0 , R0 ✓ R.

Notably, the bottom element is not the empty relation, but the universal relation
P ⇥P . The resulting CPO? (√(P ⇥P),v) is represented in Figure 11.10.

Now we define the transformation function F :√(P ⇥P) !√(P ⇥P).

p F(R) q def
=

(
8µ, p0. p

µ�! p0 implies 9q0. q
µ�! q0 and p0 R q0; and

8µ,q0. q
µ�! q0 implies 9p0. p

µ�! p0 and p0 R q0

Note that F maps relations to relations.

Lemma 11.1 (Strong bisimulation as a pre-fixpoint). Let R be a relation in
√(P ⇥P). It is a strong bisimulation if and only if it is a pre-fixpoint of F, i.e., if
and only if F(R) v R (or equivalently, R ✓ F(R)).

Proof. Immediate, by definition of strong bisimulation. ut
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R0 = P ⇥ P

R1 = �(R0)

R2 = �(R1)

Rn = �(Rn)

�

✓

v

bisimilarity

bisimulations�(R) v R

Fig. 11.10: The CPO? (√(P ⇥P),v)

It follows from Lemma 11.1 that an alternative definition of strong bisimilarity is:

' def
=

[

F(R)vR

R.

Theorem 11.4. Strong bisimilarity is the least fixpoint of F.

Proof. By Theorem 11.3 it follows that strong bisimilarity is a fixpoint of F. Then,
the thesis follows immediately by Lemma 11.1 and by the fact that strong bisimilarity
is the largest strong bisimulation. ut

We would like to exploit the fixpoint theorem to compute strong bisimilarity. All
we need to check is that F is monotone and continuous.

Theorem 11.5 (F is monotone). The function F is monotone.

Proof. For all relations R1,R2 2√(P ⇥P), we need to prove that

R1 v R2 ) F(R1) v F(R2).

Assume R1 v R2, i.e., R2 ✓ R1. We want to prove that F(R1) v F(R2), i.e., that
F(R2) ✓ F(R1). Suppose s1 F(R2) s2; we want to show that s1 F(R1) s2. Take µ,s0

1

such that s1
µ�! s0

1. Since s1 F(R2) s2, there exists s0
2 such that s2

µ�! s0
2 and s0

1 R2 s0
2.

But since R2 ✓ R1, we have s0
1 R1 s0

2. Analogously for the case when s2
µ�! s0

2. ut
Unfortunately, the function F is not continuous in general, as there are pathologi-

cal processes that show that the limit of the chain {Fn(P ⇥P)}n2N is not a strong
bisimulation. As a consequence, we cannot directly apply Kleene’s fixpoint theorem.
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Example 11.12. To see an example of CCS processes p and q that are not strong
bisimilar but that are related by all relations in the chain {Fn(P ⇥P)}n2N, the
idea is the following. For simplicity let us focus on processes that can only perform
t-transitions. Let r def

= rec x. t.x; it can only execute infinitely many t-transitions.
Now, for n 2 N, let pn

def
= t....t| {z }

n times

.nil be the process that can execute n consecutive

t-transitions. Obviously r and pn are not strongly bisimilar for any n. Then, we take
as p a process that can choose between infinitely many alternatives, each choice
leading to the execution of finitely many t-transitions. Informally,

p = p1 + p2 + ...+ pn + ...

Finally, we take q = p+ r. Clearly p and q are not strong bisimilar, because, in the
bisimulation game, Alice the attacker has a winning strategy: she chooses to execute
q t�! r, then Bob the defender can only reply by executing a transitions of the form
p t�! pn for some n 2 N, and we know that r 6' pn. Of course, infinite summations
are not available in the syntax of CCS. However we can define a recursive process
that exhibits the same behaviour as p. Concretely, we let f be a permutation that
switches a with b and take p = (p0 | a.nil)\a , where:

p0 def
= rec X . ((X [f ] | b .a.nil)\b + a.nil)

The process p0 can execute any sequence of t-transitions concluded by an a-
transition, but when performing the first transition it is left with the possibility
to execute as many transitions as the number of times the recursive definition has
been unfolded. To see this, observe that clearly p0 a�! nil. Therefore

p0 l�! s -⇤
Rec, Sum (p0[f ] | b .a.nil)\b l�! s

-Res, s=s1\b p0[f ] | b .a.nil l�! s1, l 6= b ,b

-Com, l=t, s1=s2|s3 p0[f ]
l1�! s2, b .a.nil l1�! s3

-Rel, l1=f(l2), s2=s4[f ] p0 l2�! s4, b .a.nil f(l2)���! s3

-⇤
l2=a, s4=nil b .a.nil b�! s3

-Act, s3=a.nil ⇤

That is p0 t�! (nil[f ]|a.nil)\b a�! (nil[f ]|nil)\b . Then, we have

p0 l�! s -⇤
Rec, Sum, Res, s=s1\b p0[f ] | b .a.nil l�! s1, l 6= b ,b
-Par, s1=s2|b .a.nil p0[f ]

l�! s2, l 6= b ,b
-Rel, l=f(l1) s2=s3[f ] p0 l1�! s3, f(l1) 6= b ,b

-⇤
l1=t, s3=(nil[f ]|a.nil)\b ⇤
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So p0 t�! (((nil[f ]|a.nil)\b )[f ]|b .a.nil)\b t�! (((nil[f ]|nil)\b )[f ]|a.nil)\b a�!
(((nil[f ]|nil)\b )[f ]|nil)\b , and so on.

Now, for any n 2 N, let 'n
def
= Fn(P ⇥ P). By definition we have, that '0=

P ⇥P and 'n+1= F('n) for any n 2 N. It can be proved by mathematical induction
on n 2 N that pn 'n r and that for any s 2 P it holds s 'n s. Now we prove that
p 'n q for any n 2 N. The proof is by mathematical induction on n. The base case
follows immediately since '0

def
= P ⇥P . For the inductive case, we want to prove

that p 'n+1 q. We observe that any transition p t�! pn of p can be directly simulated
by the corresponding move q t�! pn of q (and vice versa). The interesting case is when
we consider the transition q t�! r of q. Then, p can simulate the move by executing
the transition p t�! pn, as we know that pn 'n r. Hence p F('n) r, i.e., p 'n+1 r.

Let P f ✓ P denote the set of finitely branching processes.

Theorem 11.6 (Strong bisimilarity as the least fixpoint). Let us consider only
relations over finitely branching processes. Then the function F is continuous and

' =
G

n2N
Fn(P f ⇥P f ).

Proof. To prove that F is continuous, we need to prove that for any chain {Rn}n2N
of relations over finitely branching processes:

F

 
G

n2N
Rn

!
=
G

n2N
F(Rn)

Note that, in the CPO? (√(P f ⇥P f ),v), the least upper bound
F

n2N Rn of a chain
of relations is obtained by taking the intersection of all relations in the chain, not
their union. We prove the two inclusions separately.

✓: Take (p,q) 2 F(
F

n2N Rn); we want to prove that (p,q) 2
F

n2N F(Rn). This
amounts to prove that 8n 2 N. (p,q) 2 F(Rn). Take a generic k 2 N, we want
to prove that (p,q) 2 F(Rk). Let p

µ�! p0 of p, we want to find a transition
q

µ�! q0 of q such that (p0,q0) 2 Rk. Since (p,q) 2 F(
F

n2N Rn), we know that
there exists a transition q

µ�! q0 of q such that (p0,q0) 2
F

n2N Rn. Therefore
(p0,q0) 2 Rk. The case when q moves is analogous.

◆: Take (p,q) 2
F

n2N F(Rn), i.e., 8n 2 N. (p,q) 2 F(Rn); we want to prove that
(p,q) 2 F(

F
n2N Rn). Take any transition p

µ�! p0 of p. We want to find a
transition q

µ�! q0 of q such that (p0,q0) 2
F

n2N Rn. This amounts to require
that 8n 2 N. (p0,q0) 2 Rn. Since 8n 2 N. (p,q) 2 F(Rn), we know that for
any n 2 N there exists a transition q

µ�! qn such that (p0,qn) 2 Rn. Moreover,
since {Rn}n2N is a chain, then (p0,qn) 2 Rk for any k  n. Since q is finitely
branching, the set {q0 | q

µ�! q0} is finite. Therefore there is some index m 2 N
such that the set {n | qn = qm} is infinite, i.e., such that (p0,qm) 2 Rn for all
n 2 N. We take q0 = qm and we are done. The case when q moves is analogous.
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The second part of the theorem, the one about ' follows by continuity of F, by
Kleene’s fixpoint Theorem 5.6 and Theorem 11.4. ut

The problem with the processes considered in Examples 11.12 and 11.13 is that
they are not guarded (see Remark 11.1), i.e. they have recursively defined names that
occur unguarded (not nested under some action prefix) in the body of the recursive
definition. The following lemma ensures that the LTS of any guarded term is finitely
branching and we know already from Remark 11.1 that all states reachable from
guarded processes are also guarded. As a corollary, strong bisimilarity of two guarded
processes can be studied by computing the least fixpoint as in Theorem 11.6.

Lemma 11.2 (Guarded processes are finitely branching). Let p be a guarded
process. Then, for any action µ the set {q | p

µ�! q} is finite.

Proof. We want to prove that G(p,?) implies that the set {q | p
µ�! q} is finite.

We prove the stronger property that for any finite set X = {x1, ...,xn} of process
names and processes p1, ..., pn, then G(p,X)^

V
i2[1,n] G(pi,X) implies that the set

{q | p[p1/x1 , ...,
pn /xn ]

µ�! q} is finite. The proof is by structural induction on p. For
brevity, let s denote the substitution [p1/x1 , ...,

pn /xn ]. We only shows a few cases.

nil: The case where p = nil is trivial as nils = nil and {q | nil µ�! q} = ?.
var: If p = x, then there are two possibilities. If x 2 X , then the premise

G(x,X) is falsified and therefore the implication holds trivially. If x 62 X
then xs = x and {q | x

µ�! q} = ?.
prefix: If p = µ.p0, then {q | (µ.p0)s µ�! q} = {p0s} is a singleton.
restriction: If p = p0\a such that G(p0,X), then there are two cases. If µ 2 {a,a}

then {q | (p0\a)s µ�! q} = ?. Otherwise the set

{q | (p0\a)s µ�! q} = {q0\a | p0s µ�! q0}

is finite because {q0 | p0s µ�! q0} is finite by inductive hypothesis.
sum: If p = p0

0 + p0
1 such that G(p0

0,X) and G(p0
1,X), then the set

{q | (p0
0 + p0

1)s
µ�! q} = {q0

0 | p0
0s µ�! q0

0}[{q0
1 | p0

1s µ�! q0
1}

is finite because the sets {q0
0 | p0

0s µ�! q0
0} and {q0

1 | p0
1s µ�! q0

1} are
finite by inductive hypothesis.

recursion: If p = rec x. p0 such that G(p0,X [{x}),3 then the set

{q | (rec x. p0)s µ�! q} = {q | p0s [rec x. p0
/x]

µ�! q}

is finite by inductive hypothesis. ut

3 Without loss of generality, we can assume that x 62 X and that x does not appear free in any pi, as
otherwise we a-rename x in p0. Then, for any i 2 [1,n] we have G(pi,X [{x}) (see Remark 11.1).
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Example 11.13 (Infinitely branching process). Let us consider the recursive agent

p def
= rec x. (x | a.nil).

The agent p is not guarded, because the occurrence of x in the body of the recursive
process is not prefixed by an action: G(p,?) = G(x | a.nil,{x}) = G(x,{x}) ^
G(a.nil,{x}) = x 62 {x}^G(nil,?) = false^ true = false. By using the rules of the
operational semantics of CCS we have, e.g.:

rec x. (x | a.nil) µ�! q -Rec (rec x. (x | a.nil)) | a.nil µ�! q

-Par, q=q1 | a.nil rec x. (x | a.nil) µ�! q1

-Rec (rec x. (x | a.nil)) | a.nil µ�! q1

-Par, q1=q2 | a.nil rec x. (x | a.nil) µ�! q2

-Rec ...

... rec x. (x | a.nil) µ�! qn

-Rec (rec x. (x | a.nil)) | a.nil µ�! qn

-Par, qn=(rec x. (x | a.nil)) | q0 a.nil µ�! q0

-Act, µ=a, q0=nil 2

It is then evident that for any n 2 N we have:

rec x. (x | a.nil) a�! (rec x. (x | a.nil)) | nil | a.nil | · · · | a.nil| {z }
n

.

When we want to compare two processes p and q for strong bisimilarity it is
not necessary to compute the whole relation '. Instead, we can just focus on the
processes that are reachable from p and q. If the number of reachable states is
finite, then the calculation is effective, but possibly quite complex if the number of
states is large. In fact, the size of the LTS can explode for concise processes, due to
the interleaving of concurrent actions: if we have n processes p1, ..., pn running in
parallel, each with k possibly reachable states, then the process ((p1 | p2) | ...pn) can
have up to kn reachable states.

Example 11.14 (Strong bisimilarity as least fixpoint). Let us consider the Exam-
ple 11.9 which we have already approached with game theory techniques. Now we
illustrate how to apply the fixpoint technique to the same system. Remind that:

p def
= a.(b .nil+g.nil) q def

= a.b .nil+a.g.nil

Let us focus on the set of reachable states S and represent the relations by showing
the equivalence classes which they induce (over reachable processes). We start with
the coarsest relation, where any two processes are related (just one equivalence class).
At each iteration, we refine the relation by applying the operator F.
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R0 = F0(?√(S⇥S)) = ?√(S⇥S) = { {p , q , b .nil+g.nil , b .nil , g.nil , nil} }
R1 = F(R0) = { {p,q} , {b .nil+g.nil} , {b .nil} , {g.nil} , {nil} }
R2 = F(R1) = { {p} , {q} , {b .nil+g.nil} , {b .nil} , {g.nil} , {nil} }

Initially, according to R0, any process is related with any other process, i.e., we
have a unique equivalence class.

After the first iteration (R1), we distinguish the processes on the basis of their
possible transitions. Note that, as all the target states are related by R0, we can only
discriminate by looking at the labels of transitions. For example, b .nil and g.nil must
be distinguished because b .nil has an outgoing b -transition, while g.nil does not
have a b -transition. Similarly b .nil+g.nil must be distinguished from g.nil because
it has a b -transition and from b .nil because it has a g-transition. Moreover, the
inactive process nil is clearly distinguished from any other (non deadlock) process.
Only p and q are related by R1, because both can execute only a-transitions.

At the second iteration we focus on the unique equivalence class {p,q} in R1
which is not a singleton, as we cannot split any further the other equivalence classes.
Now let us consider the transition q a�! b .nil. Process p has a unique a-transition
that can be used to simulate the move of q, namely p a�! b .nil+g.nil, but b .nil and
b .nil+g.nil are not related by R1, therefore p and q must be distinguished by R2.

Note that R2 is a fixpoint, because each equivalence class is a singleton and cannot
be split any further. Hence p and q fall in different equivalence classes and they are
not strong bisimilar.

We conclude by studying strong bisimilarity of possibly unguarded processes.
Even in this case the least fixpoint exists, as granted by Knaster-Tarski’s fixpoint
Theorem 11.7 which ensures the existence of least and greatest fixpoints for monotone
functions over complete lattices.

Definition 11.8 (Complete lattice). A partial order (D,v) is a complete lattice if
any subset X ✓ D has a least upper bound and a greatest lower bound, denoted byF

X and
d

X , respectively.

Note that any complete lattice has a least element ? =
d

D and a greatest element
> =

F
D. Any powerset ordered by inclusion defines a complete lattice, hence the

set √(P ⇥P) of all relations over CCS processes is a complete lattice.
The next important result is named after Bronislaw Knaster who proved it for the

special case of lattices of sets and Alfred Tarski who generalised the theorem to its
current formulation.4

Theorem 11.7 (Knaster-Tarski’s fixpoint theorem). Let (D,v) a complete lattice
and f : D ! D a monotone function. Then f has a least fixpoint and a greatest
fixpoint, defined respectively as follows:

dmin
def
=

l
{d 2 D | f (d) v d} dmax

def
=
G

{d 2 D | d v f (d)}.

4 The theorem is actually stronger than what is presented here, because it asserts that the set of
fixpoints of a monotone function on a complete lattice forms a complete lattice itself.
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Proof. It can be seen that dmin is defined as the greatest lower bound of the set of
pre-fixpoints. To prove that dmin is the least fixpoint, we need to prove that:

1. dmin is a fixpoint, i.e., f (dmin) = dmin;
2. for any other fixpoint d 2 D of f we have dmin v d.

We split the proof of point 1, in two parts: f (dmin) v dmin and dmin v f (dmin).
For conciseness, let Pre f

def
= {d 2 D | f (d) v d}. By definition of dmin, we have

dmin v d for any d 2 Pre f . Since f is monotone, f (dmin) v f (d) and by transitivty

f (dmin) v f (d) v d

Thus, also f (dmin) is a lower bound of the set {d 2 D | f (d) v d}. Since dmin is the
greatest lower bound, we have f (dmin) v dmin.

To prove the converse, note that by the previous property and monotonicity of f
we have f ( f (dmin)) v f (dmin). Therefore f (dmin) 2 Pre f and since dmin is a lower
bound of Pre f it must be dmin v f (dmin).

Finally, any fixpoint d 2 D of f is also a pre-fixpoint, i.e., d 2 Pre f and thus
dmin v d because dmin is a lower bound of Pre f .

The proof that dmax is the greatest fixpoint is analogous and thus omitted. ut

We have already seen that F is monotone, hence Knaster-Tarski’s fixpoint theorem
guarantees the existence of the least fixpoint, and hence strong bisimilarity, also
when infinitely branching processes are considered.

11.5 Compositionality

In this section we focus on compositionality issues of the abstract semantics which
we have just introduced. For an abstract semantics to be practically relevant it is
important that any process used in a system can be replaced with an equivalent process
without changing the semantics of the system. Since we have not used structural
induction in defining the abstract semantics of CCS, no kind of compositionality
is ensured w.r.t. the possible ways of constructing larger systems, i.e., w.r.t. the
operators of CCS.

Definition 11.9 (Congruence). An equivalence ⌘ is said to be a congruence (with
respect to a class of contexts) if:

8C[·]. p ⌘ q ) C[p] ⌘ C[q]

In order to guarantee the compositionality of CCS we must show that strong
bisimilarity is a congruence relation with respect to all CCS contexts.

The next example shows an equivalence relation that is not a congruence.

Example 11.15 (Completed trace semantics). Let us consider the processes p and q
from Example 11.9. Take the following context:
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C[·] def
= ( · | a.b .d .nil)\a\b\g

Now we can fill the hole in C[·] with the processes p and q:

C[p] = (a.(b .nil+g.nil) | a.b .d .nil)\a\b\g

C[q] = ((a.b .nil+a.g.nil) | a.b .d .nil)\a\b\g

Obviously C[p] and C[q] generate the same set of traces, however one of the processes
can “deadlock” before the interaction on b takes place, but not the other:

C[p]

t
✏✏

C[q]

t

⌅⌅

t
✏✏

((b .nil+g.nil) | b .d .nil)\a\b\g

t
✏✏

(g.nil | b .d .nil)\a\b\g

(nil | d .nil)\a\b\g

d
✏✏

(b .nil | b .d .nil)\a\b\gt
oo

(nil | nil)\a\b\g

The difference can be formalised if we consider completed trace semantics. Let us
write p 6! for the predicate ¬(9µ,q. p

µ�! q). A completed trace of p is a sequence
of actions µ1 · · ·µk (for k � 0) such that there exist p0, ..., pk with

p = p0
µ1�! p1

µ2�! · · · µk�1���! pk�1
µk�! pk 6!

The completed trace semantics of p is the same as that of q, namely { ab , ag }.
However, the completed traces of C[p] and C[q] are { ttd } and { ttd , t }, respec-
tively. We can thus conclude that the completed trace semantics is not a congruence.

11.5.1 Strong Bisimilarity is a Congruence

In order to show that strong bisimilarity is a congruence w.r.t. all contexts it is enough
to prove that the property holds for all the operators of CCS. So we need to prove
that, for any p, p0, p1,q,q0,q1 2 P:

• if p ' q, then 8µ. µ.p ' µ.q;
• if p ' q, then 8a. p\a ' q\a;
• if p ' q, then 8f . p[f ] ' q[f ];
• if p0 ' q0 and p1 ' q1, then p0 + p1 ' q0 +q1;
• if p0 ' q0 and p1 ' q1, then p0 | p1 ' q0 | q1.
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The congruence property is important, because it allows to replace any process
with an equivalent one in any context, preserving the overall behaviour.

Here we give the proof only for parallel composition, which is an interesting case
to consider. The other cases follow by similar arguments and are left as an exercise
(see Problem 11.7)

Lemma 11.3 (Strong bisimilarity is preserved by parallel composition). For any
p0, p1,q0,q1 2 P , if p0 ' q0 and p1 ' q1, then p0 | p1 ' q0 | q1.

Proof. As usual we assume the premise p0 ' q0 ^ p1 ' q1 and we would like to
prove that p0 | p1 ' q0 | q1, i.e., that:

9R. (p0 | p1) R (q0 | q1) ^ R ✓ F(R)

Since p0 ' q0 and p1 ' q1 we have:

p0 R0 q0 for some strong bisimulation R0 ✓ F(R0)
p1 R1 q1 for some strong bisimulation R1 ✓ F(R1)

Now let us consider the relation:

R def
= {(r0 | r1 , s0 | s1) | r0 R0 s0 ^ r1 R1 s1}

By definition it holds (p0 | p1) R (q0 | q1). Now we show that R is a strong bisimu-
lation (i.e., that R ✓ F(R)). Let us take a generic pair (r0 | r1 , s0 | s1) 2 R and let
us consider a transition r0 | r1

µ�! r, we need to prove that there exists s such that
s0 | s1

µ�! s with (r,s) 2 R. (The case where s0 | s1 executes a transition that r0 | r1
must simulate is completely analogous.) There are three rules whose conclusions
have the form r0 | r1

µ�! r.

• The first case is when we have applied the first (Par) rule. So we have r0
µ�! r0

0
and r = r0

0 | r1 for some r0
0. Since r0 R0 s0 and R0 is a strong bisimulation relation,

then there exists s0
0 such that s0

µ�! s0
0 and (r0

0,s
0
0) 2 R0. Then, by applying the

same inference rule we get s0 | s1
µ�! s0

0 | s1. Since (r0
0,s

0
0) 2 R0 and (r1,s1) 2 R1,

we have (r0
0 | r1,s0

0 | s1) 2 R and we conclude by taking s = s0
0 | s1.

• The second case is when we have applied the second (Par) rule. So we have
r1

µ�! r0
1 and r = r0 | r0

1 for some r0
1. By a similar argument to the previous case

we prove the thesis.
• The last case is when we have applied the (Com) rule. This means that r0

l�! r0
0,

r1
l�! r0

1, µ = t and r = r0
0 | r0

1 for some observable action l and processes r0
0,r

0
1.

Since r0 R0 s0 and R0 is a strong bisimulation relation, then there exists s0
0 such that

s0
l�! s0

0 and (r0
0,s

0
0) 2 R0. Similarly, since r1 R1 s1 and R1 is a strong bisimulation

relation, then there exists s0
1 such that s1

l�! s0
1 and (r0

1,s
0
1) 2 R1. Then, by applying

the same inference rule we get s0 | s1
t�! s0

0 | s0
1. Since (r0

0,s
0
0) 2 R0 and (r0

1,s
0
1) 2 R1,

we have (r0
0 | r0

1,s
0
0 | s0

1) 2 R and we conclude by taking s = s0
0 | s0

1. ut
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11.6 A Logical View to Bisimilarity: Hennessy-Milner Logic

In this section we present a modal logic introduced by Matthew Hennessy and Robin
Milner. Modal logic allows to express concepts as “there exists a next state such that”,
or “for all next states”, some property holds. Typically, model checkable properties
are stated as formulas in some modal logic. In particular, Hennessy-Milner modal
logic is relevant for its simplicity and for its close connection to strong bisimilarity.
As we will see, in fact, two strong bisimilar agents satisfy the same set of modal logic
formulas. This fact shows that strong bisimilarity is at the right level of abstraction.

Definition 11.10 (HM-logic). The formulas of Hennessy-Milner logic (HM-logic)
are generated by the following grammar:

F ::= true | false |
^

i2I
Fi |

_

i2I
Fi | 3µ F | 2µ F

We write L for the set of the HM-logic formulas (HM-formulas for short).
The formulas of HM-logic express properties over the states of an LTS, i.e., in

our case, of CCS agents. The meanings of the logic operators are the following:

true: is the formula satisfied by every agent. This operator is sometimes written
tt or just T.

false: is the formula never satisfied by any agent. This operator is sometimes
written ff or just F.V

i2I Fi: corresponds to the conjunction of the formulas in {Fi}i2I . Notice that true
can be considered as a shorthand for an indexed conjunction where the set
I of indexes is empty.W

i2I Fi: corresponds to the disjunction of the formulas in {Fi}i2I . Notice that false
can be considered as a shorthand for an indexed disjunction where the set
I of indexes is empty.

3µ F : it is a modal operator; an agent p satisfies this formula if there exists a
µ-labelled transition from p to some state q that satisfies the formula F .
This operator is sometimes written hµiF .

2µ F : it is a modal operator; an agent p satisfies this formula if for any q such
that there is a µ-labelled transition from p to q the formula F is satisfied
by q. This operator is sometimes written [µ]F .

As usual, logical satisfaction is defined as a relation |= between formulas and
their models, which in our case are CCS processes, seen as states of the LTS defined
by the operational semantics.

Definition 11.11 (Satisfaction relation). The satisfaction relation |= ✓ P ⇥L is
defined as follows (for any p 2 P , F 2 L and {Fi}i2I ✓ L ):
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p |= true
p |=

V
i2I Fi iff 8i 2 I. p |= Fi

p |=
W

i2I Fi iff 9i 2 I. p |= Fi

p |= 3µ F iff 9p0. p
µ�! p0 ^ p0 |= F

p |= 2µ F iff 8p0. p
µ�! p0 ) p0 |= F

If p |= F we say that the process p satisfies the HM-formula F .

Notably, if p cannot execute any µ-transition, then p |= 2µ F for any formula F .
For example, the formula 3a true is satisfied by all processes that can execute an
a-transition, and the formula 2b false is satisfied by all processes that cannot execute
a b -transition. Then the formula 3a true^2b false is satisfied by all processes that
can execute an a-transition but not a b -transition, while the formula 3a2b false is
satisfied by all processes that can execute an a-transition to reach a state where no
b -transition can be executed. Can you guess by which processes are satisfied the
formulas 3a false and 2b true? And the formula 2b3a true?

HM-logic induces an obvious equivalence on CCS processes: Two agents are
logically equivalent if they satisfy the same set of formulas.

Definition 11.12 (HM-logic equivalence). Let p and q be two CCS processes. We
say that p and q are HM-logic equivalent, written p ⌘HM q if

8F 2 L . p |= F , q |= F.

Example 11.16 (Non-equivalent agents). Let us consider two CCS agents p and q
whose LTSs are below:

p

a
✏✏
·

a

⌥⌥
a
⌫⌫

a

��
·

b

��
g
⌫⌫

·
b
✏✏

·
g
✏✏

· · · ·

q
a

��

a

��
·

a
✏✏

·
a

��
a

��
·

b

��
g
��

·
b
✏✏

·
g
✏✏

· · · ·
We would like to show a formula F which is satisfied by one of the two agents and
not by the other. For example, if we take

F = 3a2a(3b true^3g true) we have p 6 |=F and q |= F.

The agent p does not satisfy the formula F because after having executed its unique
a-transition we reach a state where it is possible to take a-transitions that lead to
states where either b or g is enabled, but not both. On the contrary, we can execute
the leftmost a-transition of q and we reach a state that satisfies 2a(3b true^3g true)
(i.e., the (only) state reachable by an a-transition can perform both g and b ).



DRAFT

11.6 A Logical View to Bisimilarity: Hennessy-Milner Logic 259

Although negation is not present in the syntax, HM-logic is closed under negation,
i.e., taken any formula F we can easily compute another formula Fc such that

8p 2 P. p |= F , p 6|= Fc.

The converse formula Fc is defined by structural recursion as follows:

truec def
= false falsec def

= true
(
V

i2I Fi)c def
=
W

i2I Fc
i (

W
i2I Fi)c def

=
V

i2I Fc
i

(3µ F)c def
= 2µ Fc (2µ F)c def

= 3µ Fc

Now we present two theorems which allow us to connect strong bisimilarity and
modal logic. As we said this connection is very important both from theoretical and
practical point of view. We start by introducing a measure over formulas, called
modal depth, to estimate the maximal number of consecutive steps that must be taken
into account to check the validity of the formulas.

Definition 11.13 (Depth of a formula). We define the modal depth (also depth) of
a formula as follows:

md(true) = md(false) def
= 0

md(
^

i2I
Fi) = md(

_

i2I
Fi)

def
= max{md(Fi) | i 2 I}

md(3µ F) = md(2µ F)
def
= 1+md(F)

It is immediate to see that the modal depth corresponds to the maximum nesting
level of modal operators. Moreover md(Fc) = md(F) (see Problem 11.16). For
example, in the case of the formula F in Example 11.16, we have md(F) = 3. We will
denote the set of logic formulas of modal depth k with Lk = {F 2 L | md(F) = k}.

The first theorem ensures that if two agents are not distinguished by the k-th
iteration of the fixpoint calculation of strong bisimilarity, then no formula of depth k
can distinguish between the two agents, and vice versa.

Theorem 11.8. Let k 2 N and let the relation 'k be defined as follows (see Exam-
ple 11.12):

p 'k q , p Fk(P f ⇥P f ) q.

Then, we have:

8k 2 N. 8p,q 2 P f . p 'k q iff 8F 2 Lk. (p |= F) , (q |= F).

Proof. We proceed by strong mathematical induction on k.

Base case: for k = 0 the only formulas F with md(F) = 0 are (conjunctions and
disjunctions of) true and false, which cannot be used to distinguish
processes. In fact F0(P f ⇥P f ) = P f ⇥P f .
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Ind. case: Suppose that:

8p,q 2 P f . p 'k q iff 8F 2 Lk. (p |= F) , (q |= F).

We want to prove that

8p,q 2 P f . p 'k+1 q iff 8F 2 Lk+1. (p |= F) , (q |= F).

We prove that

1. If p 6'k+1 q then a formula F 2 Lk+1 can be found such that p |= F
and q 6|= F . Without loss of generality, suppose there are µ, p0 such
that p

µ�! p0 and for any q0 such that q
µ�! q0 then p0 6'k q0. By

inductive hypothesis, for any q0 such that q
µ�! q0 there exists a

formula Fq0 2 Lk that is satisfied5 by p0 and not by q0. Since q is

finitely branching, the set Q def
= {q0 | q

µ�! q0} is finite and we can
set

F def
= 3µ

^

q02Q

Fq0 .

2. If p 'k+1 q and p |= F then q |= F . The proof proceeds by structural
induction on F . We leave the reader to fill the details. ut

The second theorem generalises the above correspondence by setting up a connec-
tion between formulas of any depth and strong bisimilarity.

Theorem 11.9. Let p and q two finitely branching CCS processes, then we have:

p ' q if and only if p ⌘HM q

Proof. It is a consequence of Theorems 11.6 and 11.8. ut

It is worth reading this result both in the positive sense, namely strong bisimilar
agents satisfy the same set of HM-formulas; and in the negative sense, namely if
two finitely branching agents p and q are not strong bisimilar, then there exists a
formula F which distinguishes between them, i.e., such that p |= F but q 6|= F . From
a theoretical point of view these theorems show that strong bisimilarity distinguishes
all and only those agents which enjoy different properties. These results witness that
the relation ' is a good choice from the logical point of view. From the point of
view of verification, if we are given a specification F 2 L and a (finitely branching)
implementation p, it can be convenient to minimise the size of the LTS of p by taking
its quotient q up to bisimilarity and then check if q |= F .

Later, in Section 12.3, we will show that we can define a denotational semantics
for logic formulas, by assigning to each formula F the set {p | p |= F} of all
processes that satisfy F .

5 If the converse applies, we just take Fc
q0 .
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11.7 Axioms for Strong Bisimilarity

Finally, we show that strong bisimilarity can be finitely axiomatised. First we present
a theorem which allows to derive for every non recursive CCS agent a suitable normal
form.

Theorem 11.10. Let p be a (non-recursive) CCS agent, then there exists a CCS agent,
strong bisimilar to p, built using only prefix, sum and nil.

Proof. We proceed by structural recursion. First we define two auxiliary binary
operators b and k, where pbq means that p must make a transition while q stays
idle, and p1kp2 means that p1 and p2 must perform a synchronisation. In both cases,
after the transition, the processes run in parallel. This corresponds to say that the
operational semantics rules for pbq and pkq are:

p
µ�! p0

pbq
µ�! p0 | q

p l�! p0 q l�! q0

pkq t�! p0 | q0

We show how to decompose the parallel operator, then we show how to simplify
the other cases:

p1 | p2 ' p1bp2 + p2bp1 + p1kp2

nilbp ' nil
µ.pbq ' µ.(p | q)

(p1 + p2)bq ' p1bq + p2bq

nilkp ' pknil ' nil
µ1.p1kµ2.p2 ' nil if µ1 6= µ2 _ µ1 = t

l .p1kl .p2 ' t.(p1 | p2)

(p1 + p2)kq ' p1kq + p2kq
pk(q1 +q2) ' pkq1 + pkq2

nil\a ' nil
(µ.p)\a ' nil if µ 2 {a,a}
(µ.p)\a ' µ.(p\a) if µ 6= a,a

(p1 + p2)\a ' p1\a + p2\a

nil[f ] ' nil
(µ.p)[f ] ' f(µ).p[f ]

(p1 + p2)[f ] ' p1[f ] + p2[f ]
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By repeatedly applying the axioms from left to right it is evident that any (non-
recursive) agent p can be rewritten to a sequential agent q built using only action
prefix, sum and nil. Since the left hand side and the right hand side of each axiom can
be proved to be strong bisimilar, by transitivity and congruence of strong bisimilarity,
we have that p and q are strong bisimilar. ut

From the previous theorem, it follows that every non-recursive CCS agent can be
equivalently written using action prefix, sum and nil. Note that the LTS of any non-
recursive CCS agent has only a finite number of reachable states. We call finite any
such agent. Finally, the axioms that characterise strong bisimilarity are the following:

p+nil ' p
p1 + p2 ' p2 + p1

p1 +(p2 + p3) ' (p1 + p2)+ p3

p+ p ' p

This last set of axioms simply asserts that processes with sum define an idempotent,
commutative monoid whose neutral element is nil.

Theorem 11.11. Any two finite CCS processes p and q are strong bisimilar if and
only if they can be equated using the above axioms.

Proof. We need to prove that the axioms are sound (i.e., they preserve strong bisimi-
larity) and complete (i.e., any strong bisimilar finite agents can be proved equivalent
using the axioms). Soundness can be proved by showing that the left-hand side and
the right-hand side of each axiom are strong bisimilar, which can be readily done
by exhibiting suitable strong bisimulation relations, similarly to what has been done
for proving that strong bisimilarity is a congruence. Completeness is more involved.
First, it requires the definition of a normal form representation for processes, called
head normal form (HNF for short). Second, it requires proving that for any two
strong bisimilar processes p and q that are in HNF we can prove that p is equal to q
by using the axioms. Third, it requires proving that any process can be put in HNF.
Formally, a process p is in HNF if it is written p = Âi2I µi.pi for some processes pi
that are themselves in HNF. We omit here the details of the proof. ut

Example 11.17 (Proving strong bisimilarity by equational reasoning). We have
seen in Example 11.7 that the operational semantics reduces concurrency to non-
determinism. Let us prove that a.nil | b .nil is strongly bisimilar to a.b .nil+b .a.nil
by using the axioms for strong bisimilarity. First let us observe that

nil | nil ' nilbnil + nilbnil + nilknil ' nil + nil + nil ' nil

Then, we have
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a.nil | b .nil ' a.nilbb .nil + b .nilba.nil + a.nilkb .nil
' a.(nil | b .nil) + b .(nil | a.nil) + nil
' a.(nilbb .nil + b .nilbnil + nilkb .nil)+

b .(nilba.nil + a.nilbnil + nilka.nil)
' a.(nil + b .(nil | nil) + nil) + b .(nil + a.(nil | nil) + nil)
' a.b .nil + b .a.nil

We remark that strong bisimilarity of (possibly recursive) CCS processes is not
decidable in general, while the above theorem can be used to prove that strong
bisimilarity of finite CCS processes is decidable. Moreover, if two finitely branching
(but possibly infinite-state) processes are not strong bisimilar, then we should be
able to find a finite counterexample, i.e., strong bisimilarity inequivalence of finitely
branching processes is semi-decidable (as a consequence of Theorem 11.9).

11.8 Weak Semantics of CCS

Let us now see an example that illustrates the limits of strong bisimilarity as a
behavioural equivalence between agents.

Example 11.18 (Linked buffers). Let us consider the buffers implemented as in Exam-
ple 11.8. An alternative implementation of a buffer of capacity two could be obtained
by linking two buffers of capacity one. Let us define the linking operation, similarly
to what we have done in Example 11.3, as follows:

p _ q def
= (p[fout ] | q[fin])\`

where fout is the permutation that switches out with ` and fin is the permutation that
switches in with ` (they are the identity otherwise). Then, an empty buffer of capacity
two could be implemented by taking B1

0 _ B1
0. However, its LTS is

B1
0 _ B1

0
in
xx

B1
1 _ B1

0
t // B1

0 _ B1
1

out
ff

inxx
B1

1 _ B1
1

out
ff

Obviously the internal t-transition B1
1 _ B1

0
t�! B1

0 _ B1
1, which is necessary to shift

the data from the leftmost buffer to the rightmost buffer, makes it not possible to
establish a strong bisimulation between B2

0 and B1
0 _ B1

0.
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The above example shows that, when we consider t as an internal action, not
visible from outside of the system, we would like, accordingly, to relate observable
behaviours that differ just for t-actions. Therefore strong bisimilarity is not abstract
enough for some purposes. For example, in many situations, one can use CCS to give
an abstract specification of a system and also to define an implementation that should
be provably “equivalent” to the specification, but typically the implementation makes
use of auxiliary invisible actions t that are not present in the specification. So it is
natural to try to abstract away from the invisible (t-labelled) transitions by defining
a new equivalence relation. This relation is called weak bisimilarity. We start by
defining a new, more abstract, LTS, where a single transitions can involve several
internal moves.

11.8.1 Weak Bisimilarity

Definition 11.14 (Weak transitions). We let ) be the weak transition relation on
the set of states of an LTS defined as follows:

p t
=) q def

= p t�! . . .
t�! q _ p = q

p l
=) q def

= 9p0,q0. p t
=) p0 l�! q0 t

=) q

Note that p t
=) q means that q can be reached from p via a, possibly empty, finite

sequence of t-transitions, i.e., the weak transition relation t
=) coincides with the

reflexive and transitive closure (
t�!)⇤ of the silent transition relation t�!. For l an

observable action, the relation l
=) requires instead the execution of exactly one l -

transition, possibly preceded and followed by any finite sequence (also empty) of
silent transitions.

We can now define a notion of bisimulation that is based on weak transitions.

Definition 11.15 (Weak Bisimulation). Let R be a binary relation on the set of states
of an LTS; then it is a weak bisimulation if

8s1,s2. s1 R s2 )
(

8µ,s0
1. s1

µ�! s0
1 implies 9s0

2. s2
µ
=) s0

2 and s0
1 R s0

2; and
8µ,s0

2. s2
µ�! s0

2 implies 9s0
1. s1

µ
=) s0

1 and s0
1 R s0

2.

Definition 11.16 (Weak bisimilarity ⇡). Let s1 and s2 be two states of an LTS, then
they are said to be weak bisimilar, written s1 ⇡ s2 if there exists a weak bisimulation
R such that s1 R s2.

As done for strong bisimilarity, we can now define a transformation function
Y :√(P ⇥P) !√(P ⇥P) which takes a relation R on P and returns another
relation Y(R) by exploiting simulations via weak transitions:
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p Y(R) q def
=

(
8µ, p0. p

µ�! p0 implies 9q0. q
µ
=) q0 and p0 R q0; and

8µ,q0. q
µ�! q0 implies 9p0. p

µ
=) p0 and p0 R q0.

Then a weak bisimulation R is just a relation such that Y(R) v R (i.e., R ✓ Y(R)).
From which it follows:

p ⇡ q if and only if 9R. p R q^Y(R) v R

and that an alternative definition of weak bisimilarity is

p ⇡ q def
=

[

Y(R)vR

R.

Weak bisimilarity is an equivalence relation and it seems to improve the notion
of equivalence w.r.t. ', because ⇡ abstracts away from the silent transitions as we
required. Unfortunately, there are two problems with this relation:

1. First, the LTS obtained by considering weak transitions
µ
=) instead of ordinary

transitions
µ�! can become infinitely branching also for guarded terms (consider,

e.g., the finitely branching process rec x. (t.x | a.nil), analogous to the agent
discussed in Example 11.13). Thus function Y is not continuous, and the minimal
fixpoint cannot be reached, in general, with the usual chain of approximations.

2. Second, and much worse, weak bisimilarity is a congruence w.r.t. all operators,
except choice +, as the following example shows. As a (minor) consequence,
weak bisimilarity cannot be axiomatised by context-insensitive laws.

Example 11.19 (Weak bisimilarity is not a congruence). Take the CCS agents:

p def
= a.nil q def

= t.a.nil

Obviously, we have p ⇡ q, since their behaviours differ only by the ability to perform
an invisible action t . Now we define the following context:

C[·] = ·+b .nil

Then by embedding p and q within the context C[·] we get:

C[p] = a.nil+b .nil 6⇡ t.a.nil+b .nil = C[q]

In fact C[q]
t�! a.nil, while C[p] has only one invisible weak transition that can

be used to match such a step, that is the idle step C[p]
t
=) C[p] and C[p] is clearly

not equivalent to a.nil (because the former can perform a b -transition that the
latter cannot simulate). This phenomenon is due to the fact that t-transitions are not
observable but can be used to discard some alternatives within non-deterministic
choices. While quite unpleasant, the above fact is not in any way due to a CCS
weakness, or misrepresentation of reality, but rather enlightens a general property of
nondeterministic choice in systems represented as black boxes.
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11.8.2 Weak Observational Congruence

As shown by the Example 11.19, weak bisimilarity is not a congruence relation.
In this section we present one possible (partial) solution. The idea is to close the
equivalence w.r.t. all sum contexts.

Let us consider the Example 11.19, where the execution of a t-transition forces
the system to make a choice which is invisible to an external observer. In order to
make this kind of choices observable we can define the relation u as follows

Definition 11.17 (Weak observational congruence u). We say that two processes
p and q are weakly observational congruent, written p u q if

p ⇡ q ^ 8r 2 P. p+ r ⇡ q+ r.

Weak observational congruence can be defined directly by letting:

p u q def
=

8
><

>:

8p0. p t�! p0 implies 9q0. q t�! t
=) q0 and p0 ⇡ q0; and

8l , p0. p l�! p0 implies 9q0. q l
=) q0 and p0 ⇡ q0;

(and, vice versa, any transition of q can be weakly simulated by p).

As we can see, an internal action p t�! p0 must now be matched by at least one internal
action. Notice however that this is not a recursive definition, since u is simply defined
in terms of ⇡: after the first step has been performed, other t-labeled transition can
be simulated also by staying idle. Now it is obvious that a.nil 6u t.a.nil, because
a.nil cannot simulate the t-transition t.a.nil t�! a.nil.

The relation u is a congruence but as we can see in the following example it is
not a (weak) bisimulation, namely u 6✓ Y(u).

Example 11.20 (Weak observational congruence is not a weak bisimulation). Let

p def
= b .p0 p0 def

= t.a.nil q def
= b .q0 q0 def

= a.nil

We have p0 6u q0 (see above), although Example 11.19 shows that p0 ⇡ q0. Therefore:

p ⇡ q and p u q

but, according to the weak bisimulation game, if Alice the attacker plays the b -

transition p
b�! p0, Bob the defender has no chance of playing a (weak) b -transition

on q and reach a state that is related by u with p0. Thus u is not a pre-fixpoint of Y .

Weak observational congruence u can be axiomatised by adding to the axioms
for strong bisimilarity the following three Milner’s t laws:

p+ t.p u t.p (11.1)
µ.(p+ t.q) u µ.(p+ t.q)+ µ.q (11.2)

µ.t.p u µ.p (11.3)



DRAFT

11.8 Weak Semantics of CCS 267

11.8.3 Dynamic Bisimilarity

Example 11.20 shows that weak observational congruence is not a (weak) bisim-
ulation. In this section we present the largest relation which is at the same time
a congruence and a weak bisimulation. It is called dynamic bisimilarity and was
introduced by Vladimiro Sassone.

Definition 11.18 (Dynamic bisimilarity ⇠=). We define the dynamic bisimilarity ⇠=
as the largest relation that satisfies:

p ⇠= q implies 8C[·]. C[p] Y(⇠=) C[q]

In this case, at every step we close the relation by comparing the behaviour w.r.t.
any possible embedding context. In terms of game theory this definition can be
viewed as “at each turn Alice the attacker is also allowed to insert both agents into
the same context and then choose the transition.”

Alternatively, we can define the dynamic bisimilarity in terms of the transforma-
tion function Q :√(P ⇥P) !√(P ⇥P) such that:

pQ(R) q def
=

8
><

>:

8p0. p t�! p0 implies 9q0. q t�! t
=) q0 and p0 R q0; and

8l , p0. p l�! p0 implies 9q0. q l
=) q0 and p0 R q0

(and, vice versa, any transition of q can be weakly simulated by p).

In this case, every internal move must be simulated by making at least one internal
move: this is different from weak observational congruence, where after the first step,
an internal move can be simulated by staying idle, and it is also different from weak
bisimulation, where any internal move can be simulated by staying idle.

Then, we say that R is a dynamic bisimulation if Q(R) v R, and dynamic bisimi-
larity can be defined by letting:

⇠= def
=

[

Q(R)vR

R

Example 11.21. Let p, p0,q and q0 be defined as in Example 11.20. We have:

p ⇡ q and p0 ⇡ q0 (weak bisimilarity)
p u q and p0 6u q0 (weak observational congruence)
p 6⇠= q and p0 6⇠= q0 (dynamic bisimilarity)

As for weak observational congruence, we can axiomatise dynamic bisimilarity of
finite processes. The axiomatisation of ⇠= is obtained from that of u by omitting
the third Milner’s t law (Equation 11.3), i.e., by adding to the axioms for strong
bisimilarity the laws:

p+ t.p ⇠= t.p (11.4)
µ.(p+ t.q) ⇠= µ.(p+ t.q)+ µ.q (11.5)
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Fig. 11.11: Main relations in the CPO? (√(P ⇥P),v)

The diagram in Figure 11.11 illustrates the main classes of bisimulations (strong,
weak, and dynamic), the corresponding bisimilarities (', ⇠=, and ⇡, respectively)
and other notions of process equivalence (graph isomorphism, trace equivalence, and
weak observational congruence). From the diagram it is evident that:

1. graph isomorphism is a strong bisimulation;
2. any strong bisimulation is also a dynamic bisimulation;
3. any dynamic bisimulation is also a weak bisimulation; and
4. all classes of bisimulations include the identity relation and are closed w.r.t.

(countable) union, inverse and composition.

To memorise the various inclusions, one can note that moving from strong to dynamic
bisimulation and from dynamic to weak, corresponds to allowing more options to
the defender in the bisimulation game:

1. in strong games, the defender must reply by playing a single transition;
2. in dynamic games, the defender can additionally use any number of t-transitions

before and after the chosen transition;
3. in weak games, the defender can also decide to leave the process idle.

Vice versa, in all games, the rules for the attacker stay the same.
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We remind that, in general, a bisimulation relation R is not an equivalence relation.
However, its induced equivalence ⌘R is also a bisimulation. Moreover, all bisimi-
larities (i.e., the largest bisimulations) are equivalence relations. Weak bisimilarity
⇡ is not a congruence, as marked by the absence of a bottom horizontal line in
the symbol. Dynamic bisimilarity ⇠= is the largest congruence that is also a weak
bisimulation. Weak observational congruence u is the largest congruence included in
weak bisimilarity; it includes dynamic bisimilarity, but it is not a weak bisimulation.
Finally, trace equivalence is a congruence relation and it includes strong bisimilarity.

Problems

11.1. Draw the complete LTS for the agent of Example 11.2.

11.2. Write the recursive CCS process that corresponds to X3 in Example 11.5.

11.3. Given a natural number n � 1, let us define the family of CCS processes Bn
k for

0  k  n by letting:

Bn
0

def
= in.Bn

1 Bn
k

def
= in.Bn

k+1 +out.Bn
k�1 for 0 < k < n Bn

n
def
= out.Bn

n�1

Intuitively Bn
k represents a buffer with n positions of which k are occupied (see

Example 11.8).
Prove that Bn

0 ' B1
0 | B1

0 | · · · | B1
0| {z }

n

by providing a suitable strong bisimulation.

11.4. Prove that the union R1 [R2 and the composition

R1 �R2
def
= {(p, p0) | 9p00.p R1 p00 ^ p00 R2 p0}

of two strong bisimulation relations R1 and R2 are also strong bisimulation relations.

11.5. Exploit the properties outlined in Problem 11.4 to prove that strong bisimilarity
is an equivalence relation (i.e., to prove Theorem 11.1).

11.6. CCS is expressive enough to encode imperative programming languages and
shared memory models of computation. A possible encoding is outlined below:

Termination: We can use a dedicated channel done over which a message is sent
when the current command is terminated. The message will trigger
the continuation, if any. In the following we let:

Done def
= done.nil

Skip: A skip statement is translated directly as t.Done or simply Done.
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Variables: Suppose x is a variable whose possible values range over a fi-
nite domain {v1, ...,vn}. Such variables can have n different states
X1,X2, ...,Xn, depending on the currently stored value. In any such
state, a write operation can change the value stored in the variable,
or the current value can be read. We can model this situation by
considering (recursively defined processes):

XW def
= Ân

i=1 xwi.Xi

X1
def
= xr1.X1 +XW ... Xn

def
= xrn.Xn +XW

where in any state Xi and for any j 2 [1,n] :

• a message on channel xw j causes a change of state to Xj;
• a message on channel xr j is accepted if and only if j = i.

Allocation: A variable declaration like

var x

can be modelled by the allocation of an uninitialised variable,6 to-
gether with the termination message:

xw1.X1 + xw2.X2 + ...+ xwn.Xn | Done

Assignment: An assignment like
x := vi

can be modelled by sending a message over the channel xwi to the
process that manages the variable x:

xwi.Done

Sequencing: Let p1, p2 be the CCS processes modelling the commands c1,c2.
Then, we could try to model the sequential composition

c1;c2

simply as p1 | done.p2, but this solution is unfortunate, because when
considering several processes composed sequentially, like (c1;c2);c3,
then the termination signal produced by p1 could activate p3 instead
of p2. To amend the situation, we can rename the termination channel
of p1 to a private name d, shared by p1 and p2 only:

(p1[fdone] | d.p2)\d

where fdone switches done with d (and is the identity otherwise).

6 Notice that an uninitialised variable cannot be read.
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Complete the encoding by implementing the following constructs:

Conditionals: Let p1, p2 be the CCS processes modelling the commands c1,c2.
Then, how can we model the conditional statement below?

if x = vi then c1 else c2

Iteration: Let p be the CCS process modelling the command c. Then, how can
we model the while statement below?

while x = vi do c

Concurrency: Let p1, p2 be the CCS processes modelling the commands c1,c2.
Then, how can we model the parallel composition below?

c1 | c2

Hint: note that p1 | p2 is not the correct answer: we want to signal
termination when both the executions of p1 and p2 are terminated.

11.7. Prove that strong bisimilarity ' is a congruence w.r.t. action prefix, restriction,
relabelling and sum (see Section 11.5.1).

11.8. Let us consider the agent A def
= rec x. (a.x | b .nil). Prove that among the

reachable states from A there exist infinitely many states that are not strong bisimilar.
Can there exist an agent B ' A that has a finite number of reachable states?

11.9. Prove that the LTS of any CCS process p built using only action prefix, sum,
recursion and nil has a finite number of states.

11.10. Draw the LTS for the CCS processes

p def
= rec x. (a.x+a.nil) q def

= rec y. (a.a.y+a.nil).

Then prove that p 6' q by exhibiting a formula in HM-logic.

11.11. Let us consider the CCS processes

r def
= a.(b .g.nil+b .t.g.nil+t.b .nil+b .nil) s def

= a.(b .g.t.nil+t.b .nil)+a.b .nil

Draw the LTS for r and s and prove that they are weakly observational congruent
by exploiting the axioms presented in Sections 11.7 and 11.8.2. At each step of the
proof explain which axiom is used and where it is applied.

11.12. Consider the CCS agents:

p def
= (rec x. a.x) | rec y. b .y q def

= rec z. a.a.z+a.b .z+b .a.z+b .b .z

Prove that p and q are strong bisimilar or exhibit an HM-logic formula F that can be
used to distinguish them.
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11.13. Let us consider sequential CCS agents composed using only nil, action prefix
and sum. Prove that for any such agents p,q and any permutation of action names j :

p
µ�! q implies j(p)

j(µ)���! j(q)

Then prove that p ' q implies j(p) ' j(q), where ' denotes strong bisimilarity.

11.14. Let us consider the LTSs below:

A0

t
✓✓ a // A1

b
��

t~~
A2

b

33
t

`` B0

a
✓✓

t

  
B1

b
��

a

``

1. Write the recursive CCS expressions that corresponds to A0 and B0.
Hint: Introduce a rec construct for each node in the diagram and name the process
variables as the nodes for simplicity, e.g., for A0 write rec A0. (t.A0 + ...).

2. Prove that A0 6⇡ B0 and B0 ⇡ B1, where ⇡ is the weak bisimilarity.

11.15. Let us define a loose bisimulation to be a relation R such that:

8p,q. p R q implies

(
8µ, p0. p

µ
=) p0 implies 9q0. q

µ
=) q0 and p0 R q0; and

8µ,q0. q
µ
=) q0 implies 9p0. p

µ
=) p0 and p0 R q0.

Prove that weak bisimilarity is the largest loose bisimulation by showing that:

1. any loose bisimulation is a weak bisimulation; and
2. any weak bisimulation is a loose bisimulation.

Hint: For (2) prove first, by mathematical induction on n � 0, that for any weak
bisimulation R, any two processes p R q, and any sequence of transitions p t�! p1

t�!
p2 · · · t�! pn there exists q0 with q t

=) q0 and pn R q0.

11.16. Let P denote the set of all (closed) CCS processes.

1. Prove that 8p,q 2 P. p | q ⇡ q | t.p, where ⇡ denotes weak bisimilarity, by
showing that the relation R below is a weak bisimulation:

R def
= {(p | q,q | t.p) | p,q 2 P}[{(p | q,q | p) | p,q 2 P}

2. Then exhibit two processes p and q and a context C[·] showing that s def
= p | q and

t def
= q | t.p are not weak observational congruent.

11.17. Prove that for any HM-formula F we have (Fc)c = F and md(Fc) = md(F).
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Chapter 12
Temporal Logic and the µ-Calculus

Formal methods will never have a significant impact until they
can be used by people that don’t understand them. (Tom Melham)

Abstract As we have briefly discussed in the previous chapter, modal logic is a
powerful tool that allows to check important behavioural properties of systems. In
Section 11.6 the focus was on Hennessy-Milner logic, whose main limitation is due
to its finitary structure: a formula can express properties of states up to a finite number
of steps ahead and thus only local properties can be investigated. In this chapter we
show some extensions of Hennessy-Milner logic that increase the expressiveness of
the formulas by defining properties about finite and infinite computations. The most
expressive language that we present is the µ-calculus, but we start by introducing
some other well-known logics for program verification, called temporal logics.

12.1 Specification and Verification

Reactive systems, such as those composed by parallel and distributed processes, are
characterised by non-terminating and highly nondeterministic behaviour. Reactive
systems have become widespread in our daily activities, from banking to healthcare,
and in software-controlled safety critical systems, from railways control systems
to space craft control systems. Consequently, gaining maximum confidence about
their trustworthiness has become an essential, primary concern. Intensive testing
can facilitate the discovery of bugs, but cannot guarantee their absence. Moreover,
developing test suites that grant full coverage of possible behaviours is difficult in
the case of reactive systems, due to their above mentioned intrinsic features.

Fuelled by impressive, world fame disaster stories of software failures1 that
(maybe) could have been avoided if formal methods would have been employed, over

1 Top famous stories include the problems with the Therac 25 radiation therapy engine that in the
period 1985-1987 caused the death of several patients by releasing massive overdoses of radiation;
the floating-point division bug in the Intel Pentium P5 processor due to an incorrectly coded lookup
table and discovered in 1994 by Professor Thomas R. Nicely at Lynchburg College; and the launch
failure in Ariane 5.01 maiden flight due to an overflow in data conversion that caused a hardware
exception and finally led to self-destruction.

273
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the years, formal methods have provided an extremely useful support in the design of
reliable reactive systems and in gaining high confidence that their behaviour will be
correct. The application of formal logics and model checking is nowadays common
practice in the early and advanced stages of software development, especially in the
case of safety-critical industrial applications. While disaster stories do not prove,
by themselves, that failures could have been avoided, in the last three decades
many success stories can be found in several different areas, such as, e.g., that of
mobile communications and security protocols, chip manufacturing, air-traffic control
systems, nuclear plants emergency systems.

Formal logics serve to write down unambiguous specifications about how a
program is supposed to behave and to reason about system correctness. Classically,
we can divide the properties to be investigated in three categories:

safety: properties expressing that something bad will not happen;
liveness: properties expressing that something good will happen;
fairness: properties expressing that something good will happen infinitely often.

The first step in extending HM-logic is to introduce the concept of time, which
was present only in a primitive form in the modal operators. This will extend the
expressiveness of modal logic, making it able to talk about concepts like “at the next
instant of time”, “always”,“never” or “sometimes”. When several options are possible,
we will also use path quantifiers, meaning “for all possible future computations” and
“for some possible future computation”. In order to represent the concept of time in
our logics we have to model it in some mathematical fashion. In our discussion we
assume that the time is discrete and infinite.

We start by introducing temporal logics and then present the µ-calculus, which
comes equipped with least and greatest fixpoint operators. Notably, most modal
and temporal logics can be defined as fragments of the µ-calculus, which in turn
provides an elegant and uniform framework for comparison and system verification.
Translations from temporal logics to the µ-calculus are of practical relevance, because
not only they allow to re-use algorithms for the verification of µ-calculus formulas
to check if temporal logics are satisfied, but also because temporal logic formulas are
often more readable than specifications written directly in the µ-calculus.

12.2 Temporal Logic

Temporal logic shares similarities with HM-logic, but:

• temporal logic is based on a set of atomic propositions whose validity is associated
with a set of states, i.e., the observations are taken on states and not on (actions
labelling the) arcs;

• temporal operators allow to look further than the “next” operator of HM-logic;
• as we will see, the choice of representing the time as linear (linear temporal logic)

or as a tree (computation tree logic) will lead to different types of logic, that
roughly correspond to the trace semantic view vs the bisimulation semantics view.
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12.2.1 Linear Temporal Logic

In the case of Linear Temporal Logic (LTL) the time is represented as a line. This
means that the evolutions of the system are linear, they proceed from a state to
another without making any choice. The formulas of LTL are based on a set P of
atomic propositions p, which can be composed using the classical logic operators
together with the following temporal operators:

O: is called next operator. The formula Of means that f is true in the next state
(i.e., in the next instant of time). Some literature uses X or N in place of O.

F : is called finally operator. The formula Ff means that f is true sometime in the
future.

G: The formula Gf means that f is always (globally) valid in the future.
U : is called until operator. The formula f0Uf1 means that f0 is true until the first

time that f1 is true.

LTL is also called Propositional Temporal Logic (PTL).

Definition 12.1 (LTL formulas). The syntax of LTL formulas is defined as follows:

f ::= true | false | ¬f | f0 ^f1 | f0 _f1 |
p | O f | F f | G f | f0 U f1

where p 2 P is any atomic proposition.

In order to represent the state of the system while the time elapses we introduce
the following mathematical structure.

Definition 12.2 (Linear structure). A linear structure is a pair (S,P), where P is
a set of atomic propositions and S : P ! √(N) is a function assigning to each
proposition p 2 P the set of time instants in which it is valid; formally:

8p 2 P. S(p) = {n 2 N | n satisfies p}

In a linear structure, the natural numbers 0,1,2 . . . represent the time instants, and
the states in them, and S represents, for every proposition, the states where it holds,
or, alternatively, it represents for every state the propositions it satisfies. The temporal
operators of LTL allows to quantify (existentially and universally) w.r.t. the traversed
states. To define the satisfaction relation, we need to check properties on future states,
like some sort of “time travel.” To this aim we define the following shifting operation
on S.

Definition 12.3 (Shifting). Let (S,P) be a linear structure. For any natural number k
we let (Sk,P) denote the linear structure where:

8p 2 P. Sk(p) = {n� k | n � k ^ n 2 S(p)}

As done for the HM-logic, we define the a notion of satisfaction |= as follows.
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Definition 12.4 (LTL satisfaction relation). Given a linear structure (S,P) we de-
fine the satisfaction relation |= for LTL formulas by structural induction:

S |= true
S |= ¬f if it is not true that S |= f
S |= f0 ^f1 if S |= f0 and S |= f1
S |= f0 _f1 if S |= f0 or S |= f1
S |= p if 0 2 S(p)
S |= O f if S1 |= f
S |= F f if 9k 2 N such that Sk |= f
S |= G f if 8k 2 N it holds Sk |= f
S |= f0 U f1 if 9k 2 N such that Sk |= f1 and 8i < k. Si |= f0

Two LTL formulas f and y are called equivalent, written f ⌘ y if for any S
we have S |= f iff S |= y . From the satisfaction relation it is easy to check that the
operators F and G can be expressed in terms of the until operator as follows:

F f ⌘ true U f
G f ⌘ ¬(F ¬f) ⌘ ¬(true U ¬f)

In the following we let
f0 ) f1

def
= f1 _¬f0

denote the logical implication.
Other commonly used operators are weak until (W ), release (R) and before (B).

They can be derived as follows:

W : The formula f0 W f1 is analogous to the ordinary “until” operator except for
the fact that f0 W f1 is also true when f0 holds always, i.e., f0 U f1 requires
that f1 holds sometimes in the future, while this is not necessarily the case for
f0 W f1. Formally, we have:

f0 W f1
def
= (f0 U f1) _ G f0

R: The formula f0 R f1 asserts that f1 must be true until and including the point
where f0 becomes true. As in the case of weak until, if f0 never becomes true,
then f1 must hold always. Formally, we have:

f0 R f1
def
= f1 W (f1 ^ f0)

B: The formula f0 B f1 asserts that f0 holds sometime before f1 holds or f1 never
holds. Formally, we have:

f0 B f1
def
= f0 R ¬f1

We can graphically represent a linear structure S as a diagram like
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0 ! 1 ! · · · ! k ! · · ·

where additionally each node can be tagged with some of the formulas it satisfies:
we write kf1,...,fn if Sk |= f1 ^ · · ·^fn.

For example, given p,q 2 P, we can visualise the linear structures that satisfy
some basic LTL formulas as follows:

X p 0 ! 1p ! 2 ! · · ·
F p 0 ! · · · ! (k �1) ! kp ! (k +1) ! · · ·
G p 0p ! 1p ! · · · ! kp ! · · ·

p U q 0p ! 1p ! · · · ! (k �1)p ! kq ! (k +1) ! · · ·

p W q
⇢

0p ! 1p ! · · · ! (k �1)p ! kq ! (k +1) ! · · ·
0p ! 1p ! · · · ! kp ! · · ·

p R q
⇢

0q ! 1q ! · · · ! (k �1)q ! kp,q ! (k +1) ! · · ·
0q ! 1q ! · · · ! kq ! · · ·

p B q
⇢

0¬q ! 1¬q ! · · · ! (k �1)¬q ! k¬q,p ! (k +1) ! · · ·
0¬q ! 1¬q ! · · · ! k¬q ! · · ·

We now show some examples that illustrate the expressiveness of LTL.

Example 12.1. Consider the following LTL formulas:

G ¬p: p will never happen, so it is a safety property.
p ) F q: if p happens now then also q will happen sometime in the future.
G F p: p happens infinitely many times in the future, so it is a fairness property.
F G p: p will hold from some time in the future onward.

Finally, G(req ) (req U grant)) expresses the fact that whenever a request is
made it holds continuously until it is eventually granted.

12.2.2 Computation Tree Logic

In this section we introduce CTL and CTL⇤, two logics which use trees as models
of time: computation is no longer deterministic along time, but at each instant some
possible futures can be taken. CTL and CTL⇤ extend LTL with two operators which
allow to express properties on paths over trees. The difference between CTL and
CTL⇤ is that the former is a restricted version of the latter. So we start by introducing
the more expressive logic CTL⇤.
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12.2.2.1 CTL⇤

CTL⇤ still includes the temporal operators O, F , G and U : they are called linear
operators. However, it introduces two new operators, called path operators:

E: The formula E f (to be read “possibly f”) means that there exists some path
that satisfies f . In the literature it is sometimes written 9 f .

A: The formula A f (to be read “inevitably f”) means that each path of the tree
satisfies f , i.e., that f is satisfied along all paths. In the literature it is sometimes
written 8 f .

Definition 12.5 (CTL⇤ formulas). The syntax of CTL⇤ formulas is as follows:

f ::= true | false | ¬f | f0 ^f1 | f0 _f1 |
p | O f | F f | G f | f0 U f1 |
E f | A f

where p 2 P is any atomic proposition.

In the case of CTL⇤, instead of using linear structures, the computation of the
system over time is represented by using infinite trees as explained below.

We recall that a (possibly infinite) tree T = (V,!) is a directed graph with vertices
in V and directed arcs given by !✓ V ⇥V , where there is one distinguished vertex
v0 2 V (called root) such that there is exactly one directed path from v0 to any other
vertex v 2 V .

Definition 12.6 (Infinite tree). Let T = (V,!) be a tree, with V the set of nodes, v0
the root and !✓ V ⇥V the parent-child relation. We say that T is an infinite tree if
! is total on V , namely if every node has a child:

8v 2 V. 9w 2 V. v ! w

Definition 12.7 (Branching structure). A branching structure is a triple (T,S,P),
where P is a set of atomic propositions, T = (V,!) is an infinite tree and S : P !
√(V ) is a function from the atomic propositions to subsets of nodes of V defined as
follows:

8p 2 P. S(p) = {x 2 V | x satisfies p}

In CTL⇤ computations are described as infinite paths on infinite trees.

Definition 12.8 (Infinite paths). Let T = (V,!) be an infinite tree and p = v0,v1, ...
be an infinite sequence of nodes in V . We say that p is an infinite path over T if

8i 2 N. vi ! vi+1

Of course, we can view an infinite path p = v0,v1, ... as a function p : N ! V
such that p(i) = vi for any i 2 N. As for the linear case, we need a shifting operators
on paths.
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Definition 12.9 (Path shifting). Let p = v0,v1, ... be an infinite path over T and
k 2 N. We let the infinite path pk be defined as follows:

pk = vk,vk+1, . . .

In other words, for an infinite path p : N ! V we let pk : N ! V be the function
defined as pk(i) = p(k + i) for all i 2 N.

Definition 12.10 (CTL⇤ satisfaction relation). Let (T,S,P) be a branching struc-
ture and p = v0,v1,v2, ... be an infinite path. We define the satisfaction relation |=
inductively as follows:

• state operators:

S,p |= true
S,p |= ¬f if it is not true that S,p |= f
S,p |= f0 ^f1 if S,p |= f0 and S,p |= f1
S,p |= f0 _f1 if S,p |= f0 or S,p |= f1
S,p |= p if v0 2 S(p)
S,p |= O f if S,p1 |= f
S,p |= F f if 9i 2 N such that S,p i |= f
S,p |= G f if 8i 2 N it holds S,p i |= f
S,p |= f0 U f1 if 9i 2 N such that S,p i |= f1 and 8 j < i. S,p j |= f0

• path operators:2

S,p |= Ef if there exists p 0 = v0,v0
1,v

0
2, ... such that S,p 0 |= f

S,p |= Af if for all paths p 0 = v0,v0
1,v

0
2, ... we have S,p 0 |= f

Two CTL⇤ formulas f and y are called equivalent, written f ⌘ y if for any S,p
we have S,p |= f iff S,p |= y .

Example 12.2. Consider the following CTL⇤ formulas:

E O f : is analogous to the HM-logic formula 3f .
A G p: means that p happens in all reachable states.
E F p: means that p happens in some reachable state.
A F p: means that on every path there exists a state where p holds.
E (p U q): means that there exists a path where p holds until q.
A G E F p: in every future exists a successive future where p holds.

12.2.2.2 CTL

The formulas of CTL are obtained by restricting CTL⇤. Let {O,F,G,U} be the set
of linear operators, and {E,A} be the set of path operators.

2 Note that in the case of path operators, only the first node v0 of p is relevant.
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Definition 12.11 (CTL formulas). A CTL⇤ formula is a CTL formula if all of the
followings hold:

1. each path operator appear only immediately before a linear operator;
2. each linear operator appears immediately after a path operator.

In other words, CTL allows only the combined use of path operators with linear
operators, like in EO, AO, EF , AF , etc. It is evident that CTL and LTL are both3

subsets of CTL⇤, but they are not equivalent to each other. Without going into the
detail, we mention that:

• no CTL formula is equivalent to the LTL formula F G p;
• no LTL formula is equivalent to the CTL formula AG (p ) (EO q^EO ¬q)).

Moreover, fairness is not expressible in CTL.
Finally, we note that all CTL formulas can be written in terms of the minimal set

of operators true, ¬, _, EG, EU , EO. In fact, for the remaining (combined) operators
we have the following logical equivalences:

EFf ⌘ E(true U f)

AOf ⌘ ¬(EO¬f)

AGf ⌘ ¬(EF¬f) ⌘ ¬E(true U ¬f)

AFf ⌘ A(true U f) ⌘ ¬(EG¬f)

A(f U j) ⌘ ¬(E(¬j U ¬(f _j))_EG¬j)

Example 12.3. All the CTL⇤ formulas in Example 12.2 are also CTL formulas.

12.3 µ-Calculus

Now we introduce the µ-calculus. The idea is to add the least and greatest fixpoint
operators to modal logic. We remark that HM-logic was introduced not so much as a
language to write down system specifications, but rather as an aid to understanding
process equivalence from a logical point of view. As a matter of fact, many interesting
properties of reactive systems can be conveniently expressed as fixpoints. The two
operators that we introduce are the following:

µx. f : is the least fixpoint of the equation x ⌘ f .
nx. f : is the greatest fixpoint of x ⌘ f .

As a rule of thumb, we can think that least fixpoints are associated with liveness
properties, while greatest fixpoints with safety properties.

3 An LTL formula f is read as the CTL⇤ formula Af . Namely, the structure where a LTL formula is
evaluated corresponds to a CTL* tree consisting of a set of traces.
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Definition 12.12 (µ-calculus formulas). The syntax of µ-calculus formulas is:

f ::= true | false | f0 ^f1 | f0 _f1 |
p | ¬p | x | 3f | 2f | µx. f | nx. f

where p 2 P is any atomic proposition and x 2 X is any predicate variable.

In the following, we let F denote the set of µ-calculus formulas. To limit the
number of parentheses and ease readability of formulas, we tacitly assume that modal
operators have higher precedence than logical connectives, and that fixpoint operators
have lowest precedence, meaning that the scope of a fixpoint variable extends as far
to the right as possible.

The idea is to interpret formulas over a transition system (with vacuous transition
labels): to each formula we associate the set of states of the transition system where
the formula holds true. Then, the least and greatest fixpoint corresponds quite nicely to
the notion of smallest and largest set of states where the formulas holds, respectively.

Since the powerset of the set of states is a complete lattice, in order to apply
the fixpoint theory we require that the semantics of any formula f is defined using
monotone transformation functions. This is the reason why we do not include general
negation in the syntax, but only in the form ¬p for p an atomic proposition. This way,
provided that all recursively defined variables are distinct, the µ-calculus formulas
we use are said to be in positive normal form. Alternatively, we can allow general
negation and then require that in well-formed formulas any occurrence of a variable
x is preceded by an even number of negations. Then, any such formula can be put in
positive normal form by using De Morgan’s laws, double negation (¬¬f ⌘ f ) and
dualities:

¬3f ⌘ 2¬f ¬2f ⌘ 3¬f ¬µx. f ⌘ nx. ¬f [¬x/x] ¬nx. f ⌘ µx. ¬f [¬x/x]

Let (V,!) be an LTS (with vacuous transition labels), X be the set of predicate
variables and P be a set of propositions, we introduce a function r : P[X !√(V )
which associates to each proposition and to each variable a subset of states of the
LTS. Then we define the denotational semantics of µ-calculus which maps each
µ-calculus formula f to the subset of states JfKr in which it holds (according to r).

Definition 12.13 (Denotational semantics of the µ-calculus). We define the inter-
pretation function J·K : F ! (P [ X !√(V )) !√(V ) by structural recursion on
formulas as follows:
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JtrueKr = V
JfalseKr = ?

Jf0 ^f1Kr = Jf0Kr \ Jf1Kr
Jf0 _f1Kr = Jf0Kr [ Jf1Kr

JpKr = r(p)

J¬pKr = V \r(p)

JxKr = rx
J3fKr = { v | 9v0 2 JfKr. v ! v0 }
J2fKr = { v | 8v0. v ! v0 ) v0 2 JfKr }

Jµx. fKr = fix lS. JfKr[S/x]

Jnx. fKr = FIX lS. JfKr[S/x]

where FIX denotes the greatest fixpoint.

The definitions are straightforward. The only equations that need some comments
are those related to the modal operators 3f and 2f : in the first case, we take as
J3fKr the set of states v that have (at least) one transition to a state v0 that satisfies
f ; in the second case, we take as J2fKr the set of states v such that all outgoing
transitions lead to some states v0 that satisfy f . Note that, as a particular case, a state
with no outgoing transitions trivially satisfy the formula 2f for any f . For example
the formula 2false is satisfied by all and only deadlock states; vice versa 3true
is satisfied by all and only non-deadlock states. Intuitively, we can note that the
modality 3f is somewhat analogous to the CTL formula EO f , while the modality
2 can play the role of AO f .

Fixpoints are computed in the CPO? of sets of states, ordered by inclusion:
(√(V ),✓). Union and intersections are of course monotone functions. Also the
functions associated with modal operators

lS. { v | 9v0 2 S. v ! v0 } lS. { v | 8v0. v ! v0 ) v0 2 S }

are monotone. The least fixpoint of a function f : √(V ) !√(V ) can then be com-
puted by taking the limit

S
n2N f n(?), while for the greatest fixpoint, we takeT

n2N f n(V ). In fact, when f is monotone, we have:

? ✓ f (?) ✓ f 2(?) ✓ · · · ✓ f n(?) ✓ · · ·

V ◆ f (V ) ◆ f 2(V ) ◆ · · · ◆ f n(V ) ◆ · · ·

Example 12.4 (Basic examples). Let us consider the following formulas:

µx. x: Jµx. xKr def
= fix lS. S = ?.

In fact, let us approximate the result in the usual way:

S0 = ? S1 = (lS. S)S0 = S0
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nx. x: Jnx. xKr def
= FIX lS. S = V .

In fact, we have S0 = V and S1 = (lS. S)S0 = S0.
µx. 3x: Jµx. 3xKr def

= fix lS. {v | 9v0 2 S. v ! v0} = ?.
In fact, we have:

S0 = ? S1 = {v | 9v0 2 ?. v ! v0} = ?.

µx. 2x: Jµx. 2xKr def
= fix lS. {v | 8v0. v ! v0 ) v0 2 S}.

By successive approximations, we get:

S0 = ?
S1 = {v | 8v0. v ! v0 ) v0 2 ?} = {v | v 6!}

= {v | v has no outgoing arc}
S2 = {v | 8v0. v ! v0 ) v0 2 S1}

= {v | v has outgoing paths of length at most 1}
...

Sn = {v | v has outgoing paths of length at most n�1}.

We can conclude that Jµx. 2xKr =
S

i2N Si is the set of vertices whose
outgoing paths have all finite length.

nx. 2x: Jnx. 2xKr def
= FIX lS. {v | 8v0,v ! v0 ) v0 2 S} = V .

In fact, we have:

S0 = V S1 = {v | 8v0. v ! v0 ) v0 2 V} = V.

µx. p_3x: Jµx. p_3xKr def
= fix lS. r(p)[{v | 9v0 2 S. v ! v0}.

Let us compute some approximations:

S0 = ?
S1 = r(p)

S2 = r(p)[{v | 9v0 2 r(p). v ! v0}
= {v | v can reach some v0 2 r(p) in less than one step}
...

Sn = {v | v can reach some v0 2 r(p) in less than n�1 steps}
[

n2N
Sn = {v | v has a finite path to some v0 2 r(p)}.

Thus, the formula is similar to the CTL formula EF p, meaning that
some node in r(p) is reachable.

The µ-calculus is more expressive than CTL⇤ (and consequently than CTL and
LTL), in fact all CTL⇤ formulas can be translated to µ-calculus formulas. This
makes the µ-calculus probably the most studied of all temporal logics of programs.
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Unfortunately, the increase in expressive power we get from µ-calculus is balanced
in an equally great increase in awkwardness: we invite the reader to check by
her/himself how relatively easy is to write down short µ-calculus formulas whose
intended meanings remain obscure after several attempts to decipher them. Still,
many correctness properties can be expressed in a very concise and elegant way in
the µ-calculus. The full translation from CTL⇤ to µ-calculus is quite complex and
we do not account for it here.

Example 12.5 (More expressive examples). Let us now briefly discuss some more
complicated examples:

µx. (p^3x)_q: it corresponds to the CTL formula E(p U q).
µx. (p^2x^3x)_q: it corresponds to the LTL/CTL formula A(p U q). Note

that the sub-formula 3x is needed to discard deadlock
states.

nx. µy. (p^3x)_3y: it corresponds to the CTL⇤ formula EGF p: given a path,
µy. (p^3x)_3y means that after a finite number of steps
you find a vertex where both: (1) p holds, and (2) you can
reach a vertex where the property recursively holds.

Without increasing the expressive power of µ-calculus, formulas can be extended
to deal with labelled transitions, in the style of HM-logic (see Problem 12.10).

12.4 Model Checking

The problem of model checking consists in the exaustive, possibly automatic, verifi-
cation of whether a given model of a system meets or not a given logic specification
of the properties the system should satisfy, like absence of deadlocks.

The main ingredients of model checking are:

• an LTS M (the model) and a vertex v (the initial state);
• a formula f (in temporal or modal logic) you want to check.

The problem of model checking is: does v in M satisfy f?
The result of model checking should be either a positive answer or some coun-

terexample explaining one possible reason why the formula is not satisfied.
Without entering in the details, one successful approach to model checking con-

sists of: 1) computing a finite LTS M¬f that is to some extent equivalent to the
negation of the formula f under inspection; roughly, each state in the constructed
LTS represents a set of LTL formulas that hold from that state; 2) computing some
form of product between the model M and the computed LTS M¬f ; roughly, this
corresponds to solving a non-emptiness problem for the intersection of (the languages
associated with) M and M¬f ; 3) if the intersection is non-empty, then a finite witness
can be constructed that offers a counterexample to the validity of the formula f in M.

In the case of µ-calculus formulas, fixpoint theory gives a straightforward (itera-
tive) implementation for a model checker by computing the set of all and only states
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that satisfy a formula by successive approximations. In model checking algorithms,
it is often convenient to proceed by evaluating formulas with the aid of dynamic
programming. The idea is to work in a bottom-up fashion: starting from the atomic
predicates that appear in the formula, we mark all the states with the sub-formulas
they satisfy. When a variable is encountered, a separate activation of the procedure is
allocated for computing the fixpoint of the corresponding recursive definition.

For computing a single fixpoint, the length of the iteration is in general transfinite
but is bounded at worst by the cardinal after cardinality of the lattice and in the
special case of √(V ) by the cardinal after the cardinality of V . In practice, many
systems can be modelled, at some level of abstraction, as finite state systems, in
which case a finite number of iterations (|V |+ 1 at worst) suffices. When two or
more fixpoints of the same kind are nested within each other, then we can exploit
monotonicity to avoid restarting the computation of the innermost fixpoint at each
iteration of the outermost one. However, when least and greatest fixpoints are nested
in alternation, this optimisation is no longer possible and the time needed to model
check the formula is exponential w.r.t. the so called alternation depth of fixpoints in
the formula.

From a purely theoretical perspective, the hierarchy obtained by considering
formulas ordered according to the alternation depth of fixpoint operators gives more
expressive power as the alternation depth increases: model checking in the µ-calculus
is proved to be in NP\ coNP (µ-calculus is closed under complementation).

From a pragmatic perspective, any reasonable specification requires at most
alternation depth 2 (i.e., it is unlikely to find correctness properties that require
alternation depth equal or higher than 3). Moreover, the dominant factor in the
complexity of model checking is typically the size of the model rather than the size of
the formula, because specifications are often very short: sometimes even exponential
growth in the specification size can be tolerable. For these reasons, in many cases, the
before mentioned, complex translation from CTL⇤ formulas to µ-calculus formulas
is able to guarantee competitive model checking.

In the case of reactive systems, the LTS is often given implicitly, as the one
associated with a term of some process algebra, because in this way the structure of
the system is handled more conveniently. However, as noted in the previous chapter,
even for finite processes, the size of their actual LTS can explode.

When it becomes unfeasible to represent the whole set of states, one approach is
to use abstraction techniques. Roughly, the idea is to devise a smaller, less detailed
model by suppressing inessential data from the original, fully detailed model. Then,
as far as the correctness of the larger model follows from the correctness of the
smaller model, we are guaranteed that the abstraction is sound.

One possibility to tackle the state explosion problem is to minimise the system
according to some suitable equivalence. Note that minimisation can take place also
while combining subprocesses and not just at the end. Of course, this technique is
viable only if the minimisation preserves all properties to be checked. For example,
the validity of any µ-calculus formula is invariant w.r.t. bisimulation, thus we can
minimise LTSs up to bisimilarity before model checking them.
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Another important technique to succinctly represent large systems is to take a
symbolic approach, like representing the sets of states where formulas are true in
terms of their boolean characteristic functions, expressed as ordered Binary Decision
Diagrams (BDDs). This approach has been very successful for the debugging and
verification of hardware circuits, but, for reasons not well understood, software
verification has proved more elusive, probably because programs lack some form of
regularity that commonly arises in electronic circuits. In the worst case, also symbolic
techniques can lead to intractably inefficient model checking.

Problems

12.1. Suppose there are two processes p1 and p2 that can access a single shared
resource r. We are given the following atomic propositions, for i = 1,2:

reqi: holds when process pi is requesting access to r;
usei: holds when process pi has had access to r;
reli: holds when process pi has released r.

Use LTL formulas to specify the following properties:

1. mutual exclusion: r is accessed by only one process at a time;
2. release: every time r is accessed by pi, it is released after a finite amount of time;
3. priority: whenever both p1 and p2 require access to r, p1 is granted access first;
4. absence of starvation: whenever pi requires access to r, it is eventually granted

access to r.

12.2. Consider an elevator system serving three floors, numbered 0 to 2. At each
floor there is an elevator door that can be open or closed, a call button, and a light
that is on when the elevator has been called. Define a set of atomic propositions, as
small as possible, to express the following properties as LTL formulas:

1. a door is not open if the elevator is not present at that floor;
2. every elevator call will be served;
3. every time the elevator serves a floor the corresponding light is turned off;
4. the elevator will always return to floor 0;
5. a request at the top floor has priority over all the other requests.

12.3. Consider the CTL⇤ formula f def
= AF G (p_O q). Explain the property associ-

ated with it and define a branching structure where it is satisfied. Is it a LTL formula?
Is it a CTL formula?

12.4. Prove that if the CTL⇤ formula AO f is satisfied, then also the formula O A f
is satisfied. Is the converse true?

12.5. Is it true that the CTL⇤ formulas A G f and G A f are logically equivalent?
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12.6. Given the µ-calculus formula:

f def
= nx. (p_3x)^ (q_2x)

compute its denotational semantics and evaluate it on the LTS below:

s1 //

✏✏

s2 //

✏✏

s3 q

s4 // s5 // s6 p

12.7. Given the µ-calculus formula f def
= nx. 3x, compute its denotational semantics,

spelling out what are the states that satisfy f , and evaluate it on the LTS below:

s1,, s0oo //

✏✏

s2

✏✏

rr

s3 // s4

12.8. Write a µ-calculus formula f representing the statement:

‘p is always true along any path leaving the current state.’

Write the denotational semantics of f and evaluate it over the LTS below:

s1 //p s2

~~ ✏✏

q

s3

OO

//p s4 p,q

12.9. Write a µ-calculus formula f representing the statement:

‘there is some path where p holds until eventually q holds.’

Write the denotational semantics of f and evaluate it over the LTS below:

s1 //

✏✏

p s2
��

p

s3 //

>>

p s4 p,q

12.10. Let us extend the µ-calculus with the formulas hAif and [A]f , where A is
a set of labels: they represent, respectively, the ability to perform a transition with
some label a 2 A and reach a state that satisfies f , and the necessity to reach a state
that satisfies f after performing any transition with label a 2 A.

1. Define the semantics JhAifKr and J[A]fKr .
2. Let us write ha1, ...,anif and [a1, ...,an]f in place of h{a1, ...,an}if and [{a1, ...,an}]f ,

respectively. Compute the denotational semantics of the formulas
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f1
def
= nx. ((haitrue^hbitrue)_ p)^ [a,b]x) f2

def
= µx. p_ha,bix

and evaluate them on the LTS below:

s2

a
✏✏

a

,, s1
aoo b //

p
s3

a
✏✏

b

rr

s4
b

//

a

22 s5
p
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Chapter 13
p-Calculus

What’s in a name? That which we call a rose by any other name
would smell as sweet. (William Shakespeare)

Abstract In this chapter we outline the basic theory of a calculus of processes, called
p-calculus. It is not an exaggeration to affirm that p-calculus plays for reactive
systems the same foundational role that l -calculus plays for sequential systems.
The key idea is to extend CCS with the ability to send channel names, i.e., p-
calculus processes can communicate communication means. The term coined to
refer this feature is name mobility. The operational semantics of p-calculus is only
a bit more involved than that of CCS, while the abstract semantics is considerably
more ingenious, because it requires a careful handling of names appearing in the
transition labels. In particular, we show that two variants of strong bisimilarity
arise naturally, called early and late, with the former coarser than the latter. We
conclude by discussing weak variants of early and late bisimilarities together with
compositionality issues.

13.1 Name Mobility

The structures of today’s communication systems are not statically defined, but
they change continuously according to the needs of the users. The process algebra
we have studied in Chapter 11 is unsuitable for modelling such systems, since its
communication structure (the channels) cannot evolve dynamically. In this chapter
we present the p-calculus, an extension of CCS introduced by Robin Milner, Joachim
Parrow and David Walker in 1989, which allows to model mobile systems. The main
features of the p-calculus are its ability to create new channel names and to send
them in messages, allowing agents to extend their connections. For example, consider
the case of the CCS-like process (with value passing)

(p | q)\a | r

and suppose that p and q can communicate over the channel a, which is private
to them, and that p and r share a channel b for exchanging messages. If we allow

289
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channel names to be sent as message values, then it could be the case that: 1) p sends
the name a over the channel b, like in

p def
= ba.p0

for some p0; 2) that q waits for a message on a, like in

q def
= a(x).q0

for some q0 that can exploit x; and 3) that r wants to input a channel name on b,
where to send a message m, like in

r def
= b(y).ym.r0.

After the communication between p and r has taken place over the channel b, we
would like the scope of a be extended so to include the rightmost process, like in

((p0 | q) | am.r0[a/y])\a

so that q can then input m on a from the process am.r0:

((p0 | q0[m/x]) | r0[a/y])\a.

All this cannot be achieved in CCS, where restriction is a static operator. Moreover,
suppose a process s is initially running in parallel with r, like in

(p | q)\a | (s | r).

After the communication over b between p and r, we would like the name a to be
private to p0,q and the continuation of r but not shared by s. Thus if a is already used
by s, it must be the case that after the scope extrusion a is renamed to a fresh private
name c, not available to s, like in

( (p0[c/a] | q[c/a]) | (s | cm.r0[c/y]) )\c

so that the message cm directed to q cannot be intercepted by s.

Remark 13.1 (New syntax for restriction). To differentiate between the static restric-
tion operator of CCS and its dynamic version used in the p-calculus, we write the
latter operator in prefix form as (a)p as opposed to the CCS syntax p\a. Therefore
the initial process of the above example is written

(a)(p | q) | (s | r)

and after the communication it becomes

(c)( (p0[c/a] | q[c/a]) | (s | cm.r0[c/y]) ).
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The general mechanism for handling name mobility makes the formalisation
of the semantics of the p-calculus more complicated than that of CCS, especially
because of the side-conditions that serve to guarantee that certain names are fresh.

Let us start with an example which illustrates how the p-calculus can formalise a
mobile telephone system.

Example 13.1 (Mobile phones). The following figure represents a mobile phone
network: while the car travels, the phone can communicate with different bases in the
city, but just one at a time, typically the closest to its position. The communication
centre decides when the base must be changed and then the channel for accessing
the new base is sent to the car through the switch channel.

As in the dynamic stack Example 11.1 for CCS, also in this case we describe
agent behaviour by defining the reachable states:

CAR(talk,switch)
def
= talk.CAR(talk,switch) + switch(xt,xs).CAR(xt,xs).

A car can (recursively) talk on the channel assigned currently by the communication
centre (action talk). Alternatively the car can receive (action switch(xt,xs)) a new
pair of channels (e.g., talk0 and switch0) and change the base to which it is connected.

In the example there are two bases, numbered 1 and 2. A generic base i 2 [1,2]
can be in two possible states: BASEi or IDLEBASEi.

BASEi
def
= talki.BASEi + givei(xt,xs).switchi(xt,xs).IDLEBASEi

IDLEBASEi
def
= alerti.BASEi.

In the first case the base is connected to the car, so either the phone can talk or the
base can receive two channels from the centre on channel givei, assign them to the
variables xt and xs and send them to the car on channel switchi for allowing it to
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change base. In the second case the base i becomes idle, and remains so until it is
alerted by the communication centre.

CENTRE1
def
= give1htalk2,switch2i.alert2.CENTRE2

CENTRE2
def
= give2htalk1,switch1i.alert1.CENTRE1.

The communication centre can be in different states according to which base is active.
In the example there are only two possible states for the communication centre
(CENTRE1 and CENTRE2), because only two bases are considered.

Finally we have the process which represents the entire system in the state where
the car is talking to the first base.

SYSTEM def
= CAR(talk1,switch1) | BASE1 | IDLEBASE2 | CENTRE1.

Then, suppose that: 1) the centre communicates the names talk2 and switch2 to
BASE1 by sending the message give1htalk2,switch2i; 2) the centre alerts BASE2 by
sending the message alert2; 3) BASE1 tells CAR to switch to channels talk2 and
switch2, by sending the message switchi(talk2,switch2). Correspondingly, we have:

SYSTEM t�! t�! t�! CAR(talk2,switch2) | IDLEBASE1 | BASE2 | CENTRE2.

Example 13.2 (Secret channel via trusted server). As another example, consider two
processes Alice (A) and Bob (B) that want to establish a secret channel using a trusted
server (S) with which they already have trustworthy communication link cAS (for
Alice to send private messages to the server) and cSB (for the server to send private
messages to Bob). The system can be represented by the expression:

SY S def
= (cAS)(cSB)(A | S | B)

where restrictions (cAS) and (cSB) guarantee that channels cAS and cSB are not visible
from the environment and where the processes A, S and B are specified as follows:

A def
= (cAB)cAScAB.cABm.A0 S def

=!cAS(x).cSBx.nil B def
= cSB(y).y(w).B0.

Alice defines a private name cAB that wants to use for communicating with B (see
the restriction (cAB)), then Alice sends the name cAB to the trusted server over their
private shared link cAS (output prefix cAScAB) and finally sends the message m on
the channel cAB (output prefix cABm) and continues as A0. The server continuously
waits for messages from Alice on channel cAS (input prefix cAS(x)) and forwards the
content to Bob (output prefix cSBx). Here the replication operator ! allows to serve
multiple requests from Alice by issuing multiple instances of the server process. Bob
waits to receive a name to be replaced for y from the server over the channel cSB
(input prefix cSB(y)) and then uses y to input the message from Alice (input prefix
y(w)) and then continues as B0[cAB/y,m /w].
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13.2 Syntax of the p-calculus

The p-calculus has been introduced to model communicating systems where channel
names, representing addresses and links, can be created and forwarded. To this aim
we rely on a set of channel names x,y,z, ... and extend the CCS actions with the ability
to send and receive channel names. In these notes we present the monadic version of
the calculus, namely the version where names can be sent only one at a time. The
polyadic version, as used in Example 13.1, is briefly discussed in Problem 13.2.

Definition 13.1 (p-calculus processes). We introduce the p-calculus syntax, with
productions for processes p and actions p .

p ::= nil | p.p | [x = y]p | p+ p | p|p | (y)p | !p
p ::= t | x(y) | xy

The meaning of process operators is the following:

nil: is the inactive agent;
p.p: is an agent which can perform an action p and then act like p;
[x = y]p: is the conditional process; it behaves like p if x = y, otherwise stays idle;
p+q: is the non-deterministic choice between two processes;
p|q: is the parallel composition of two processes;
(y)p: denotes the restriction of the channel y with scope p;1
!p: is a replicated process: it behaves as if an unbounded number of con-

current occurrences of p were available, all running in parallel. It is the
analogous of the (unguarded) CCS recursive process rec x. (x|p).

The meaning of the actions p is the following:

t: is the invisible action, as usual;
x(y): is the input on channel x; the received value is stored in y;
xy: is the output on channel x of the name y.

In the above cases, we call x the subject of the communication (i.e., the channel
name where the communication takes place) and y the object of the communication
(i.e., the channel name that is transmitted or received). As in the l -calculus, in the
p-calculus we have bound and free occurrence of names. The bounding operators
of p-calculus are input and restriction: both in x(y).p and (y)p the name y is bound
with scope p. On the contrary, the output prefix is not binding, i.e., if we take the
process xy.p then the name y is free. Formally, we define the sets of free and bound
names of a process by structural recursion as in Figure 13.1. Note that for both
x(y).p and xy.p the name x is free in p. As usual, we take (abstract) processes up to
a-renaming of bound names and write p[y/x] for the capture-avoiding substitution
of all free-occurrences of the name x with the name y in p.

1 In the literature the restriction operator is sometimes written (ny)p to remark the fact the the name
y is “new” to p: we prefer not to use the symbol n to avoid any conflict with the maximal fixpoint
operator, as denoted, e.g., in the µ-calculus (see Chapter 12).
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fn(nil) def
= ? bn(nil) def

= ?
fn(t.p)

def
= fn(p) bn(t.p)

def
= bn(p)

fn(x(y).p)
def
= {x}[ (fn(p)\{y}) bn(x(y).p)

def
= {y}[bn(p)

fn(xy.p)
def
= {x,y}[ fn(p) bn(xy.p)

def
= bn(p)

fn([x = y].p)
def
= {x,y}[ fn(p) bn([x = y].p)

def
= bn(p)

fn(p0 + p1)
def
= fn(p0)[ fn(p1) bn(p0 + p1)

def
= bn(p0)[bn(p1)

fn(p0|p1)
def
= fn(p0)[ fn(p1) bn(p0|p1)

def
= bn(p0)[bn(p1)

fn((y).p)
def
= fn(p)\{y} bn((y).p)

def
= {y}[bn(p)

fn(!p)
def
= fn(p) bn(!p)

def
= bn(p)

Fig. 13.1: Free names and bound names of processes

Unlike for CCS, the scope of the name y in the restricted process (y)p can be
dynamically extended to include other processes than p by name extrusion. The
possibility to enlarge the scope of a restricted name is a very useful, intrinsic feature
of the p-calculus. In fact, in the p-calculus, channel names are data that can be
transmitted, so the process p can send the name private y to another process q which
thus falls under the scope of y (see Section 13.1). Name extrusion allows us to modify
the structure of private communications between agents. Moreover, it is a convenient
way to formalise secure data transmission, as implemented, e.g., via cryptographic
protocols.

13.3 Operational Semantics of the p-calculus

We define the operational semantics of the p-calculus by deriving an LTS via in-
ference rules. Well-formed formulas are written p a�! q for suitable processes p,q
and label a . The syntax of labels is richer than the one used in the case of CCS, as
defined next.

Definition 13.2 (Action labels). The possible actions a that label the transitions are:

t: the silent action;
x(y): the input of a fresh name y on channel x;
xy: the free output of name y on channel x;
x(y): the bound output (called name extrusion) of a restricted name y on channel x.

The definition of free names fn(·) and bound names bn(·) are extended to labels
as defined in Figure 13.2. Moreover, we let n(a)

def
= fn(a)[bn(a) denote the set of

all names appearing in a .
Most transitions p a�! q can be read as the computational evolution of p to q when

the action a is performed, analogously to the ones for CCS. The only exceptions are

input-labelled transitions: if p
x(y)��! p0 for some x and (fresh) y, then the computational
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fn(t)
def
= ? bn(t)

def
= ?

fn(x(y)) def
= {x} bn(x(y)) def

= {y}
fn(xy) def

= {x,y} bn(xy) def
= ?

fn(x(y)) def
= {x} bn(x(y)) def

= {y}

Fig. 13.2: Free names and bound names of labels

evolution of p depends on the actual received name z to be substituted for y in p0,
but the input transition is just given for a generic formal parameter y, not for all its
possible instances. For example, it may well be the case that one of the free names of
p is received, while y stands just for fresh names. The main consequence is that, in
the bisimulation game, the attacker can pick a received name z and the defender must

choose an input transition q
x(y)��! q0 such that p0[z/y] and q0[z/y] are related (not p0

and q0). Depending on the moment when the name is chosen by the attacker, before
or after the move of the defender, two different notions of bisimulation arise, as
explained in Section 13.5.

We can now present the inference rules for the operational semantics of the
p-calculus and briefly comment on them.

13.3.1 Inactive Process

As in the case of CCS, there is no rule for the inactive process nil: it has no outgoing
transition.

13.3.2 Action Prefix

There are three rules for an action prefixed process p.p, one for each possible shape
of the prefix p .

(Tau)
t.p t�! p

The rule (Tau) allows to perform invisible actions.

(Out)
x y.p x y�! p

As we said, the p-calculus processes can exchange messages which can contain
information (i.e., channel names). The rule (Out) allows a process to send the name y
on the channel x.
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(In) w 62 fn((y)p)

x(y).p
x(w)��! p[w/y]

The rule (In) allows to receive in input over x some channel name. The label x(w)
records that some formal name w is received, which is substituted for y in the
continuation process p. In order to avoid name clashes, we assume w does not appear
as a free name in (y)p, i.e., the transition is defined only when w is fresh. Of course,
as a special case, w can be y. The side-condition may appear unacceptable, as possibly
known names could be received, but this is convenient to express two different kinds
of abstract semantics over the same LTS, as we will discuss later in Sections 13.5.1
and 13.5.2. For example, we have the transitions

x(y).yz.nil x(w)��! wz.nil wz�! nil

but we do not have the transition (because z 2 fn((y)yz.nil))

x(y).yz.nil ⇢
⇢x(z)��!zz.nil .

Remark 13.2. The rule (In) introduces an infinite branching, because there are in-
finitely many fresh names w that can be substituted for y. One could try to improve
the situation by choosing a standard representative, but such a representative cannot
be unique for all contexts (see Problem 13.10). Another possibility is to introduce a
special symbol, say •, to denote that in the continuation p[•/y] (no longer a p-calculus
process) some actual argument should be provided.

13.3.3 Name Matching

(Match)
p a�! p0

[x = x]p a�! p0

The rule (Match) allows to check the equality of names before releasing p. If the
matching condition is not satisfied the execution halts. Name matching can be used
to write a process that receives a name and then tests this name to choose what to do
next. For example, a login process for an account whose password is pwd could be
written login(y).[y = pwd]p.

13.3.4 Choice

(SumL)
p a�! p0

p+q a�! p0
(SumR)

q a�! q0

p+q a�! q0
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The rules (SumL) and (SumR) allow the system p + q to behave as either p or q.
They are completely analogous to the rules for choice in CCS.

13.3.5 Parallel Composition

There are six rules for parallel composition. Here we present the first four. The
remaining two rules deal with name extrusion and are presented in Section 13.3.7.

(ParL)
p a�! p0

bn(a)\ fn(q) = ?
p | q a�! p0 | q

(ParR)
q a�! q0

bn(a)\ fn(p) = ?
p | q a�! p | q0

As for CCS, the two rules (ParL) and (ParR) allow the interleaved execution of two
p-calculus agents. The side conditions guarantee that the bound names in a (if any)
are fresh w.r.t. the idle process. For example, a valid transition is

x(y).yz.nil | w(u).nil x(v)��! vz.nil | w(u).nil .

Instead, we do not allow the transition

x(y).yz.nil | w(u).nil ⇢
⇢⇢x(w)��!wz.nil | w(u).nil

because the received name w 2 bn(x(w)) clashes with the free name w 2 fn(w(u).nil).

(ComL) p x z�! p0 q
x(y)��! q0

p | q t�! p0 | (q0[z/y])
(ComR) p

x(y)��! p0 q x z�! q0

p | q t�! p0[z/y] | q0

The rules (ComL) and (ComR) allow the synchronisation of two parallel processes.
The formal name y is replaced with the actual name z in the continuation of the
receiver. For example, we can derive the transition

x(y).yz.nil |xz.y(v).nil t�! zz.nil |y(v).nil

13.3.6 Restriction

(Res)
p a�! p0

y 62 n(a)
(y)p a�! (y)p0

The rule (Res) expresses the fact that if a name y is restricted on top of the process p,
then any action that does not involve y can be performed by p.



DRAFT

298 13 p-Calculus

13.3.7 Scope Extrusion

Now we present the most important rules of p-calculus, (Open) and (Close), dealing
with scope extrusion of channel names. Rule (Open) makes public a private channel
name, while rule (Close) restricts again the name, but with a broader scope.

(Open)
p x y�! p0

y 6= x ^ w 62 fn((y)p)

(y)p
x(w)��! p0[w/y]

The rule (Open) publishes the private name w, which is guaranteed to be fresh. Of
course, as a special case, we can take w = y.

Remark 13.3. The rule (Open), as the rule (In), introduces an infinite branching, be-
cause there are infinitely many fresh names w that can be taken. The main difference

is that, in the bisimulation game, when the move p
x(w)��! p0 of the attacker is matched

by the move q
x(w)��! q0 of the defender, then p0 and q0 must be directly related, i.e.,

it is not necessary to check that p0[z/w] and q0[z/w] are related for any z, because
extruded names must be fresh and all fresh names are already accounted for by bound
output transitions.

(CloseL) p
x (w)���! p0 q

x(w)��! q0

p | q t�! (w)(p0 | q0)
(CloseR) p

x(w)��! p0 q
x (w)���! q0

p | q t�! (w)(p0 | q0)

The rules (CloseL) and (CloseR) transform the object w of the communication over
x in a private channel between p and q. Freshness of w is guaranteed by rules (In),
(Open), (ParL) and (ParR). For example, we have

x(y).yz.nil |(z)xz.z(y).nil t�! (u)(uz.nil |u(y).nil).

13.3.8 Replication

(Rep)
p | !p a�! p0

!p a�! p0

The last rule deals with replication. It allows to replicate a process as many times as
needed, in a reentrant fashion, without consuming it. Notice that !p is able also to
perform the synchronisations between two copies of p, if possible at all.
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13.3.9 A Sample Derivation

Example 13.3 (Scope extrusion). We conclude this section by showing an example
of the use of the rule system. Let us consider the following system:

(((y)xy.p) | q) | x(z).r

where p,q,r are p-calculus processes. The process (y)x y.p would like to set up a
private channel with x(z).r, which however should remain hidden to q. By using
the inference rules of the operational semantics we can proceed in a goal-oriented
fashion to find a derivation for the corresponding transition:

(((y)xy.p) | q) | x(z).r a�! s

-(CloseL), a=t, s=(w)(s1 | r1) ((y)xy.p) | q
x(w)��! s1, x(z).r

x(w)��! r1

-(ParL), s1=p1 | q, w62fn(q) (y)xy.p
x(w)��! p1 x(z).r

x(w)��! r1

-(Open), p1=p2[w/y], w62fn((y).p) xy.p xy�! p2, x(z).r
x(w)��! r1

-⇤
(Out)+(In), r1=r[w/z], p2=p, w 62fn((z).r) ⇤

so we have:

p2 = p
p1 = p2[

w/y] = p[w/y]

r1 = r[w/z]

s1 = p1 | q = p[w/y] | q
s = (w)(s1 | r1) = (w)( (p[w/y] | q) | (r[w/z]) )

a = t

In conclusion:

(((y)xy.p) | q) | x(z).r t�! (w)( (p[w/y] | q) | (r[w/z]) )

under the condition that w is fresh, i.e., that w 62 fn(q)[ fn((y)p)[ fn((z)r).

13.4 Structural Equivalence of p-calculus

As we have already noticed for CCS, there are different terms representing essentially
the same process. As the complexity of the calculus increases, it is more and more
convenient to manipulate terms up to some intuitive structural axioms. In the follow-
ing we denote by ⌘ the least congruence2 over p-calculus processes that includes

2 This means that ⌘ is reflexive, symmetric, transitive and closed under context embedding.
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p+nil ⌘ p p+q ⌘ q+ p (p+q)+ r ⌘ p+(q+ r)
p | nil ⌘ p p | q ⌘ q | p (p | q) | r ⌘ p | (q | r)
(x)nil ⌘ nil (y)(x)p ⌘ (x)(y)p (x)(p | q) ⌘ p | (x)q if x /2 fn(p)

[x = y]nil ⌘ nil [x = x] p ⌘ p p | !p ⌘ !p

Fig. 13.3: Axioms for structural equivalence

a-conversion of bound names and that is induced by the set of axioms in Figure 13.3.
The relation ⌘ is called structural equivalence.

13.4.1 Reduction semantics

The operational semantics of p-calculus is much more complicated than that of
CCS because it needs to handle name passing and scope extrusion. By exploiting
structural equivalence we can define a so-called reduction semantics that is simpler
to understand. The idea is to define an LTS with silent labels only, that models all the
interactions that can take place in a process, without considering interactions with
the environment. This is accomplished by first rewriting the process to a structurally
equivalent normal form and then by applying basic reduction rules. In fact it can be
proved that for each p-calculus process p there exists:

• a finite number of names x1,x2, ...,xk;
• a finite number of guarded sums3 s1,s2, ...,sn;
• and a finite number of processes p1, p2, ..., pm, such that

P ⌘ (x1) · · ·(xk)(s1 | · · · | sn | !p1 | · · · | !pm)

Then, a reduction is either a silent action performed by some si or a communication
from an input prefix of say si with an output prefix of say s j. We write the reduction
relation as a binary relation on processes using the notation p 7! q for indicating that
p reduces to q in one step. The rules defining the relation 7! are the following:

t.p+ s 7! p (x(y).p1 + s1)|(xz.p2 + s2) 7! p1[z/y]|p2

p 7! p0

p|q 7! p0|q

p 7! p0

(x)p 7! (x)p0

p ⌘ q q 7! q0 q0 ⌘ p0

p 7! p0

The reduction semantics can be put in correspondence with the (silent transitions
of the) labelled operational semantics by the following theorem.

Lemma 13.1 (Harmony Lemma). For any p-calculus processes p, p0 and any ac-
tion a we have that:

3 They are non-deterministic choices whose arguments are action prefixed processes, i.e., they take
the form p1.p1 + · · ·+ph.ph.
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1. 9q. p ⌘ q a�! p0 implies that 9q0. p a�! q0 ⌘ p0

2. p 7! p0 if and only if 9q0. p t�! q0 ⌘ p0.

Proof. We only sketch the proof.

1. The first fact can be proved by showing that the thesis holds for each single appli-
cation of any structural axiom and then proving the general case by mathematical
induction on the length of the proof of structural equivalence of p and q.

2. The second fact requires to prove the two implications separately:

)) We prove first that, if p 7! p0, then we can find equivalent processes r ⌘ p
and r0 ⌘ p0 in suitable form, such that r t�! r0. Finally, from p ⌘ r t�! r0 we
conclude by the first fact that 9q0 ⌘ r0 such that p t�! q0, since q0 ⌘ p0 by
transitivity of ⌘.

() After showing that, for any p,q, whenever p a�! q then we can find suitable
processes p0 ⌘ p and q0 ⌘ q in normal form, we prove, by rule induction
on p t�! p0, that for any p, p0, if p t�! p0, then p 7! p0, from which the thesis
follows immediately. ut

13.5 Abstract Semantics of the p-calculus

Now we present an abstract semantics of p-calculus, namely we disregard the syntax
of processes but focus on their behaviours. As we saw in CCS, one of the main
goals of abstract semantics is to find the correct degree of abstraction, depending
on the properties that we want to study. Thus also in this case there are many kinds
of bisimulations that lead to different bisimilarities, which are useful in different
circumstances.

We start from strong bisimulation of p-calculus, which is an extended version
of the strong bisimulation of CCS, here complicated by the side-conditions on
bound names of actions and by the fact that, after an input, we want the continua-
tion processes to be equivalent for any received name. An important new feature
of p-calculus is the choice of the time when the names used as objects of input
transitions are assigned their actual values. If they are assigned before the choice
of the (bi)simulating transition, namely if the choice of the transition may depend
on the assigned value, we get the early bisimulation. Instead, if the choice must
hold for all possible names, we have the late bisimulation case. As we will see in
short, the second option leads to a finer semantics. Finally, we will present the weak
bisimulation for p-calculus. In all the above cases, the congruence property is not
satisfied by the largest bisimulations, so that the equivalences must be closed under
suitable contexts to get the corresponding observational congruences.
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13.5.1 Strong Early Ground Bisimulations

In early bisimulation we require that for each name w that an agent can receive on a
channel x there exists a state q0 in which the bisimilar agent will be after receiving w
on x. This means that the bisimilar agent can choose a different transition (and thus a
different state q0) depending on the observed name w.

Formally, a binary relation S on p-calculus agents is a strong early ground bisim-
ulation if:

8p,q. p S q )

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

8p0. if p t�! p0 then 9q0. q t�! q0 and p0 S q0

8x,y, p0. if p xy�! p0 then 9q0. q xy�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 9q0. q
x(y)��! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)��! q0 and p0[w/y] S q0[w/y]

(and vice versa)

Of course, “vice versa” means that other four cases are present, where q challenges p
to (bi)simulate its transitions. Note that in the case of silent label t or output labels xy
the definition of bisimulation is as expected. The case of bound output labels x(y) has
the additional condition y 62 fn(q) as it makes sense to consider only moves where
y is fresh for both p and q.4 The more interesting case is that of input labels x(y):
here we have the same condition y 62 fn(q) as in the case of bound output (for exactly
the same reason), but additionally we require that p0 and q0 are compared w.r.t. all
possible received names p0[w/y] S q0[w/y]. Notice that, as obvious for a generic input,
also names which are not fresh (namely that appear free in p0 and q0) can replace
variable y. This is the reason why we required y to be fresh in the first place. It
is important to remark that different moves of q can be chosen depending on the
received value w: this is the main feature of early bisimilarity.

The very same definition of strong early ground bisimulation can be written more
concisely by grouping together the three cases of silent label, output labels and bound
output labels in the same clause:

8p,q. p S q )

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)��! q0 and p0[w/y] S q0[w/y]

(and vice versa)

4 In general, a bisimulation can relate processes whose sets of free names are different, as they
are not necessarily used. For example, we want to relate p and p | q when q is deadlocked, even if
fn(q) 6= ?, so the condition y 62 fn(p | q) is necessary to allow p | q to (bi)simulate all bound output
moves of p, if any.
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Remark 13.4. While the second clause introduces universal quantification over the
received names, it is enough to check that the condition p0[w/y] S q0[w/y] is satisfied
for all w 2 fn(p0)[ fn(q0) and for a single fresh name w 62 fn(p0)[ fn(q0), i.e., for a
finite set of names.

Definition 13.3 (Early bisimilarity ⇠E ). Two p-calculus agents p and q are early
bisimilar, written p ⇠E q, if there exists a strong early ground bisimulation S such
that p S q.

Example 13.4 (Early bisimilar processes). Let us consider the processes:

p def
= x(y).t.nil + x(y).nil q def

= p + x(y).[y = z]t.nil

whose transitions are (for any fresh name u):

p
x(u)��! t.nil q

x(u)��! t.nil
p

x(u)��! nil q
x(u)��! nil

q
x(u)��! [u = z]t.nil

The two processes p and q are early bisimilar. On the one hand, it is obvious that q
can simulate all moves of p. On the other hand, let q perform an input operation on
x by choosing the rightmost option. Then, we need to find, for each received name

w to be substituted for u, a transition p
x(u)��! p0 such that p0[w/u] is early bisimilar

to [w = z]t.nil. If the received name is w = z, then the match is satisfied and p can
choose to perform the left input operation to reach the state t.nil, which is early
bisimilar to [z = z]t.nil. Otherwise, if w 6= z, then the match condition is not satisfied
and [w = z]t.nil is deadlock, so p can choose to perform the right input operation
and reach the deadlock state nil. Notably, in the early bisimulation game, the received
name is known prior to the choice of the transition by the defender.

13.5.2 Strong Late Ground Bisimulations

In the case of late bisimulation, we require that, if an agent p has an input transition
to p0, then there exists a single input transition of q to q0 such that p0 and q0 are
related for any received value, i.e., q must choose the transition without knowing
what the received value will be.

Formally, a binary relation S on p-calculus agents is a strong late ground bisimu-
lation if (in concise form):
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8p,q. p S q )

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a�! q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 9q0. q
x(y)��! q0 and 8w. p0[w/y] S q0[w/y]

(and vice versa)

The only difference w.r.t. the definition of strong early ground bisimulation is that,
in the second clause, the order of quantifiers 9q0 and 8w is inverted.

Remark 13.5. In the literature, early and late bisimulations are often defined over
two different transition systems. For example, if only early bisimilarity is considered,
then the labels for input transitions could contain the actual received name, which
can be either free or fresh. We have chosen to define a single transition system to
give an uniform presentation of the two abstract semantics.

Definition 13.4 (Late bisimilarity ⇠L). Two p-calculus agents p and q are said to
be late bisimilar, written p ⇠L q if there exists a strong late ground bisimulation S
such that p S q.

The next example illustrates the difference between late and early bisimilarities.

Example 13.5 (Early vs late bisimulation). Let us consider again the early bisimilar
processes p and q from Example 13.3. When late bisimilarity is considered, then
the two agents are not equivalent. In fact p should find a state which can handle all
the possible names received on x. If the leftmost choice is selected, then t.nil is
equivalent to [w = z].t.nil only when when the received value w = z but not in the
other cases. On the other hand, if the right choice is selected, then t.nil is equivalent
to [w = z].t.nil only when w 6= z.

As the above example suggests, it is possible to prove that early bisimilarity is
strictly coarser than late: if p and q are late bisimilar, then they are early bisimilar.

13.5.3 Compositionality and Strong Full Bisimilarities

Unfortunately both early and late ground bisimilarities are not congruences, even in
the strong case, as shown by the following counterexample.

Example 13.6 (Ground bisimilarities are not congruences). Let us consider the fol-
lowing agents:

p def
= xx.nil | x0(y).nil q def

= xx.x0(y).nil + x0(y).xx.nil

We leave the reader to check that the agents p and q are bisimilar (according to both
early and late bisimilarities). Now, in order to show that ground bisimulations are not
congruences, we define the following context:
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C[·] = z(x0).[·]

by plugging p and q inside the hole of C[·] we get:

C[p] = z(x0).(xx.nil | x0(y).nil) C[q] = z(x0).(xx.x0(y).nil + x0(y).xx.nil)

C[p] and C[q] are not early bisimilar (and thus not late bisimilar). In fact, suppose
the name x is received on z: we need to compare the agents

p0 def
= xx.nil | x(y).nil q0 def

= xx.x(y).nil + x(y).xx.nil

Now p0 can perform a t-transition, but q0 cannot.

The problem illustrated by the previous example is due to aliasing, and it appears
often in programming languages with both global variables and parameter passing to
procedures. It can be solved by defining a finer relation between agents called strong
early full bisimilarity and defined as follows:

p 'E q , ps ⇠E qs for every substitution s

where a substitution s is a function from names to names that is equal to the identity
function almost everywhere (i.e., it differs from the identity function only on a finite
number of elements of the domain).

Analogously, we can define strong late full bisimilarity 'L by letting

p 'L q , ps ⇠L qs for every substitution s

13.5.4 Weak Early and Late Ground Bisimulations

As for CCS, we can define the weak versions of transitions a
=) and of bisimulation

relations. The definition of weak transitions is the same as CCS: 1) we write p t
=) q

if p can reach q via a, possibly empty, sequence of t-transitions; and 2) we write
p a

=) q for a 6= t if there exist p0,q0 such that p t
=) p0 a�! q0 t

=) q.
The definition of weak early ground bisimulation S is then the following:

8p,q. p S q )

8
>>>>>><

>>>>>>:

8a, p0. if p a�! p0 with a 6= x(y) ^ bn(a)\ fn(q) = ?,

then 9q0. q a
=) q0 and p0 S q0

8x,y, p0. if p
x(y)��! p0 with y 62 fn(q),

then 8w. 9q0. q
x(y)
==) q0 and p0[w/y] S q0[w/y]

(and vice versa)

So we define the corresponding weak early bisimilarity ⇡E as follows:
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p ⇡E q , p S q for some weak early ground bisimulation S.

It is possible to define weak late ground bisimulation and weak late bisimilarity
⇡L in a similar way (see Problem 13.9).

As the reader can expect, weak (early and late) bisimilarities are not congruences
due to aliasing, as it was already the case for strong bisimilarities. In addition, weak
(early and late) bisimilarities are not congruences for a choice context, as it was
already the case for CCS. Both problems can be fixed by combining the solutions
we have shown for weak observational congruence in CCS and for strong (early and
late) full bisimilarities.

Problems

13.1. The asynchronous p-calculus allows only outputs with no continuation, i.e.,
it allows output atoms of the form xhyi but not output prefixes, yielding a smaller
calculus.5 Show that any process in the original p-calculus can be represented in
the asynchronous p-calculus using an extra (fresh) channel to simulate explicit
acknowledgement of name transmission. Since a continuation-free output can model
a message-in-transit, this fragment shows that the original p-calculus, which is
intuitively based on synchronous communication, has an expressive asynchronous
communication model inside its syntax.

13.2. The polyadic p-calculus allows communicating more than one name in a single
action:

xhz1, ...zni.P (polyadic output) and x(z1, ...zn).P (polyadic input).

Show that this polyadic extension can be encoded in the monadic calculus (i.e., the
ordinary p-caculus) by passing the name of a private channel through which the
multiple arguments are then transmitted, one-by-one, in sequence.

13.3. A higher order p-calculus can be defined where not only names but processes
are sent through channels, i.e., action prefixes of the form x(Y ).p and xhPi.p are
allowed where Y is a process variable and P a process. Davide Sangiorgi established
the surprising result that the ability to pass processes does not increase the expressivity
of the p-calculus: passing a process P can be simulated by just passing a name that
points to P instead. Formalise this intuition by showing how to encode higher-order
processes in ordinary ones.

13.4. Prove that x 62 fn(p) implies (x)p ⌘ p, where ⌘ is the structural congruence.

13.5. Exhibit two p-calculus agents p and q such that p 'E q but fn(p) 6= fn(q).
5 Equivalently, one can take the fragment of the p-calculus such that for any subterm of the form
xy.p it must be p = nil.
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13.6. As needed in the proof of the Harmony Lemma 13.1, prove that for any
structural equivalence axiom p ⌘ p0 and for any transition p0 a�! q0 then there exists
a transition p a�! q for some q ⌘ q0.

13.7. Prove the following properties for the p-calculus, where ⇠E is the strong early
ground bisimilarity:

(x)(p | q) ⇠E p | (x)q if x 62 fn(p) (x)(p | q) ⇠E p | (x)q (x)(p | q) ⇠E ((x)p) | (x)q.

offering counterexamples if the properties do not hold.

13.8. Prove that strong early ground bisimilarity is a congruence for the restriction
operator. Distinguish the case of input action. Assume that if S is a bisimulation, also
S0 = {(s(x),s(y))|(x,y) 2 S} is a bisimulation, where s is a one-to-one renaming.

13.9. Spell out the definition of weak late ground bisimulation and weak late bisimi-
larity ⇡L.

13.10. In the p-calculus, infinite branching is a serious drawback for finite verifica-
tion. Show that agents

p def
= x(y).yy.nil q def

= (y)xy.yynil

are infinitely branching. Modify the input axiom, the open rule, and possibly the
parallel composition rule by limiting to one the number of different fresh names
which can be assigned to the new name. Modify also the input clause for the early
bisimulation by limiting the set of possible continuations by substituting all the free
names and only one fresh name. Discuss the possible criteria for choosing the fresh
name, e.g., the first, in some order, name which is not free in the agent. Check if your
criteria make agents p and r bisimilar or not, where

r def
= x(y).(yy.nil | (z)zw.nil)

(note that (z)zw.nil is just a deadlock component).
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Probabilistic Systems
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This part focuses on models and logics for probabilistic and stochastic systems.
Chapter 14 presents the theory of random processes and Markov chains. Chapter 15
studies (reactive and generative) probabilistic models of computation with observ-
able actions and sources of non-determinism together with a specification logic.
Chapter 16 defines the syntax, operational and abstract semantics of PEPA, a well-
known high-level language for the specification and analysis of stochastic, interactive
systems.
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Chapter 14
Measure Theory and Markov Chains

The future is independent of the past, given the present. (Markov
property as folklore)

Abstract Future is largely unpredictable. Non-determinism accounts for modelling
some phenomena arising in reactive systems, but it does not allow a quantitative
estimation of how likely is one event w.r.t. another. We use the term random or prob-
ability to denote systems where the quantitative estimation is possible. In this chapter
we present well-studied models of probabilistic systems, called random processes
and Markov chains in particular. The second come in two flavours, depending on
the underlying model of time (discrete or continuous). Their key feature is called
Markov property and it allows to develop an elegant theoretical setting, where it can
be conveniently estimated, e.g., how long a system will sojourn in a given state, or
the probability of finding the system in a given state at a given time or in the long
run. We conclude the chapter by discussing how bisimilarity equivalences can be
extended to Markov chains.

14.1 Probabilistic and Stochastic Systems

In previous chapters we have exploited non-determinism to represent choices and
parallelism. Probability can be viewed as a refinement of non-determinism, where it
can be expressed that some choices are more likely or more frequent than others. We
distinguish two main cases: probabilistic and stochastic models.

Probabilistic models associate a probability to each operation. If many operations
are enabled at the same time, then the system uses the probability measure to choose
the action that will be executed next. As we will see in Chapter 15, models with
many different combinations of probability, non-determinism and observable actions
have been studied.

In stochastic models each event has a duration. The model binds a random variable
to each operation. This variable represents the time necessary to execute the operation.
The models we will study use exponentially distributed variables, associating a rate to
each event. Often in stochastic systems there is no explicit non-deterministic choice:
when a race between events is enabled, the fastest operation is actually chosen.

311
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We start this chapter by introducing some basic concepts of measure theory on
which we will rely in order to construct probabilistic and stochastic models. Then
we will present one of the most used stochastic models, called Markov chains. A
Markov chain, named after the Russian mathematician Andrey Markov (1856–1922),
is characterised by the the fact that the probability to evolve from one state to another
depends only on the current state and not on the sequence of events that preceded it
(e.g., it does not depend on the states traversed before reaching the current one). This
feature, called the Markov property, essentially states that the system is memoryless,
or rather that the relevant information about the past is entirely contained in the
present state. A Markov chain allows to predict important statistical properties about
the future behaviour of a system. We will discuss both the discrete time and the
continuous time variants of Markov chains and we will examine some interesting
properties which can be studied relying on probability theory.

14.2 Probability Space

A probability space accounts for modelling experiments with some degree of ran-
domness. It comprises a set W of all possible outcomes (called elementary events)
and a set A of events that we are interested in. An event is just a set of outcomes,
i.e., A ✓√(W), but in general we are not interested in the whole powerset √(W),
especially because when W is infinite, then we would not be able to assign reasonable
probabilities to all events in √(W). However, the set A should include at least the
impossible event ? and the certain event W . Moreover, since events are sets, it is
convenient to require that A is closed under the usual set operations. Thus if A and
B are events, then also their intersection A \ B, their union A [ B and complement
A should be event, so that we can express, e.g., probabilities about the fact that two
events will happen together, or about the fact that some event is not going to happen.
If this is the case, then A is called a field. We call it a s -field if it is also closed under
countable union of events. A s -field is indeed the starting point to define measurable
spaces and hence probability spaces.

Definition 14.1 (s -field). Let W be a set of elementary events and A ✓√(W) be a
family of subsets of W , then A is a s -field if all of the following hold:

1. ? 2 A (the impossible event is in A );
2. 8A 2 A ) (W \A) 2 A (A is closed under complement);
3. 8{An}n2N ✓ A .

S
i2N Ai 2 A (A is closed under countable union).

The elements of A are called events.

Remark 14.1. It is immediate to see that A must include the certain event (i.e.,
W 2 A , by 1 and 2) and that also the intersection of a countable sequence of
elements of A is in A , i.e.,

T
i2N Ai = W \ (

S
i2N(W \Ai)) (it follows by 2, 3 and the

De Morgan property).
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Let us illustrate the notion of s -field by showing a simple example over a finite
set of events.

Example 14.1. Let W = {a,b,c,d}, we define a s -field on W by setting A ✓√(W):

A = {?,{a,b},{c,d},{a,b,c,d}}

The smallest s -field associated with a set W is {?,W} and the smallest s -
field that includes an event A is {?,A,W \A,W}. More generally, given any subset
B ✓√(W) there is a least s -field that contains B.

s -fields fix the domain on which we define a particular class of functions called
measures, which assign a real number to each measurable set of the space. Roughly,
a measure can be seen as a notion of size that we wish to attach to sets.

Definition 14.2 (Measure). Let (W ,A ) be a s -field. A function µ : A ! [0,+•]
is a measure on (W ,A ) if all of the following hold:

1. µ(?) = 0;
2. for any countable collection {An}n2N ✓ A of pairwise disjoint sets we have

µ(
S

i2N Ai) = Âi2N µ(Ai).

A set contained in A is then called a measurable set, and the pair (W ,A ) is
called measurable space. We are interested to a particular class of measures called
probabilities. A probability is a essentially a “normalised” measure.

Definition 14.3 (Probability). A measure P on (W ,A ) is a probability if P(W) = 1.

It is immediate from the definition of probability that the codomain of P cannot
be the whole set R of real numbers but it is just the interval of reals [0,1].

Definition 14.4 (Probability space). Let (W ,A ) be a measurable space and P be a
probability on (W ,A ), then (W ,A ,P) is called a probability space.

14.2.1 Constructing a s -field

Obviously one can think that in order to construct a s -field that contains some sets
equipped with a probability it is enough to construct the closure of these sets (together
with top and bottom elements) under complement and countable union. But it comes
out from set theory that not all sets are measurable. More precisely, it has been shown
that it is not possible to define (in ZFC set theory) a probability for all the subsets
of W when its cardinality is1 2¿0 (i.e., there is no function P : √(R) ! [0,1] that
satisfies Definition 14.4). So we have to be careful in defining a s -field on a set W of
elementary events that is uncountable.

The next example shows how this problem can be solved in a special case.

1 The symbol ¿0, called aleph zero, is the smallest infinite cardinal, i.e., it denotes the cardinality
of N. Thus 2¿0 is the cardinality of the powerset √(N) as well as of the continuum R.



DRAFT

314 14 Measure Theory and Markov Chains

Example 14.2 (Coin tosses). Let us consider the classic coin toss experiment. We
have a fair coin and we want to model sequences of coin tosses. We would like to
define W as the set of infinite sequences of head (H) and tail (T ):

W = {H,T}•.

Unfortunately this set has cardinality 2¿0 . As we have just said a measure on uncount-
able sets does not exist. So we can restrict our attention to a countable set: the set C
of finite sequences of coin tosses. In order to define a s -field which can account for
almost all the events that we could express in words, we define the following set for
each a 2 C called the shadow of a:

[a] = { w 2 W | 9w 0 2 W . aw 0 = w }

The shadow of a is the set of infinite sequences of which a is a prefix. The right
hand side of Figure 14.1 shows graphically the set [a] of infinite paths corresponding
to the finite sequence a .

…

…

…

…

H

H

HT

T

T �

[�]

Fig. 14.1: The shadow of a

Now the s -field which we were looking for is the one generated by the shadows
of the sequences in C . In this way we can start by defining a probability measure
P on the s -field generated by the shadows of C , then we can assign a non-zero
probability to (all finite sequences and) some infinite sequences of coin tosses by
setting:

p(w) =

8
>><

>>:

P( [w] ) if w is finite

P

0

@ \

a2C , w2[a]

[a]

1

A if w is infinite

For the second case, remind that the definition of s -field ensures that countable
intersection of measurable sets is measurable. Measure theory results show that this
measure exists and is unique.
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Very often we have structures that are associated with a topology (e.g. there exists
a standard topology, called Scott topology, associated to each CPO) so it is useful to
define a standard method to obtain a s -field from a topology.

Definition 14.5 (Topology). Let T be a set and T ✓√(T ) be a family of subsets of
T . Then T is said to be a topology on T if:

• T,? 2 T ;
• A,B 2 T ) A\B 2 T , i.e., the topology is closed under finite intersection;
• let {Ai}i2I be any family of sets in T then

S
i2I Ai 2 T , i.e., the topology is closed

under finite and infinite union.

The pair (T,T ) is said to be a topological space.

We call A an open set if it is in T and it is a closed set if T \A is open.

Remark 14.2. Note that in general a set can be open, closed, both or neither. For
example, T and ? are open and also closed sets. Open sets should not be confused
with measurable sets, because measurable sets are closed under complement and
countable intersection. This difference makes the notion of measurable function very
different from that of continuous function.

Definition 14.6 (Borel s -field). Let T be a topology, we call the Borel s -field of
T the smallest s -field that contains T .

It turns out that the s -field generated by the shadows which we have seen in the
previous example is the Borel s -field generated by the topology associated with the
CPO of sets of infinite paths ordered by inclusion.

Example 14.3 (Euclidean topology). The euclidean topology is a topology on real
numbers whose open sets are open intervals of real numbers:

]a,b[ = {x 2 R | a < x < b}

We can extend the topology to the correspondent Borel s -field, then associating to
each open interval its length we obtain the usual Lebesgue measure.

It is often convenient to work with a generating collection, because Borel s -fields
are difficult to describe directly.

14.3 Continuous Random Variables

Stochastic processes associate a(n exponentially distributed) random variable to
each event in order to represent its timing. So the concept of random variable and
distribution will be central to the development in this chapter.

Suppose that an experiment has been performed and its outcome w 2 W is known.
A (continuous) random variable associates a real number to w , e.g., by observing
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some of its features. For example, if w is a finite sequence of coin tosses, a random
variable X can count how many heads appear in w . Then we can try to associate a
probability measure on the possible values of X . However, it turns out that in general
we cannot define a function f : R ! [0,1] such that f (x) is the probability that X is
x, because the set {w | X(w) = x} is not necessarily an element of a measurable
space. We consider instead (measurable) sets of the form {w | X(w)  x}.

Definition 14.7 (Random variable). Let (W ,A ,P) be a probability space, a func-
tion X : W ! R is said to be a random variable if

8x 2 R. {w 2 W | X(w)  x} 2 A .

The condition expresses the fact that for each real number x, we can assign a
probability to the set {w 2 W | X(w)  x}, because it is included in a measurable
space. Notice that if we take as (W ,A ) the measurable space of the real numbers
with the Lebesgue measure, the identity id : R ! R satisfies the above condition. As
another example, we can take sequences of coin tosses, assign the digit 0 to head and
1 to tail and see the sequences as binary representations of decimals in [0,1).

Random variables can be classified by considering the set of their values. We call
discrete a random variable that has a numerable or finite set of possible values. We
say that a random variable is continuous if the set of its values is continuous. In the
remainder of this section we will consider mainly continuous variables.

A random variable is completely characterised by its probability law which
describes the probability that the variable will be found in a value less than or equal
to the parameter.

Definition 14.8 (Cumulative distribution function). Let S = (W ,A ,P) be a prob-
ability space, X : W ! R be a continuous random variable over S. We call cumulative
distribution function (also probability law) of X the image of P through X and denote
it by FX : R ! [0,1], i.e.:

FX (x) def
= P({w 2 W | X(w)  x}).

Note that the definition of random variable guarantees that, for any x 2 R, the set
{w 2 W | X(w)  x} is assigned a probability. Moreover, if x < y then FX (x)  FX (y).

As a matter of notation, we write P(X  a) to mean FX (a), from which we derive:

P(X > a)
def
= P({w 2 W | X(w) > a}) = 1�FX (a)

P(a < X  b)
def
= P({w 2 W | a < X(w)  b}) = FX (b)�FX (a).

The other important function which describes the relative probability of a continu-
ous random variable to take a specified value is the probability density.

Definition 14.9 (Probability density). Let X : W ! R be a continuous random
variable on the probability space (W ,A ,P). We call the integrable function fX :
R ! [0,•) the probability density of X if:
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Fig. 14.3: Exponential density distributions with different rates l

8a,b 2 R. P(a < X  b) =
Z b

a
fX (x)dx

So we can define the probability law FX of a variable X with density fX as follows:

FX (a) =
Z a

�•
fX (x)dx

Note that P(X = a)
def
= P({w | X(w) = a}) is usually 0 when continuous random

variables are considered. In case X is a discrete random variable, then its distribution
function has jump discontinuities and the function fX : R ! [0,1] given by fX (x) def

=
P(X = x) is called probability mass function.

We are particularly interested in exponentially distributed random variables.

Definition 14.10 (Exponential distribution). A continuous random variable X is
said to be exponentially distributed with parameter l if its probability law and density
function are defined as follows:

FX (x) =

⇢
1� e�lx if x > 0

0 x < 0 fX (x) =

⇢
le�lx if x > 0

0 x < 0
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The parameter l is called the rate of X and it characterises the expected value
(mean) of X , which is 1/l , and the variance of X , which is 1/l 2. Some plottings of
the functions FX and fX associated with exponential distributions with different rates
are illustrated in Figure 14.2 and 14.3.

One of the most important features of exponentially distributed random variables
is that they are memoryless, meaning that the current value of the random variable
does not depend on the previous values.

Example 14.4 (Radioactive Atom). Let us consider a radioactive atom, which due to
its instability can easily loose energy. It turns out that the probability that an atom
will decay is constant over the time. So this system can be modelled by using an
exponentially distributed, continuous random variable whose rate is the decay rate of
the atom. Since the random variable is memoryless we have that the probability that
the atom will decay at time t0 + t knowing that it is not decaying yet at time t0 is the
same for any choice of t0, as it depends just on t.

In the following we denote by P(A | B) the conditional probability of the event A
given the event B, with

P(A | B)
def
=

P(A\B)

P(B)
.

Theorem 14.1 (Memoryless). Let X be an exponentially distributed (continuous)
random variable with rate l . Then:

P(X  t0 + t | X > t0) = P(X  t).

Proof. Since X is exponentially distributed, its probability law is:

FX (t) =
Z t

0
le�lxdx

so we need to prove:

P(t0 < X  t0 + t)
P(X > t0)

=

R t0+t
t0 le�lxdx
R •

t0 le�lxdx
?
=
Z t

0
le�lxdx = P(X  t)

Since
R b

a le�lxdx =
⇥
�e�lx⇤b

a =
⇥
e�lx⇤a

b it follows that:

R t0+t
t0 le�lxdx
R •

t0 le�lxdx
=

⇥
e�lx⇤t0

t0+t⇥
e�lx

⇤t0
•

=
e�l t0 � e�l t · e�l t0

e�l t0
=

���e�l t0(1� e�l t)

���e�l t0
= 1� e�l t

We conclude by:
Z t

0
le�lxdx =

h
e�lx

i0

t
= 1� e�l t .

ut
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Another interesting feature of exponentially distributed random variables is the
easy way in which we can compose information in order to find the probability
of more complex events. For example if we have two random variables X1 and
X2 which represent the delay of two events e1 and e2, we can try to calculate the
probability that either of the two events will be executed before a specified time t.
As we will see it happens that we can define an exponentially distributed random
variable whose cumulative probability is the probability that either e1 or e2 executes
before a specified time t.

Theorem 14.2. Let X1 and X2 be two exponentially distributed continuous random
variables with rates respectively l1 and l2 then:

P(min{X1,X2}  t) = 1� e�(l1+l2)t

Proof. We recall that for any two events (not necessarily disjoint) we have:

P(A[B) = P(A)+P(B)�P(A\B)

and that for two independent events we have

P(A\B) = P(A)⇥P(B).

Then:

P(min{X1,X2}  t) = P(X1  t _X2  t)
= P(X1  t)+P(X2  t)�P(X1  t ^X2  t)
= P(X1  t)+P(X2  t)�P(X1  t)⇥P(X2  t)

= (1� e�l1t)+(1� e�l2t)� (1� e�l1t)(1� e�l2t)

= 1� e�l1t e�l2t

= 1� e�(l1+l2)t

ut

Thus X = min{X1,X2} is also an exponentially distributed random variable, whose
rate is l1 + l2. We will exploit this property to define, e.g., the sojourn time in
continuous time Markov chains (see Section 14.4.4).

A second important value that we can calculate is the probability that an event will
be executed before another. This corresponds in our view to calculate the probability
that X1 will take a value smaller than the one taken by X2, namely that the action
associated with X1 is chosen instead of the one associated with X2.

Theorem 14.3. Let X1 and X2 be two exponentially distributed, continuous random
variables with rate respectively l1 and l2 then:

P(X1 < X2) =
l1

l1 +l2
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Proof. Imagine you are at some time t and neither of the two variables has fired.
The probability that X1 fires in the infinitesimal interval dt while X2 fires in any
successive instant is

l1e�l1t
✓Z •

t
l2e�l2t2dt2

◆
dt

From which we derive:

P(X1 < X2) =
Z •

0
l1e�l1t1

✓Z •

t1
l2e�l2t2dt2

◆
dt1

=
Z •

0
l1e�l1t1

h
e�l2t2

it1

•
dt1

=
Z •

0
l1e�l1t1 · e�l2t1dt1

=
Z •

0
l1e�(l1+l2)t1dt1

=


l1

l1 +l2
e�(l1+l2)t

�0

•

=
l1

l1 +l2
.

ut

We will exploit this property when presenting the process algebra PEPA, in
Chapter 16.

As a special case, when the rates of the two variables are equal, i.e., l1 = l2, then
P(X1 < X2) = 1/2.

14.3.1 Stochastic Processes

Stochastic processes are a very powerful mathematical tool that allows us to describe
and analyse a wide variety of systems.

Definition 14.11 (Stochastic process). Let (W ,A ,P) be a probability space and T
be a set, then a family {Xt}t2T of random variables over W is said to be a stochastic
process.

A stochastic process can be identified with a function X : W ⇥T ! R such that:

8t 2 T. X(·, t) : W ! R is a random variable.

Usually the values in R that each random variable can take are called states and
the element of T are interpreted as times.

Obviously the set T strongly characterises the process. A process in which T is
N or a subset of N is said to be a discrete time process; on the other hand if T = R
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(or T = [0,•)) then the process is a continuous time process. The same distinction
is usually done on the value that each random variable can assume: if this set has a
countable or finite cardinality then the process is discrete; otherwise it is continuous.
We will focus only on discrete processes with both discrete and continuous time.
When the set S = {x | 9w 2 W , t 2 T.X(w, t) = x} of states is finite, with cardinality
N, without loss of generality, we can assume that S = {1,2, ...,N} is just the set of
the first N positive natural numbers and we read Xt = i as “the stochastic process X
is in the ith state at time t”.

14.4 Markov Chains

Stochastic processes studied by classical probability theory often involve only in-
dependent variables, namely the outcomes of the process are totally independent
from the past. Markov chains extend the classic theory by dealing with processes
where each variable is influenced by the previous one. This means that in Markov
processes the next outcome of the system is influenced only by the previous state.
One could think to extend this theory in order to allow general dependencies between
variables, but it turns out that it is very difficult to prove general results on processes
with dependent variables. We are interested in Markov chains since they provide an
expressive mathematical framework to represent and analyse important interleaving
and sequential systems.

Definition 14.12 (Markov chain). Let (W ,A ,P) be a probability space, T be a
totally ordered set and {Xt}t2T be a stochastic process. Then, {Xt}t2T is said to be a
Markov chain if for each sequence t0 < ... < tn < tn+1 of times in T and for all states
x,x0,x1, ...,xn 2 R:

P(Xtn+1 = x | Xtn = xn, . . . ,Xt0 = x0) = P(Xtn+1 = x | Xtn = xn).

The previous proposition is usually referred to as Markov property.

An important characteristic of a Markov chain is the way in which it is influenced
by the time. We have two types of Markov chains, inhomogeneous and homogeneous.
In the first case the state of the system depends on the time, namely the probability
distribution changes over time. In homogeneous chains on the other hand the time
does not influence the distribution, i.e., the transition probability does not change
during the time. We will consider only the simpler case of homogeneous Markov
chains, gaining the possibility to shift the time axis back and forward.

Definition 14.13 (Homogeneous Markov chain). Let {Xt}t2T be a Markov chain;
it is homogeneous if for all states x,x0 2 R and for all times t, t 0 2 T with t < t 0 we
have:

P(Xt 0 = x0|Xt = x) = P(Xt 0�t = x0|X0 = x).

In what follows we use the term “Markov chain” as a synonym for “homogeneous
Markov chain”.
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14.4.1 Discrete and Continuous Time Markov Chain

As we said, one of the most important things about stochastic processes in general,
and about Markov chains in particular, is the choice of the set of times. In this section
we will introduce two kinds of Markov chains, those in which T = N, called discrete
time Markov chain (DTMC), and those in which T = R, referred to as continuous
time Markov chain.

Definition 14.14 (Discrete time Markov Chain (DTMC)). Let {Xt}t2N be a stochas-
tic process; then, it is a discrete time Markov chain (DTMC) if for all n 2 N and for
all states x,x0,x1, ...,xn 2 R :

P(Xn+1 = x | Xn = xn, . . . ,X0 = x0) = P(Xn+1 = | Xn = xn).

Since we are restricting our attention to homogeneous chains then we can refor-
mulate the Markov property as follows:

P(Xn+1 = x | Xn = xn, . . . ,X0 = x0) = P(X1 = x | X0 = xn)

Assuming the possible states are 1, ...,N, the DTMC is entirely determined by the
transition probabilities ai, j = P(X1 = j | X0 = i) for i, j 2 {1, ...,N}.

Definition 14.15 (Continuous time Markov Chain (CTMC)). Let {Xt}t2R be a
stochastic process; then, it is a continuous time Markov chain (CTMC) if for all states
x,x0, ...,xn, for any Dt 2 [0,•) and any sequence of times t0 < ... < tn we have:

P(Xtn+Dt = x | Xtn = xn, . . . ,Xt0 = x0) = P(Xtn+Dt = x | Xtn = xn).

As for the discrete case, the homogeneity allows to reformulate the Markov
property as follows:

P(Xtn+Dt = x | Xtn = xn, . . . ,Xt0 = x0) = P(XDt = x | X0 = xn).

Assuming the possible states are 1, ...,N, the CTMC is entirely determined by the
rates li, j that govern the probability P(Xt = j | X0 = i) = 1� e�li, jt .

We remark that the exponential random variable is the only continuous random
variable with the memoryless property, i.e., CTMC are necessarily exponentially
distributed.

14.4.2 DTMC as LTS

A DTMC can be viewed as a particular LTS whose labels are probabilities. Usually
such LTS are called probabilistic transition systems (PTS).

A difference between LTS and PTS is that in LTS we can have structures like
the one shown in Figure 14.4(a), with two transitions that are co-initial and co-final
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and carry different labels. In PTS we cannot have this kind of situation since two
different transitions between the same pair of states have the same meaning of a
single transition labeled with the sum of the probabilities, as shown in Figure 14.4(b).

p
**

q
44

(a)

p+q //

(b)

Fig. 14.4: Two equivalent DTMCs

The PTS (S,aD) associated with a DTMC has a set of states S and a transition
function aD : S ! (D(S)[ 1) where D(S) denotes the set of discrete probability
distributions over S and 1 = {⇤} is a singleton used to represent the deadlock states.
We recall that a discrete probability distribution over a set S is a function D : S ! [0,1]
such that Âs2S D(s) = 1.

Definition 14.16 (PTS of a DTMC). Let {Xt}t2N be a DTMC whose set of states
is S. Its corresponding PTS has set of states S and transition function aD : S !
(D(S)[1) defined as follows:

aD(s) =

⇢
l s0. P(X1 = s0 | X0 = s) if s is not a deadlock state
⇤ otherwise.

Note that for each non-deadlock state s it holds:

Â
s02S

aD(s)(s0) = 1.

Usually the transition function is represented through a matrix P whose indices
i, j represent states si,s j and each element ai, j is the probability that knowing that
the system is in the state i it would be in the state j in the next time instant, namely
8i, j  |S|. ai, j = aD(si)(s j), note that in this case each row of P must sum to one.
This representation allows us to study the system by relaying on linear algebra. In fact
we can represent the present state of the system by using a row vector p(t) = [p(t)

i ]i2S

where p(t)
i represents the probability that the system is in the state si at the time t.

If we want to calculate how the system will evolve (i.e., the next state distribution)
starting from this state we can simply multiply the vector with the matrix which
represents the transition function, as the following example of a three state system
shows:

p(t+1) = p(t)P =
���p(t)

1 p(t)
2 p(t)

3

���

������

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

������
=

�������

a1,1p(t)
1 +a2,1p(t)

2 +a3,1p(t)
3

a1,2p(t)
1 +a2,2p(t)

2 +a3,2p(t)
3

a1,3p(t)
1 +a2,3p(t)

2 +a3,3p(t)
3

�������

T
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where the resulting row vector is transposed for space matter.
For some special class of DTMCs we can prove the existence of a limit vector for

t ! •, that is to say the probability that the system is found in a particular state is
stationary in the long run (see Section 14.4.3).

1
1/5 //

4/5

◆◆
2

2/3
��

1/3

↵↵

3

1

^^

Fig. 14.5: A DTMC

Example 14.5 (DTMC). Let us consider the DTMC in Figure 14.5. We represent the
chain algebraically by using the following matrix:

P =

������

4/5 1/5 0
0 1/3 2/3
1 0 0

������

Now suppose that we do not know the state of the system at time t, thus we assume
the system has equal probability 1

3 of being in any of the three states. We represent
this situation with the following vector:

p(t) =
��1/3 1/3 1/3

��

Now we can calculate the state distribution at time t +1 as follows:

p(t+1) =
��1/3 1/3 1/3

��

������

4/5 1/5 0
0 1/3 2/3
1 0 0

������
=
��3/5 8/45 2/9

��

Notice that the sum of probabilities in the result 3/5+8/45+2/9 is again 1. Obvi-
ously we can iterate this process in order to simulate the evolution of the system.

Since we have represented a Markov chain by using a transition system it is quite
natural to ask for the probability of a finite path.

Definition 14.17 (Finite path probability). Let {Xt}t2N be a DTMC and s1 · · ·sn
a finite path of its PTS (i.e., 8i. 1  i < n ) aD(si)(si+1) > 0) we define the
probability P(s1 · · ·sn) of the path s1 · · ·sn as follows:

P(s1 · · ·sn) =
n�1

’
i=1

aD(si)(si+1) =
n�1

’
i=1

asi,si+1 .
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Example 14.6 (Finite paths). Let us consider the DTMC of Example 14.5 and take
the path 1 2 3 1. We have:

P(1 2 3 1) = a1,2 ⇥a2,3 ⇥a3,1 =
1
5

⇥ 2
3

⇥1 =
2
15

Note that if we consider the sequence of states 1 1 3 1:

P(1 1 3 1) = a1,1 ⇥a1,3 ⇥a3,1 =
4
5

⇥0⇥1 = 0

In fact there is no transition allowed from state 1 to 3.

Note that it would make no sense to define the probability of infinite paths as
the product of the probabilities of all choices, because any infinite sequence would
have a null probability. We can overcome this problem by using the Borel s -field
generated by the shadows, as seen in Example 14.2.

14.4.3 DTMC Steady State Distribution

In this section we will present a special class of DTMCs which guarantees that the
probability that the system is found in a state can be estimated on the long term.
This means that the probability distribution of each state of the DTMC (i.e., the
corresponding value in the vector p(t)) reaches a steady state distribution which does
not change in the future, namely if pi is the steady state distribution for the state i, if
p(0)

i = pi then p(t)
i = pi for each t > 0.

Definition 14.18 (Steady state distribution). We define the steady state distribution
(or stationary distribution) p =

��p1 . . .pn
�� of a DTMC as the limit distribution:

8i 2 [1,n]. pi = lim
t!•

p(t)
i

when such limit exists.

In order to guarantee that the limit exists we will restrict our attention to a subclass
of Markov chains.

Definition 14.19 (Ergodic Markov chain). Let {Xt}t2N be a Markov chain then it
is said to be ergodic if it is both:

irreducible: each state is reachable from each other; and
aperiodic: the gcd2 of the lengths of all paths from any state to itself must be 1.

Theorem 14.4. Let {Xt}t2N be an ergodic Markov chain. Then the steady state
probability p always exists and it is independent from the initial state probability
distribution.
2 The gcd is the greatest common divisor.
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The steady state probability distribution p can be computed by solving the system
of linear equations:

p = p P

where P is the matrix associated to the chain, under the additional constraint that the
sum of all probabilities is 1.

Example 14.7 (Steady state distribution). Let us consider the DTMC of Example 14.5.
It is immediate to check that it is ergodic. To find the steady state distribution we
need to solve the following linear system:

��p1 p2 p3
��

������

4/5 1/5 0
0 1/3 2/3
1 0 0

������
=
��p1 p2 p3

��

The corresponding system of linear equations is
8
>><

>>:

4
5 p1 +p3 = p1

1
5 p1 + 1

3 p2 = p2

2
3 p2 = p3

Note that the equations express the fact that the probability to be in the state i is given
by the sum of the probabilities to be in any other state j weighted by the probability
to move from j to i. By solving the system of linear equations we obtain the solution:

��10p2/3 p2 2p2/3
��

i.e., p1 = 10
3 p2 and p3 = 2

3 p2.
Now by imposing p1 +p2 +p3 = 1 we have p2 = 1/5 thus:

p =
��2/3 1/5 2/15

��

So, independently from the initial state, in the long run it is more likely to find the
system in the state 1 than in states 2 or 3, because the steady state probability of
being in state 1 is much larger than the other two probabilities.

14.4.4 CTMC as LTS

Also continuous time Markov chains can be represented as LTSs, but in this case
the labels are rates and not probabilities. We have two equivalent definitions for the
transition function:

aC : S ! S ! R or aC : (S ⇥S) ! R
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where S is the set of states of the chain and any real value l = aC(s)(s0) (or l =

aC(s1,s2)) represents the rate which labels the transition s l�! s0. Also in this case,
likewise DTMC, we have that two different transitions between the same two states
are merged in a single transition whose label is the sum of the rates. We write li, j for
the rate aC(si,s j) associated with the transition from state si to state s j. A difference
here is that the self loops can be ignored: this is due to the fact that in continuous
time we allow the system to sojourn in a state for a period and staying in a state is
indistinguishable from moving to the same state via a loop.

The probability that some transition happens from state si in some time t can be
computed by taking the minimum of the continuous random variables associated
with the possible transitions: by Theorem 14.2 we know that such probability is also
exponentially distributed and has a rate that is given by the sum of rates of all the
transitions outgoing from si.

Definition 14.20 (Sojourn time). Let {Xt} a CTMC. The probability that no transi-
tion happens from a state si in some (sojourn) time t is 1 minus the probability that
some transition happens:

8t 2 (0,•). P(Xt = si | X0 = si) = e�l t with l = Â
j 6=i

li, j.

As for DTMCs we can represent a CTMC by using linear algebra. In this case the
matrix Q which represents the system is defined by setting qi, j = aC(si,s j) = li, j
when i 6= j and qi,i = �Â j 6=i qi, j. This matrix is usually called infinitesimal generator.
This definition is convenient for steady state analysis, as explained by the end of the
next section.

14.4.5 Embedded DTMC of a CTMC

Often the study of a CTMC results very hard particularly in term of computational
complexity. So it is useful to have a standard way to discretise the CTMC by synthe-
sising a DTMC, called embedded DTMC, in order to simplify the analysis.

Definition 14.21 (Embedded DTMC). Let aC be the transition function of a CTMC.
Its embedded DTMC has the same set of states S and transition function aD defined
by taking:

aD(si)(s j) =

( aC(si,s j)

Âs6=si aC(si,s)
if si 6= s j

0 otherwise.

As we can see, the previous definition simply normalises to 1 the rates in order to
calculate a probability.

While the embedded DTMC completely determines the probabilistic behaviour of
the system, it does not fully capture the behaviour of the continuous time process
because it does not specify the rates at which transitions occur.
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Regarding the steady state analysis, since in the infinitesimal generator matrix Q
describing the CTMC we have qi,i = �Â j 6=i qi, j for any state index i, the steady state
distribution can equivalently be computed by solving the system of (homogeneous,
normalised) linear equations p Q = 0 (see Problem 14.11).

14.4.6 CTMC Bisimilarity

Obviously, since Markov chains can be seen as a particular type of LTS, one could
think to modify the notion of bisimilarity in order to study the equivalence between
stochastic systems.

Let us start by revisiting the notion of LTS bisimilarity in a slightly different way
from that seen in Chapter 11.

Definition 14.22 (Reachability predicate). Given and LTS (S,L,!), we define a
function g : S ⇥ L ⇥√(S) ! {true, false} which takes a state p, an action ` and a
set of states I and returns true if there exists a state q 2 I reachable from p with a
transition labelled by `, and false otherwise. Formally, given an equivalence class of
states I we define:

g(p,`, I) def
= 9q 2 I. p `�! q.

Suppose we are given a (strong) bisimulation relation R. We know that its induced
equivalence relation ⌘R is also a bisimulation. Let I be an equivalence classes induced
by R. By definition of bisimulation we have that taken any two states s1,s2 2 I if
s1

`�! s0
1 for some ` and s0

1 then it must be the case that there exists s0
2 such that

s2
`�! s0

2 and s0
2 is in the same equivalence class I0 as s0

1 (and vice versa).
Now consider the function F :√(S) !√(S) defined by letting:

8p,q 2 S. p F(R) q def
=
�

8` 2 L. 8I 2 S/⌘R . g(p,`, I) , g(q,`, I)
�

where I ranges over the equivalence classes induced by the relation R.

Definition 14.23 (Bisimulation revisited). By the argument above, a (strong) bisim-
ulation is just a relation such that R ✓ F(R) and the largest bisimulation is the
bisimilarity relation defined as

' def
=

[

R✓F(R)

R.

The construction F can be extended to the case of CTMCs. The idea is that
equivalent states will fall into the same equivalence class and that if a state has
multiple transitions with rates l1, ...,ln to different states s1, ...,sn that are in the same
equivalence class, then we can represent all such transitions by a single transitions
that carries the rate Ân

i=1 li. To this aim, given a CTMC aC : (S ⇥S) ! R, we define
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b1
2

%%
a1

0.2
99

0.2 %%

c1
0.8 // d1

b2
2

99

a2
0.4 // b3

2 // c2
0.8 // d2

Fig. 14.6: CTMC bisimilarity

a function gC : S ⇥√(S) ! R simply by extending the transition function to sets of
states as follows:

gC(s, I) = Â
s02I

aC(s,s0)

As we have done above for LTSs, we define the function FC :√(S) !√(S) by:

8s1,s2 2 S. s1 FC(R) s2
def
= 8I 2 S/⌘R . gC(s1, I) = gC(s2, I)

meaning that the total rate of reaching any equivalence class of R from s1 is the same
as that of s2.

Definition 14.24 (CTMC bisimilarity). A CTMC bisimulation is a relation R such
that R ✓ FC(R) and the CTMC bisimilarity 'C is the relation

'C
def
=

[

R✓FC(R)

R.

Let us show how this construction works with an example. Abusing the notation,
in the following we write aC(s, I) instead of gC(s, I).

Example 14.8. Let us consider the two CTMCs in Figure 14.6. We argue that the
following equivalence relation R identifies bisimilar states:

R = { {a1,a2},{b1,b2,b3},{c1,c2},{d1,d2} }.

Let us show that R is a CTMC bisimulation: whenever two states are related, we
must check that the sum of the rates from them to the states on any equivalence class
coincide. For a1 and a2, we have

aC(a1,{a1,a2}) = aC(a2,{a1,a2}) = 0
aC(a1,{b1,b2,b3}) = aC(a2,{b1,b2,b3}) = 0.4

aC(a1,{c1,c2}) = aC(a2,{c1,c2}) = 0
aC(a1,{d1,d2}) = aC(a2,{d1,d2}) = 0.

For b1,b2,b3 we have
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aC(b1,{c1,c2}) = aC(b2,{c1,c2}) = aC(b3,{c1,c2}) = 2.

Note that we no longer mention all remaining trivial cases concerned with the
other equivalence classes, where aC returns 0, because there are no transitions to
consider. Finally, we have one last non trivial case to check:

aC(c1,{d1,d2}) = aC(c2,{d1,d2}) = 0.8.

14.4.7 DTMC Bisimilarity

One could think that the same argument about bisimilarity that we have exploited
for CTMCs can be also extended to DTMCs. It is easy to show that if a DTMC has
no deadlock states, in particular if it is ergodic, then bisimilarity becomes trivial
(see Problem 14.1). This does not mean that the concept of bisimulation on ergodic
DTMCs is useless, in fact these relations (finer than bisimilarity) can be used to
factorise the chain (lumping) in order to study particular properties.

If we consider DTMCs with some deadlock states, then bisimilarity can be non
trivial. Take a DTMC aD : S ! (D(S) [ 1). Let us define the function gD : S !
√(S) ! (R[1) as follows:

gD(s)(I) =

⇢
⇤ if aD(s) = ⇤
Âs02I aD(s)(s0) otherwise

Correspondingly, we set FD :√(S) !√(S) to be defined as:

8s1,s2 2 S. s1 FD(R) s2
def
= 8I 2 S/⌘R . gD(s1)(I) = gD(s2)(I).

Definition 14.25 (DTMC bisimulation). A DTMC bisimulation is a relation R such
that R ✓ FD(R) and the DTMC bisimilarity 'D is the relation

'D
def
=

[

R✓FD(R)

R.

In this case:

1. Any two deadlock states s1,s2 are bisimilar, because

8I 2√(S). gD(s1)(I) = gD(s2)(I) = ⇤.

2. Any deadlock state s1 is separated from any non deadlock state s, as

8I. gD(s1)(I) = ⇤ 6= gD(s)(I) 2 R.

3. If there are no deadlock states, then 'D = S ⇥S.
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Problems

14.1. Prove that the bisimilarity relation in a DTMC aD : S ! (D(S)[1) without
deadlock states (and in particular, when it is ergodic) is always the universal relation
S ⇥S.

14.2. A mouse runs through the maze shown below.

    

11.5. MEAN FIRST PASSAGE TIME 467

2 43

65

1

Figure 11.7: Maze for Exercise 7.

6 For the Land of Oz example (Example 11.1), make rain into an absorbing
state and find the fundamental matrix N. Interpret the results obtained from
this chain in terms of the original chain.

7 A rat runs through the maze shown in Figure 11.7. At each step it leaves the
room it is in by choosing at random one of the doors out of the room.

(a) Give the transition matrix P for this Markov chain.

(b) Show that it is an ergodic chain but not a regular chain.

(c) Find the fixed vector.

(d) Find the expected number of steps before reaching Room 5 for the first
time, starting in Room 1.

8 Modify the program ErgodicChain so that you can compute the basic quan-
tities for the queueing example of Exercise 11.3.20. Interpret the mean recur-
rence time for state 0.

9 Consider a random walk on a circle of circumference n. The walker takes
one unit step clockwise with probability p and one unit counterclockwise with
probability q = 1 � p. Modify the program ErgodicChain to allow you to
input n and p and compute the basic quantities for this chain.

(a) For which values of n is this chain regular? ergodic?

(b) What is the limiting vector w?

(c) Find the mean first passage matrix for n = 5 and p = .5. Verify that
mij = d(n � d), where d is the clockwise distance from i to j.

10 Two players match pennies and have between them a total of 5 pennies. If at
any time one player has all of the pennies, to keep the game going, he gives
one back to the other player and the game will continue. Show that this game
can be formulated as an ergodic chain. Study this chain using the program
ErgodicChain.

At each step it stays in the room or it leaves the room by choosing at random one
of the doors (all choices have equal probability).

1. Draw the transition graph and give the matrix P for this DTMC.
2. Show that it is ergodic and compute the steady state distribution.
3. Assuming the mouse is initially in room 1, what is the probability that it is in

room 6 after three steps?

14.3. Show that the DTMC described by the matrix
������

1
4 0 3

4
0 1 0
0 0 1

������

has more than one stationary distribution, actually an infinite number of them. Explain
why it is so.

14.4. With the Markov chain below we intend to represent the scenario where Mario,
a taxi driver, is looking for costumers. In state s1, Mario is in the parking place
waiting for costumers, which arrive with probability b. Then Mario moves to the
busy state s3, with probabilities c of staying there and 1 � c of moving back to s1.
Alternatively, Mario may decide, with probability s, of moving around (state s2),
driving in the busiest streets of town looking for clients, which may show up with
probability g.
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1. Check that the Markov chain above is ergodic.
2. Compute the steady state probabilities p1, p2 and p3 for the three states s1, s2 and

s3 as functions of the parameters b, c, g and s.
3. Evaluate the probabilities for suitable values of the parameters, e.g.,

b = 0.5, c = 0.5, g = 0.8, s = 0.3

4. Prove that, when it is very likely to find costumers on the streets (i.e., when g = 1),
in order to maximise p3, Mario must always move around (i.e., he must choose
s = 1�b).

14.5. A state si of a Markov chain is called absorbing if aD(si)(si) = 1, and a Markov
chain is absorbing if it has at least one absorbing state. Can an absorbing Markov
chain be ergodic? Explain.

14.6. A machine can be described as being in three different states: (R) under repair,
(W) waiting for a new job, (O) operating.

• While the machine is operating the probability to break down is 1
20 = 0.05 and

the probability to finish the task (and go to waiting) is 1
10 = 0.1.

• If the machine is under repair there is a 1
10 = 0.1 probability to get repaired, and

then the machine will become waiting.
• A broken machine is never brought directly (in one step) to operation.
• If the machine is waiting, there is a 9

10 = 0.9 probability to get into operation.
• A waiting machine does not break.

1. Describe the system as a DTMC, draw the corresponding transition system and
define the transition probability matrix. Is it ergodic?

2. Assume that the machine is waiting at time t. What is the probability to be
operating at time t +1? Explain.

3. What is the probability that the machine is operating after a long time? Explain.

14.7. A certain calculating machine uses only the digits 0 and 1. It is supposed to
transmit one of these digits through several stages. However, at every stage, there is
a probability p that the digit that enters this stage will be changed when it leaves and
a probability q = 1� p that it won’t.

1. Form a Markov chain to represent the process of transmission. What are the states?
What is the matrix of transition probabilities?
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2. Assume that the digit 0 enters the machine: what is the probability that the
machine, after two stages, produces the digit 0? For which value of p is this
probability minimal?

14.8. Consider a CTMC with state space S = {0,1}. The only possible transitions
are described by the rates q0,1 = l and q1,0 = µ . Compute the following:

1. the embedded DTMC;
2. the state probabilities p(t) in terms of the initial distribution p(0);

14.9. Consider a CTMC with N +1 states representing the number of possible active
instances of a service, from 0 to a maximum N. Let i denote the number of currently
active instances. A new instance can be spawn with rate

li
def
= (N � i)⇥l

for some fixed l , i.e., the rate decreases as there are more instances already running,3
while an instance is terminated with rate

µi
def
= i⇥ µ

for some fixed µ , i.e., the rate increases as there are more active instances to be
terminated.

1. Model the system as a CTMC;
2. Compute the infinitesimal generator matrix;
3. Find the steady state probability distribution.

14.10. Let us consider the CTMC

s0
l1

44

l1

⌫⌫

s1

l2
tt

s2

l1
**

l1

UU

s3
l2

jj

1. What is the probability to sojourn in s0 for some time t?
2. Assume l2 > 2l1: are there some bisimilar states?

14.11. Prove that computing the steady state distribution of a CTMC by solving the
system of (homogeneous, normalised) linear equations p Q = 0 gives the same result
as computing the steady state distribution of the embedded DTMC.

3 Imagine the number of client is fixed, when i instances of the service are already active to serve i
clients, then the number of clients that can require a new instance of the service is decreased by i.
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Chapter 15
Discrete Time Markov Chains with Actions and
Non-determinism

A reasonable probability is the only certainty. (E.W. Howe)

Abstract In this chapter we introduce some advanced probabilistic models that can
be defined by enriching the transition functions of PTSs. As we have seen for Markov
chains, the transition system representation is very useful since it comes with a notion
of bisimilarity. In fact, using the advanced, categorical notion of coalgebra, which
however we will not develop further, there is a standard method to define bisimilarity
just according to the type of the transition function. Also a corresponding notion of
Hennessy-Milner logic can be defined accordingly. First we will see two different
ways to add observable actions to our probabilistic models, then we will present
extensions which combine non-determinism, actions and probabilities.

15.1 Reactive and Generative Models

In this section we show how it is possible to change the transition function of PTSs
in order to extend Markov chains with labels that represent actions performed by the
system. There are two main cases to consider, called reactive models and generative
models, respectively:

Reactive: In the first case we add actions that are used by the controller to stimu-
late the system. When we want the system to change its state we give
an input action to it which could affect its future state (its reaction).
This is the reason why this type of models is called “reactive”. For-
mally, we have that a reactive probabilistic transition system (also
called Markov decision process) is determined by a transition function
of the form:1

ar : S ! L ! (D(S)[1)

1 The subscript r stands for “reactive”.

335
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Fig. 15.1: A reactive PTS which represents a coffee maker

where we recall that S is the set of states, 1 = {⇤} is a singleton used
to represent the deadlock states, and that D(S) is the set of discrete
probability distributions over S.

Generative: In the second case the actions represent the outcomes of the system,
this means that whenever the system changes its state it shows an
action, whence the terminology “generative”. Formally we have that a
generative probabilistic transition system is determined by a transition
function of the form:2

ag : S ! (D(L⇥S)[1).

Remark 15.1. We have that in a reactive system, for any s 2 S and for any ` 2 L:

Â
s02S

ar(s)(`)(s0) = 1.

Instead, in a generative system, for any s 2 S:

Â
(`,s0)2L⇥S

ag(s)(`,s0) = 1.

This means that in reactive systems, fixed the non-deadlock source state and the
action, the next state probabilities must sum to 1, while in a generative system, fixed
the non-deadlock source state, the distribution of all transitions must sum to 1 (i.e.,
given an action ` the sum of probabilities to reach any state is less or equal to 1).

15.2 Reactive DTMC

Let us illustrate how a reactive probabilistic system works by using a simple example.

2 The subscript g stands for “generative”.
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Example 15.1 (Random coffee maker). Let us consider a system which we call ran-
dom coffee maker, in which the user can insert a coin (1 or 2 euros) then, the
coffee maker, based on the value of the input, makes a coffee or a cappuccino with
larger or smaller probabilities. The system is represented in Figure 15.1(a). Note
that, since we want to allow the system to take input from the environment we
have chosen a reactive system to represent the coffee maker. The set of labels is
L = {1§,2§,coffee,cappuccino} and the corresponding transitions are represented
as dashed arrows. There are three states s1, s2 and s3, represented with black-filled
circles. If the input 1§ is received in state s1, then we can reach state s2 with prob-
ability 2/3 or s3 with probability 1/3, as illustrated by the solid arrows departing
from the white-filled circle associated with the distribution. Vice versa, if the input
2§ is received in state s1, then we can reach state s2 with probability 1/3 or s3
with probability 2/3. From state s2 there is only one transition available, with label
coffee, that leads to s1 with probability 1. Figure 15.1(b) shows a more compact
representation of the random coffee maker where the white-filled circle reachable
from s2 is omitted because the probability distribution is trivial. Similarly, from state
s3 there is only one transition available, with label cappucino, that leads to s1 with
probability 1.

As we have shown in the previous chapter, using LTSs we have a standard method
to define bisimilarity between probabilistic systems. Take a reactive probabilistic
system ar : S ! L ! (D(S)[1). Let us define the function gr : S ! L !√(S) ! R
as follows:

gr(s)(`)(I) =

⇢
0 if ar(s)(`) = ⇤
Âs02I ar(s)(`)(s0) otherwise

Correspondingly, we set Fr :√(S) !√(S) to be defined as:

8s1,s2 2 S. s1 Fr(R) s2
def
= 8` 2 L. 8I 2 S/⌘R . gr(s1)(`)(I) = gr(s2)(`)(I).

Definition 15.1 (Reactive bisimulation). A reactive bisimulation is a relation R
such that R ✓ Fr(R) and the reactive bisimilarity 'r is the relation

'r
def
=

[

R✓Fr(R)

R.

Note that any two bisimilar states s1 and s2 must have, for each action, the same
probability to reach the states in any other equivalence class.
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15.2.1 Larsen-Skou Logic

Now we will present a probabilistic version of Hennessy-Milner logic. This logic
has been introduced by Larsen and Skou, and provides a new version of the modal
operator. As usual we start from the syntax of Larsen-Skou logic formulas.

Definition 15.2 (Larsen-Skou logic). The formulas of Larsen-Skou logic are gener-
ated by the following grammar:

j ::= true | j1 ^j2 | ¬j | h`iq j.

We let S denote the set of Larsen-Skou logic formulas. The novelty resides in
the new modal operator h`iq j that takes three parameters: a formula j , an action `
and a real number q  1. It corresponds to a refined variant of the usual HM-logic
diamond operator 3`. Informally, the formula h`iq j requires the ability to reach a
state satisfying the formula j by performing the action ` with probability at least q.

As we have done for Hennessy-Milner logic we present the Larsen-Skou logic by
defining a satisfaction relation |=✓ S ⇥S .

Definition 15.3 (Satisfaction relation). Let ar : S ! L ! (D(S)[1) be a reactive
probabilistic system. We say that the state s 2 S satisfies the Larsen-Skou formula j
and write s |= j , if satisfaction can be proved using the (inductively defined) rules:

s |= true
s |= j1 ^j2 if s |= j1 and s |= j2
s |= ¬j if ¬s |= j
s |= h`iq j if gr(s)(`)JjK � q whereJjK = {s0 2 S | s0 |= j} .

A state s satisfies the formula h`iq j if the (sum of the) probability to pass in any
state s0 that satisfies j from s with an action labelled ` is greater than or equal to
q. Note that the corresponding modal operator of the HM-logic can be obtained by
setting q = 1, i.e., h`i1 j means 3`j and we write just h`ij when this is the case.

Likewise HM-logic, the equivalence induced by Larsen-Skou logic formulas
coincide with bisimilarity. Moreover, we have an additional, stronger result: It can be
shown that it is enough to consider only the version of the logic without negation.

Theorem 15.1 (Larsen-Skou bisimilarity characterization). Two states of a reac-
tive probabilistic system are bisimilar if and only if they satisfy the same formulas of
Larsen-Skou logic without negation.

Example 15.2 (Larsen-Skou logic). Let us consider the reactive system in Figure 15.1.
We would like to prove that:

s1 |= h1§i1/2 hcoffeei true.

By definition of the satisfaction relation, we must check that:
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gr(s1)(1§)(I1) � 1/2 where I1
def
= {s 2 S | s |= hcoffeei true} .

Now we have that s |= hcoffeei true if:

gr(s)(coffee)(I2) � 1 where I2
def
= {s 2 S | s |= true} = {s1,s2,s3}.

Therefore:

I1 = {s | gr(s)(coffee)(I2) � 1} = {s | gr(s)(coffee)({s1,s2,s3}) � 1} = {s2}.

Finally:
gr(s1)(1§){s2} = 2/3 � 1/2.

15.3 DTMC with Non-determinism

In this section we add non-determinism to generative and reactive systems. Corre-
spondingly, we introduce two classes of models called Segala automata and simple
Segala automata, after the name of Roberto Segala who developed them in 1995. In
both cases we use non-determinism to allow the system to choose between different
probability distributions.

15.3.1 Segala Automata

Segala automata are generative systems that combine probability and non-determinism.
When the system has to move from a state to another, first of all it has to choose non-
deterministically a probability distribution, then it uses this information to perform
the transition. Formally the transition function of a Segala automaton is defined as
follows:

as : S ! P(D(L⇥S)).

As we can see, to each state it corresponds a set of probability distributions D(L⇥S)
that are defined on pairs of labels and states. Note that in this case it is not necessary
to have the singleton 1 to model explicitly deadlock states, because we can use the
empty set to the purpose.

Example 15.3 (Segala automata). Let us consider the system in Figure 15.2. We have
an automata with five states, named s1 to s5, represented as usual by black-filled
circles. When in the state s1, the system can choose non-deterministically (dashed
arrows) between two different distributions d1 and d2:

as(s1) = {d1,d2} where
⇢

d1(flip,s2) = 1/2 d1(flop,s3) = 1/2
d2(flip,s2) = 2/3 d2(flop,s3) = 1/3
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Fig. 15.2: A Segala automata

(we leave implicit that d1(l,s) = 0 and d2(l,s) = 0 for all other label-state pairs).
From states s2 and s3 there is just one choice available, respectively the trivial

distributions d3 and d4 that are omitted from the picture for conciseness of the
representation:

as(s2) = {d3} where d3(beep,s4) = 1
as(s3) = {d4} where d4(buzz,s5) = 1.

Finally, from states s4 and s5 there are simply no choices available, i.e., they are
deadlock states:

as(s4) = as(s5) = ?.

15.3.2 Simple Segala Automata

Now we present the reactive version of Segala automata. In this case we have that
the system can react to an external stimulation by using a probability distribution.
Since we can have more than one distribution for each label, the system uses non-
determinism to choose between different distributions for the same label. Formally
the transition function of a simple Segala automaton is defined as follows:

asimS : S ! P(L⇥D(S)).

Example 15.4 (A Simple Segala Automata). Let us consider the system in Figure 15.3,
where we assume some suitable probability value e has been given. We have six
states (represented by black-filled circles, as usual): the state s1 has two possible
inputs, a and c, moreover the label a has associated two different distributions d1 and
d3, while c has associated a unique distribution d2. All the other states are deadlock.
Formally the system is defined by letting:

asimS(s1) = {(a,d1),(c,d2),(a,d3)} where

8
<

:

d1(s2) = 1/2 d1(s3) = 1/2
d2(s4) = 1/3 d2(s5) = 2/3
d3(s1) = e d3(s6) = 1� e
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Fig. 15.3: A Simple Segala automaton

and asimS(s2) = asimS(s3) = asimS(s4) = asimS(s5) = asimS(s6) = ?.

15.3.3 Non-determinism, Probability and Actions

As we saw, there are many ways to combine probability, non-determinism and actions.
We conclude this chapter by mentioning two other interesting models which can be
obtained by redefining the transition function of a PTS.

The first class of systems is that of alternating transition systems. In this case we
allow the system to perform two types of transition: one using probability distribu-
tions and one using non-determinism. An alternating system can be defined formally
by a transition function of the form:

aa : S ! (D(S)+P(L⇥S)).

So in this kind of systems we can alternate probabilistic and non-deterministic
choices and can partition the states accordingly. (Again, a state s is deadlock when
aa(s) = ?).

The second type of systems that we present is that of bundle transition systems. In
this case the system associates a distribution to subsets of non-deterministic choices.
Formally, the transition function has the form:

ab : S ! D(P(L⇥S)).

So when a bundle transition system has to perform a transition, first of all it chooses
by using a probability distribution a set of possible choices, then non-deterministically
it picks one of these.
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Problems

15.1. In which sense is a Segala automaton the most general model?

1. Show in which way a generative LTS, a reactive LTS and a simple Segala automa-
ton can be interpreted as (generative) Segala automata.

2. Explain the difficulties in representing a generative LTS as a simple Segala
automaton.

15.2. Consider the following three reactive LTSs. For every pair of systems, check
whether their initial states are bisimilar. If they are, describe the bisimulation, if they
are not, find a formula of the Larsen-Skou logic that distinguishes them.
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15.3. Define formally the notion of bisimulation/bisimilarity for simple Segala au-
tomata. Then apply the partition refinement algorithm to the automata below to check
which are the bisimilar states.

•
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15.4. Let a non-stopping, reactive, probabilistic labelled transition systems (PLTS)
be the reactive PLTS with a : S ! L ! D(S) (rather than a : S ! L ! (D(S)[1)).

1. Prove that all the states of a non-stopping, reactive PLTS are bisimilar.
2. Then give the definition of bisimilarity also for generative PLTS.
3. Furthermore, consider the non-stopping subclass of generative PLTS and show an

example where some states are not bisimilar.
4. Moreover, give the definition of bisimilarity also for Segala PLTS, and show that

Segala bisimilarity reduces to generative PLTS bisimilarity in the deterministic
case (namely when, for every state s, a(s) is a singleton).
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Chapter 16
PEPA - Performance Evaluation Process
Algebra

He who is slowest in making a promise is most faithful in its
performance. (Jean Jacques Rousseau)

Abstract The probabilistic and stochastic models we have presented in previous
chapters represent system behaviour but not its structure, i.e., they take a monolithic
view and do not make explicit how the system is composed and what are the inter-
acting components of which it is made. In this last chapter we introduce a language,
called PEPA (Performance Evaluation Process Algebra), for composing stochastic
processes and carry out their quantitative analysis. PEPA builds on CSP (Calculus for
Sequential Processes), a process algebra similar to CCS but with slightly different
primitives. In particular, it relies on multiway communication instead of binary (I/O)
one. PEPA actions are labelled with rates and a CTMC can be derived from the LTS
of a PEPA process without much efforts to evaluate quantitative properties of the
modelled system. The advantage is that the PEPA description of the CTMC remains
as a blueprint of the system and allows direct re-use of processes.

16.1 From Qualitative to Quantitative Analysis

To understand the differences between qualitative analysis and quantitative analysis,
we remark that qualitative questions like:

• Will the system reach a particular state?
• Does the system implementation match its specification?
• Does a given property f hold within the system?

are replaced by quantitative questions like:

• How long will the system take on average to reach a particular state?
• With what probability does the system implementation match its specification?
• Does a given property f hold within the system within time t with probability p?

Jane Hillston defined the PEPA language in 1994. PEPA has been developed
as a high-level language for the description of continuous time Markov chains.
Over the years PEPA has been shown to provide an expressive formal language for

345
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modelling distributed systems. PEPA models are obtained as the structured assembly
of components that perform individual activities at certain rates and can cooperate
on shared actions. The most important features of PEPA w.r.t. other approaches to
performance modelling are:

compositionality: the ability to model a system as the interaction of subsys-
tems, as opposed to poorly modular approaches;

formality: a rigorous semantics giving a precise meaning to all terms
in the language and solving any ambiguities;

abstraction: the ability to build up complex models from components,
disregarding the details when it is appropriate to do so;

separation of concerns: the ability to model the components and the interaction
separately;

structure: the ability to impose a clear structure to models, which
makes them more understandable and easier to maintain;

refinement: the ability to construct models systematically by refining
their specifications;

reusability: the ability to maintain a library of model components.

For example, queueing networks offer compositionality but not formality; stochas-
tic extensions of Petri nets offer formality but not compositionality; neither offer
abstraction mechanisms.

PEPA was obtained by extending CSP (Calculus for Sequential Processes) with
probabilities. We start with a brief introduction to CSP, then we will conclude with
the presentation of the syntax and operational semantics of PEPA.

16.2 CSP

Communicating Sequential Processes (CSP) is a process algebra introduced by Tony
Hoare in 1978 and is a very powerful tool for systems specification and verification.
Contrary to CCS, CSP actions have no dual counterpart and the synchronisation
between two or more processes is possible when they all perform the same action a
(in which case the observable label of the synchronisation is still a). Since during
communication the joint action remains visible to the environment, it can be used to
interact with other (more than two) processes, realising multiway synchronisation.

16.2.1 Syntax of CSP

We assume that a set L of actions a is given. The syntax of CSP processes is defined
below, where L ✓ L is any set of actions:

P,Q ::= nil | a.P | P+Q | P ⇤�
L

Q | P/L | C.
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We briefly comment on each operator:

nil: is the inactive process;
a.P: is a process which can perform an action a and then behaves like P;
P+Q: is a process which can choose to behave like P or like Q;
P/L: is the hiding operator; if P performs an action a 2 L then P/L performs

an unobservable silent action t;
P ⇤�

L
Q: is a synchronisation operator, also called cooperation combinator. More

precisely, it denotes an indexed family of operators, one for each possible
set of actions L. The set L is called cooperation set and fixes the set of
shared actions between P and Q. Processes P and Q can use the actions
in L to synchronise each other. The actions not included in L are called
individual activities and can be performed separately by P and Q. As a
special case, if L = ? then all the actions of P and Q are just interleaved.

C: is the name, called constant, of a recursively defined process that we
assume given in a separate set D = {Ci

def
= Pi}i2I of declarations.

16.2.2 Operational Semantics of CSP

Now we present the semantics of CSP. As we have done for CCS and p-calculus, we
define the operational semantics of CSP as an LTS derived by a set of inference rules.
As usual, theorems take the form P a�! P0, meaning that the process P in one step
evolves to the process P0 by executing the action a .

16.2.2.1 Inactive Process

There is no rule for the inactive process nil.

16.2.2.2 Action Prefix and Choice

The rules for action prefix and choice operators are the same as in CCS.

a.P a�! P
P a�! P0

P+Q a�! P0

Q a�! Q0

P+Q a�! Q0
.

16.2.2.3 Hiding

The hiding operator should not be confused with the restriction operator of CCS:
first, hiding takes a set L of labels as a parameter, while restriction takes a single



DRAFT

348 16 PEPA - Performance Evaluation Process Algebra

action; second, when P a�! P0 with a 2 L we have that P/L t�! P0/L, while P\a
blocks the action. Instead, P/L and P\a behaves similarly w.r.t. actions not included
in L[{a}.

P a�! P0 a /2 L

P/L a�! P0/L

P a�! P0 a 2 L

P/L t�! P0/L
.

16.2.2.4 Cooperation Combinator

There are three rules for the cooperation combinator ⇤�
L

: the first two rules allow
the interleaving of actions not in L, while the third rule forces the synchronisation of
the two processes when performing actions in L. Differently from CCS, when two
processes synchronise on a the observed label is still a and not t .

P a�! P0 a /2 L

P ⇤�
L

Q a�! P0 ⇤�
L

Q

Q a�! Q0 a /2 L

P ⇤�
L

Q a�! P ⇤�
L

Q0

P a�! P0 Q a�! Q0 a 2 L

P ⇤�
L

Q a�! P0 ⇤�
L

Q0 .

Note that the cooperation combinator is not associative. For example

(a.b .nil ⇤�
{a}

nil)⇤�
?

a.nil 6= (a.b .nil)⇤�
{a}

(nil ⇤�
?

a.nil).

In fact the leftmost process can perform only an action a

(a.b .nil ⇤�
{a}

nil)⇤�
?

a.nil a�! (a.b .nil ⇤�
{a}

nil)⇤�
?

nil

after which it is deadlock, whereas the rightmost process can perform a synchronisa-
tion on a and then it can perform another action b

(a.b .nil)⇤�
{a}

(nil ⇤�
?

a.nil) a�! (b .nil)⇤�
{a}

(nil ⇤�
?

nil) b�! nil ⇤�
{a}

(nil ⇤�
?

nil).

16.2.2.5 Constants

Finally, the rule for constants unfolds the recursive definition C def
= P, so that C has

all transitions that P has.

(C def
= P) 2 D P a�! P0

C a�! P0
.
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16.3 PEPA

As we said, PEPA is obtained by adding probabilities to the execution of actions.
As we will see, PEPA processes are stochastic: there are not explicit probabilistic
operators in PEPA, but the probabilistic behaviour is obtained by associating an
exponentially distributed continuous random variable to each action prefix; this
random variable represents the time needed to execute the action. These random
variables lead to a clear relationship between the process algebra model and a CTMC.
Via this underlying Markov process, performance measures can then be extracted
from the model.

16.3.1 Syntax of PEPA

In PEPA an action is a pair (a,r), where a is the action type and r is the rate of the
continuous random variable associated with the action. The rate r can be any positive
real number. The grammar for PEPA processes is given below:

P,Q ::= nil | (a,r).P | P+Q | P ⇤�
L

Q | P/L | C

(a,r).P: is a process which can perform an action a and then behaves like P.
In this case the rate r is used to define the exponential variable which
describes the duration of the action. A component may have a purely
sequential behaviour, repeatedly undertaking one activity after another
and possibly returning to its initial state. As a simple example, consider a
web server in a distributed system that can serve one request at a time:

WS def
= (request,>).(serve,µ).(respond,>).WS.

In some cases, as here, the rate of an action falls out of the control
of this component: such actions are carried out jointly with another
component, with the current component playing some sort of passive
role. For example, the web server is passive with respect to the request
and respond actions, as it cannot influence the rate at which applications
execute these actions. This is recorded by using the distinguished rate >
which we can assume to represent an extremely high value that cannot
influence the rates of interacting components.

P+Q: has the same meaning of the CSP operator for choice. For example, we
can consider an application in a distributed system that can either access
a locally available method (with probability p1) or access to a remote
web service (with probability p2 = 1 � p1). The decision is taken by
performing a think action which is parametric to the rate l :
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Appl def
= (think, p1 ·l ).(local,m).Appl
+ (think, p2 ·l ).(request,rq).(respond,rp).Appl.

P ⇤�
L

Q: has the same meaning of the CSP operator. In the web service example,
we can assume that the application and the web server interact over the
set of shared actions L = {request,respond}:

Sys def
= (Appl ⇤�

?
Appl)⇤�

L
WS.

During the interaction, the resulting action will have the same type of the
shared action and a rate reflecting the rate of the slowest action.

P/L: is the same as the CSP hiding operator: the duration of the action is
unaffected, but its type becomes t . In our running example, we may want
to hide the local computation of Appl to the environment:

Appl0 def
= Appl/{local}.

C: is the name of a recursively defined process such as C def
= P that we as-

sume given in a separate set D of declarations. Using recursive definitions
as the ones given above for Appl and WS, we are able to describe compo-
nents with infinite behaviour without introducing an explicit recursion or
replication operator.

Usually we are interested only in those agents which have an ergodic underlying
Markov process, since we want to apply the steady state analysis. It has been shown
that it is possible to ensure ergodicity by using syntactic restrictions on the agents.
In particular, the class of PEPA terms which satisfy these syntactic conditions are
called cyclic components and they can be described by the following grammar:

P,Q ::= S | P ⇤�
L

Q | P/L
S,T ::= (a,r).S | S +T | C

where sequential processes S and T can be distinguished from general processes P
and Q; and it is required that each recursive process C is sequential, i.e., it must be
(C def

= S) 2 D for some sequential process S.

16.3.2 Operational Semantics of PEPA

PEPA operational semantics is defined by a rule system similar to the one for CSP.

In the case of PEPA, well formed formulas have the form P
(a,r)���! Q for suitable

PEPA processes P and Q, activity a and rate r. We assume a set D of declarations is
available.
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16.3.2.1 Inactive Process

As usual, there is no rule for the inactive process nil.

16.3.2.2 Action Prefix and Choice

The rules for action prefix and choice are essentially the same as the ones for CSP:
the only difference is that the rate r is recorded in the label of transitions.

(a,r).P
(a,r)���! P

P
(a,r)���! P0

P+Q
(a,r)���! P0

Q
(a,r)���! Q0

P+Q
(a,r)���! Q0

.

16.3.2.3 Constants

The rule for constants is the same as that of CSP, except for the fact transition labels
carry also the rate.

(C def
= P) 2 D P

(a,r)���! P0

C
(a,r)���! P0

.

16.3.2.4 Hiding

Also the rules for hiding resemble the ones for CSP. Note that when P
(a,r)���! P0 with

a 2 L, the rate r is associated with t in P/L
(t,r)��! P0/L.

P
(a,r)���! P0 a /2 L

P/L
(a,r)���! P0/L

P
(a,r)���! P0 a 2 L

P/L
(t,r)��! P0/L

.

16.3.2.5 Cooperation Combinator

As for CSP, we have three rules for the cooperation combinator. The first two rules
are for action interleaving and deserve no further comment.
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P
(a,r)���! P0 a /2 L

P ⇤�
L

Q
(a,r)���! P0 ⇤�

L
Q

Q
(a,r)���! Q0 a /2 L

P ⇤�
L

Q
(a,r)���! P ⇤�

L
Q0

.

The third rule, called cooperation rule (see below), is the most interesting one,
because it deals with synchronisation and with the need to combine rates. The
cooperation rule exploits the so-called apparent rate of action a in P, written ra(P),
which is defined by structural recursion as follows:

ra(nil) def
= 0

ra((b ,r).P)
def
=

⇢
r if a = b
0 if a 6= b

ra(P+Q)
def
= ra(P)+ ra(Q)

ra(P/L)
def
=

⇢
ra(P) if a 62 L
0 if a 2 L

ra(P ⇤�
L

Q)
def
=

⇢
min(ra(P),ra(Q)) if a 2 L
ra(P)+ ra(Q) if a 62 L

ra(C)
def
= ra(P) if (C def

= P) 2 D .

Roughly, the apparent rate ra(S) is the sum of the rates of all distinct actions a
that can be performed by S, thus ra(S) expresses the overall rate of a in S (because
of the property of rates of exponentially distributed variables in Theorem 14.2).
Notably, in the case of shared actions, the apparent rate of P ⇤�

L
Q is the slowest of

the apparent rates of P and Q. The cooperation rule is:

P
(a,r1)���! P0 Q

(a,r2)���! Q0 a 2 L

P ⇤�
L

Q
(a,r)���! P0 ⇤�

L
Q0

where r = ra(P ⇤�
L

Q)⇥ r1

ra(P)
⇥ r2

ra(Q)

Let us now explain the calculation

r = ra(P ⇤�
L

Q)⇥ r1

ra(P)
⇥ r2

ra(Q)

that appears in the cooperation rule. The best way to resolve what should be the rate
of the shared action has been a topic of some debate. The definition of cooperation
in PEPA is based on the assumption that a component cannot be made to exceed its
bounded capacity for carrying out the shared actions, where the bounded capacity
consists of the apparent rate of the action. The underlying assumption is that the
choice of a specific action (with rate ri) to carry on the shared activity occurs
independently in the two cooperating components P and Q. Now, the probability that
a specific action (a,ri) is chosen by P is (see Theorem 14.3)
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ri

ra(P)
.

Then, from the choice independence we obtain the combined probability

r1

ra(P)
⇥ r2

ra(Q)
.

Finally, the resulting rate is the product of the apparent rate

ra(P ⇤�
L

Q) = min(ra(P),ra(Q))

and the above probability. Notice that if we sum up the rates of all possible synchro-
nisations on a of P ⇤�

L
Q we just get min(ra(P),ra(Q)) (see the example below).

Example 16.1. Let us define two PEPA agents as follows:

P def
= (a,r).P1 + . . .+(a,r).Pn Q def

= (a,r).Q1 + . . .+(a,r).Qm

for some n  m. So we have the the following apparent rates:

ra(P)
def
= n⇥ r

ra(Q)
def
= m⇥ r

ra(P ⇤�
{a}

Q)
def
= min(ra(P),ra(Q)) = n⇥ r

By the rules for action prefix and choice, we have transitions:

P
(a,r)���! Pi for i 2 [1,n] Q

(a,r)���! Q j for j 2 [1,m]

Then we have m⇥n possible ways of synchronising P and Q, :

P ⇤�
{a}

Q
(a,r0)���! Pi ⇤�{a}

Q j for i 2 [1,n] and j 2 [1,m]

where
r0 = (n⇥ r)⇥ r

n⇥ r
⇥ r

m⇥ r
=

r
m

.

So we have m ⇥ n transitions with rate r/m and, in fact, the apparent rate of the
synchronisation is:

m⇥n⇥ r
m

= n⇥ r = ra(P ⇤�
{a}

Q).

Remark 16.1. The selection of the exponential distribution as the governing distri-
bution for action durations in PEPA has profound consequences. In terms of the
underlying stochastic process, it is the only choice which gives rise to a Markov
process. This is due to the memoryless properties of the exponential distribution: the
time until the next event is independent of the time since the last event, because the
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exponential distribution forgets how long it has already waited. For instance, if we
consider the process (a,r).nil ⇤�

?
(b ,s).nil and the system performs the action a ,

the time needed to complete b from nil ⇤�
?

(b ,s).nil does not need to consider the
time already taken to carry out the action a .

The underlying CTMC is obtained from the LTS by associating a (global) state
with each process, and the transitions between states are derived from the transitions
of the LTS. If in the LTS there are several transitions possible between two processes,
since all activity durations are exponentially distributed, in the CTMC there will be a
single transition with a total transition rate which is sum of the rates.

The PEPA language is supported by a range of tools and by a wide community of
users. PEPA application areas span the subject areas of informatics and engineering.
Additional information and a PEPA Eclipse Plug-in are freely available at http:
//www.dcs.ed.ac.uk/pepa/.

We conclude this section by showing a famous example by Jane Hillston of
modelling with PEPA.

Example 16.2 (Roland the gunman). We want to model a Far West duel. We have
two main characters: Roland the gunman and his enemies. Upon its travels Roland
will encounter some enemies with whom he will have no choice but to fight back. For
simplicity we assume that Roland has two guns with one bullet in each and that each
hit is fatal. We also assume that a sense of honour prevents an enemy from attacking
Roland if he is already involved in a gun fight. We model the behaviour of Roland
as follows. Normally, Roland is in an idle state Rolandidle, but when he is attacked
(attacks) he moves to state Roland2, where he has two bullets available in his gun:

Rolandidle
def
= (attack,>).Roland2.

In front of his enemy, Roland can act in three ways: if Roland hits the enemy then he
reloads his gun and returns idle; if Roland misses the enemy he tries a second attack
(see Roland1); finally if an enemy hits Roland, he dies.

Roland2
def
= (hit,rhit).(reload,rreload).Rolandidle

+(miss,rmiss).Roland1
+(e-hit,>).Rolanddead.

The second attempt to shoot by Roland is analogous to the first one, but this time it is
the last bullet in Rolands gun and if the enemy is missed no further shot is possible
in Rolandempty until the gun is reloaded.

Roland1
def
= (hit,rhit).(reload,rreload).Rolandidle

+(miss,rmiss).Rolandempty
+(e-hit,>).Rolanddead.

Rolandempty
def
= (reload,rreload).Roland2

+(e-hit,>).Rolanddead.
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Finally if Roland is dead he cannot perform any action.

Rolanddead
def
= nil .

We describe enemies behaviour as follows. If the enemies are idle they can try to
attack Roland:

Enemiesidle
def
= (attack,rattack).Enemiesattack.

Enemies shoot once and either get hit or they hit Roland.

Enemiesattack
def
= (e-hit,re-hit).Enemiesidle

+(hit,>).Enemiesidle.

The rates involved in the model are measured in seconds, so a rate of 1.0 would
indicate that the action is expected to occur once every second. We define the
following rates:

> = about •
rfire = 1 one shot per second.

rhit-success = 0.8 80% of success.
rhit = 0.8 rfire ⇥ rhit-success.

rmiss = 0.2 rfire ⇥ (1� rhit-success).
rreload = 0.3 3 seconds to reload.
rattack = 0.01 Roland is attacked once every 100 seconds.
re-hit = 0.02 Enemies can hit once every 50 seconds.

So we model the duel as follows:

Duel def
= Rolandidle ⇤�

{hit,attack,e�hit}
Enemiesidle.

We can perform various types of analysis of the system by using standard methods.
Using the steady state analysis, that we have seen in the previous chapters, we can
prove that Roland will always die and the system will deadlock, because there is an
infinite supply of enemies (so the system is not ergodic). Moreover we can answer
many other questions by using the following techniques:

• Transient analysis: we can ask for the probability that Roland is dead after 1 hour,
or the probability that Roland will have killed some enemy within 30 minutes.

• Passage time analysis: we can ask for the probability of passing at least 10 seconds
from the first attack to Roland to the time it has hit 3 enemies, or the probability
that 1 minute after he is attacked Roland has killed his attacker (i.e., the probability
that the model performs a hit action within 1 minute after having performed an
attack action).
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Problems

16.1. We have defined CTMC bisimilarity in the case of unlabeled transition systems,
while PEPA transition system is labeled. Extend the definition of bisimilarity to the
labeled version.

16.2. Consider a simple system in which a process repeatedly carries out some task.
In order to complete its task the process needs access to a resource for part, but not
all, of the time. We want to model the process and the resource as two separate PEPA
agents: Process and Resource, respectively. The Process will undertake two activities
consecutively: get with some rate rg, in cooperation with the Resource, and task at
rate rt, representing the remainder of its processing task. Similarly the Resource will
engage in two activities consecutively: get, at a rate rg0 > 2rg and update, at rate ru.

1. Give the PEPA specification of a system composed with two Processes that
compete for one shared Resource.

2. What is the apparent rate of action get in the initial state of the system?
3. Draw the complete LTS (eight states) of the system and list all its transitions.

16.3. In a multiprocessor system with shared memory, processes must compete to
use the memory bus. Consider the case of two identical processes. Each process
has cyclic behaviour: it performs some local activity (local action think), accesses
the bus (synchronization action get), operates on the memory (local action use) and
then releases the bus (synchronization action rel). The bus has cyclic behavior with
actions get and rel. Define a PEPA program representing the system and derive the
corresponding CTMC (with actions). Find the bisimilar states according to the notion
of bisimilarity in Problem 16.1 and draw the minimal CTMC.

16.4. Consider the taxi driver scenario from Problem 14.3, but this time represented as
the CTMC in the Figure below, where rates are defined in 1/minutes, e.g., costumers
show up every 10 minutes (rate 0.1/min) and rides last 20 minutes (rate 0.05/min) .

s1

�0.2/min
↵↵

0.1/min
  

0.1/min

~~
s3

�0.05/min

KK

0.05/min
33

s2

�1/min

SS1/min
oo

Assuming a unique label l for all the transitions, and disregarding self loops, define
a PEPA agent for the system, and show that all states are different in terms of
bisimilarity. Finally, to study the steady state behaviour of the system, introduce the
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self loops,1 and write and solve a system of linear equations similar to the one seen
for DTMC: p Q = 0 and Âi pi = 1. The equations express the fact that, for every state
si, the probability flow from the other states to state si is the same as the probability
flow from state si to the other states.

16.5. Consider the taxi driver scenario from Problem 16.4, but this time with the
option of going back to state s1 (parking) from state s2 (moving slowly looking for
costumers) as in the figure below.

s1

�0.2/min
↵↵

0.1/min
  

0.1/min

~~
s3

�0.05/min

KK

0.05/min
33

s2

�1.1/min

SS1/min
oo

0.1/min
kk

Define a PEPA agent for the system, and show that all states are different in terms
of bisimilarity. Finally, to study the steady state behaviour of the system, introduce
the self loops, decorated with suitable negative rates, and write and solve a system
of linear equations similar to the one seen for DTMC: p Q = 0 and Âi pi = 1. The
equations express the fact that, for every state si, the probability flow from the other
states to state si is the same as the probability flow from state si to the other states
(see Section 14.4.5).

16.6. Let the (infinitely many) PEPA processes {Aa ,Bb }, indexed by strings a,b 2
{0,1}⇤ be defined as:

Aa
def
= (a,l ).Ba0 +(a,l ).Ba1 Bb

def
= (b,l ).Ab0 +(b,l ).Ab1.

Consider the (sequential) PEPA program P def
= Ae , for e the empty string:

1. draw (at least in part) the transition system of P;
2. find the states reachable from P;
3. determine the bisimilar states;
4. finally, find the smallest PEPA program bisimilar to P.

16.7. Let the (infinitely many) PEPA processes Aa , indexed by strings a 2 {0,1}⇤

be defined as:
Aa

def
= (a,l ).Aa0 +(a,l ).Aa1.

Consider the (sequential) PEPA program P def
= Ae , for e the empty string:

1 Remind that, in the infinitesimal generator matrix of a CTMC, self loops are decorated with
negative rates which are negated apparent rates, namely the negated sums of all the outgoing rates.
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1. draw (at least in part) the transition system of P;
2. find the states reachable from P;
3. determine the bisimilar states;
4. finally, find the smallest PEPA program bisimilar to P.

16.8. Consider the PEPA process A with

A def
= (a,l ).B+(a,l ).C B def

= (a,l ).A+(a,l ).C C def
= (a,l ).A.

and derive the corresponding finite state CTMC.

1. What is the probability distribution of staying in B?
2. If l = 0.1 sec�1, what it the probability that the system be still in B after 10

seconds?
3. Are there bisimilar states?
4. Finally, to study the steady state behaviour of the system, introduce the self loops,

decorated with suitable negative rates, show that the system is ergodic and write
and solve a system of linear equations similar to the one seen for DTMC.

16.9. Consider n transmitters T0,T1, . . . ,Tn�1 connected by a token ring. At any
moment, a transmitter i can be ready to transmit or not ready. It becomes ready with
a private action arrive and a rate l . Once ready, it stays ready until it transmits, and
then it becomes not ready with an action servei and rate µ . To resolve conflicts, only
the transmitter with the token can operate. There is only one token K, which at any
moment is located at some transmitter Ti. If transmitter Ti is not ready, the token
synchronises with it with an action walkoni and rate w moving from transmitter Ti to
transmitter Ti+1 (mod n) . If transmitter Ti is ready, the token synchronises with it with
action servei and rate µ and stays at transmitter Ti.

Write a PEPA process modelling the above system as follows:

1. define recursively all the states of Ti, for i 2 [0,n�1] and of K;
2. define the whole system by choosing the initial state where all transmitters are not

ready and the token in at T0 and composing in parallel all of them with ⇤�
L

, with
L being the set of synchronised actions.

3. Then draw the transition system corresponding to n = 2, and compute the bisimi-
larity relation.

4. Finally define a function f such that f (n) is the number of (reachable) states for
the system with n transmitters.
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Problems of Chapter 2

2.1

1. The strings in LB are all non-empty sequences of b’s. The strings in LA are all
non-empty sequences of a’s followed by strings in LB.

2. Letting sn denote the string obtained by concatenating n replicas of the string s,
we have LB = {bn | n > 0} and LA = {anbm | n,m > 0}.

3.
s 2 LA

a s 2 LA
(1)

s 2 LB

a s 2 LA
(2)

b 2 LB
(3)

s 2 LB

b s 2 LB
(4)

4. Proof tree: Goal-oriented derivation:

(3)
b 2 LB

(4)
b b 2 LB

(2)
a b b 2 LA

(1)
a a b b 2 LA

(1)
a a a b b 2 LA

a a a b b 2 LA - a a b b 2 LA
- a b b 2 LA
- b b 2 LB
- b 2 LB
- ⇤

5. We first prove the correspondence for B, i.e., that s 2 LB is a theorem iff there
exists some n > 0 with s = bn. For the ‘only if’ part, by rule induction, since
s 2 LB, either s = b (by rule (3)), or s = b s0 for some s0 2 LB (by rule (4)). In the
former case, we take n = 1 and we are done. In the latter case, by s0 2 LB we have
that there is n0 > 0 with s0 = bn0 and take n = n0 +1. For the ‘if’ part, by induction
on n, if n = 1 we conclude by applying axiom (3); if n = n0 +1, we can assume
that bn0 2 LB and conclude by applying rule (4).
Then we prove the correspondence for A, i.e., that s 2 LA is a theorem iff there
exists some n,m > 0 with s = anbm. For the ‘only if’ part, by rule induction,
since s 2 LA, either s = a s0 for some s0 2 LA (by rule (1)), or s = a s0 for some

361
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s0 2 LB (by rule (2)). In the former case, by s0 2 LA we have that there is n0,m0 > 0
with s0 = an0

bn0 and take n = n0 + 1, m = m0. In the latter case, by the previous
correspondence on B, by s0 2 LB we have that s0 = bk for some k > 0 and conclude
by taking n = 1 and m = k. For the ‘if’ part, take s = anbm. By induction on n, if
n = 1 we conclude by applying axiom (2), since for the previous correspondence
we know that bm 2 LB; if n = n0 +1, we can assume that an0

bm 2 LA and conclude
by applying rule (1).

2.3

1. The predicate even(x) is a theorem iff x represents an even number (i.e., x is the
repeated application of s(·) to 0 for an even number of times).

2. The predicate odd(x) if not a theorem for any x, because there is no axiom.
3. The predicate leq(x,y) is a theorem iff x represents a natural number which is less

than or equal to the natural number represented by y.

2.5 Take t = s(x) and t 0 = s(y).

2.8

fib(0 , 1) : � .

fib(s(0) , 1) : � .

fib(s(s(x)) , y) : � fib(x , u) , fib(s(x) , v) , sum(u , v , y).

2.11 Pgvdrk is intelligent.

Problems of Chapter 3

3.2 Let us denote by c the body of the while command:

c def
= if y = 0 then y := y+1 else skip

Let us take a generic memory s and consider the goal hw,si ! s 0.
If s(y) < 0 we have:

hw,si ! s 0 -s 0=s hy � 0,si ! false
-⇤ ⇤

If instead s(y) > 0, we have:

hw,si ! s 0 - hy � 0,si ! true , hc,si ! s 00 , hw,s 00i ! s 0

-⇤ hc,si ! s 00 , hw,s 00i ! s 0

-⇤ hskip,si ! s 00 , hw,s 00i ! s 0

-⇤
s 00=s hw,si ! s 0
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Since we reach the same goal from which we started, the command diverges.
Finally, if instead s(y) = 0, we have:

hw,si ! s 0 - hy � 0,si ! true , hc,si ! s 00 , hw,s 00i ! s 0

-⇤ hc,si ! s 00 , hw,s 00i ! s 0

-⇤ hy := y+1,si ! s 00 , hw,s 00i ! s 0

-⇤
s 00=s [1/y]

hw,s [1/y]i ! s 0

We reach a goal where w is to be evaluated in a memory s [1/y] such that
s [1/y](y) > 0. Thus we are in the previous case and we know that the command
diverges.

Summing up, hw,si ! s 0 iff s(y) < 0^s 0 = s .

3.4 Let us denote by c0 the body of c2:

c0 def
= if b then c else skip

We proceed by contradiction. First, assume that there exist s ,s 0 such that hc1,si !
s 0 and hc2,si 6! s 0. Let us take such s ,s 0 for which hc1,si ! s 0 has the shortest
derivation.

If hb,si ! false, we have

hc1,si ! s 0 -s 0=s hb,si ! false
-⇤ ⇤

hc2,si ! s 0 -s 0=s hb,si ! false
-⇤ ⇤

Thus it must be hb,si ! true. In this case, we have

hc1,si ! s 0 -s 0=s hb,si ! true , hc,si ! s 00 , hc1,s 00i ! s 0

-⇤ hc,si ! s 00 , hc1,s 00i ! s 0

hc2,si ! s 0 -s 0=s hb,si ! true , hc0,si ! s 00 , hc2,s 00i ! s 0

-⇤ hc0,si ! s 00 , hc2,s 00i ! s 0

- hb,si ! true , hc,si ! s 00 , hc2,s 00i ! s 0

-⇤ hc,si ! s 00 , hc2,s 00i ! s 0

Now, since s and s 0 were chosen so to allow for the shortest derivation hc1,si !
s 0 that cannot be mimicked by hc2,si, it must be the case that hc1,s 00i ! s 0, which
is shorter, can still be mimicked, thus hc2,s 00i ! s 0 is provable, but then hc2,si ! s 0

holds, leading to a contradiction.
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Second, assume that there exist s ,s 0 such that hc2,si ! s 0 and hc1,si 6! s 0.
Then the proof is completed analogously to the previous case.

3.6 Take any s such that s(x) = 0. Then hc1,si ! s , while hc2,si 6!.

3.9

1. Take a = 0/0. Then, for any s , we have, e.g., ha,si ! 1 (since 0 = 0⇥1) and
ha,si ! 2 (since 0 = 0⇥2) by straightforward application of rule (div).

2. Take a = 1/2. Then, we cannot find an integer n such that 1 = 2⇥n and the rule
(div) cannot be applied.

Problems of Chapter 4

4.2 We let:

locs(skip)
def
= ?

locs(x := a)
def
= {x}

locs(c0;c1) = locs(if b then c0 else c1)
def
= locs(c0)[ locs(c1)

locs(while b do c) def
= locs(c)

We prove the property

P(hc,si ! s 0)
def
= 8y 62 locs(c). s(y) = s 0(y)

by rule induction.

skip: We need to prove P(hskip,si ! s)
def
= 8y 62 locs(skip). s(y) = s(y) that

holds trivially.
assign: We need to prove

P(hx := a,si ! s [n/x])
def
= 8y 62 locs(x := a). s(y) = s [n/x](y)

Trivially: locs(x := a) = {x} and 8y 6= x. s [n/x](y) = s(y).
seq: We assume

P(hc0,si ! s 00)
def
= 8y 62 locs(c0). s(y) = s 00(y)

P(hc1,s 00i ! s 0)
def
= 8y 62 locs(c0). s 00(y) = s 0(y)

and we need to prove

P(hc0;c1,si ! s 0)
def
= 8y 62 locs(c0;c1). s(y) = s 0(y)
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Take y 62 locs(c0;c1) = locs(c0)[ locs(c1). It follows that y 62 locs(c0) and
y 62 locs(c1). By y 62 locs(c0) and the first inductive hypothesis we have
s(y) = s 00(y). By y 62 locs(c1) and the second inductive hypothesis we
have s 00(y) = s 0(y) . By transitivity, we conclude s(y) = s 0(y).

iftt: We assume

P(hc0,si ! s 0)
def
= 8y 62 locs(c0). s(y) = s 0(y)

and we need to prove

P(hif b then c0 else c1,si ! s 0)
def
=

8y 62 locs(if b then c0 else c1). s(y) = s 0(y)

Take y 62 locs(if b then c0 else c1) = locs(c0)[ locs(c1). It follows that
y 62 locs(c0) and hence, by the inductive hypothesis, s(y) = s 0(y).

ifff: This case is analogous to the previous one and thus omitted.
whff: We need to prove

P(hwhile b do c,si ! s)
def
= 8y 62 locs(while b do c). s(y) = s(y)

which is obvious (as for the case of rule skip).
whtt: We assume

P(hc,si ! s 00)
def
= 8y 62 locs(c). s(y) = s 00(y)

P(hwhile b do c,s 00i ! s 0)
def
= 8y 62 locs(while b do c). s 00(y) = s 0(y)

and we need to prove

P(hwhile b do c,si ! s 0)
def
= 8y 62 locs(while b do c). s(y) = s 0(y)

Take y 62 locs(while b do c) = locs(c). By the first inductive hypothesis,
it follows that s(y) = s 00(y), while by the second inductive hypothesis we
have s 00(y) = s 0(y). By transitivity, we conclude s(y) = s 0(y).

4.3 We prove the property

P(hw,si ! s 0)
def
= s(x) � 0 ^ s 0 = s

h
s(x)+s(y)/y,

0 /x

i

by rule induction. Since the property is concerned with the command w, it is enough
to consider the two rules for the while construct.

whff: We assume
hx 6= 0,si ! false

We need to prove

P(hw,si ! s)
def
= s(x) � 0 ^ s = s

h
s(x)+s(y)/y,

0 /x

i
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Since hx 6= 0,si ! false it follows that s(x) = 0 and thus s(x) � 0. Then,
s
h

s(x)+s(y)/y,0 /x

i
= s

h
0+s(y)/y,s(x) /x

i
= s

h
s(y)/y,s(x) /x

i
= s .

whtt: Let c def
= x := x�1;y := y+1. We assume

hx 6= 0,si ! false hc,si ! s 00 hw,s 00i ! s 0

P(hw,s 00i ! s 0)
def
= s 00(x) � 0 ^ s 0 = s 00

h
s 00(x)+s 00(y)/y,0 /x

i

We need to prove

P(hw,si ! s 0)
def
= s(x) � 0 ^ s 0 = s

h
s(x)+s(y)/y,

0 /x

i

From hc,si ! s 00 it follows that s 00 = s
h

s(y)+1/y,s(x)�1 /x

i
. By inductive

hypothesis we have s 00(x) � 0, thus s(x) � 1 and hence s(x) � 0. Moreover,
by inductive hypothesis, we have also

s 0 = s 00
h

s 00(x)+s 00(y)/y,0 /x

i
= s 00

h
s(x)�1+s(y)+1/y,0 /x

i
=

s 00
h

s(x)+s(y)/y,0 /x

i
= s

h
s(x)+s(y)/y,0 /x

i
.

4.4 We prove the two implication separately. First we prove the property

P(x R+ y) def
= 9k > 0. 9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = y

by rule induction.
For the first rule

x R y
x R+ y

we assume x R y and we need to prove P(x R+ y). We take k = 1, z0 = x and z1 = y
and we are done.

For the second rule
x R+ y y R+ z

x R+ z
we assume

P(x R+ y) def
= 9n > 0. 9u0, . . . ,un. x = u0 ^ u0 R u1 ^ . . .^ un�1 R un ^ un = y

P(y R+ z) def
= 9m > 0. 9v0, . . . ,vm. y = v0 ^ v0 R v1 ^ . . .^ vm�1 R vm ^ vm = z

and we need to prove

P(x R+ z) def
= 9k > 0. 9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = z

Take n,u0, ...,un and m,v0, ...,vm as provided by the inductive hypotheses. We set
k = n+m, from which it follows k > 0 since n > 0 and m > 0. Note that un = y = v0.
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Finally, we let

zi
def
=

⇢
ui if i 2 [0,n]
vi�n if i 2 [n+1,k]

and it is immediate to check that the conditions are satisfied.
To prove the reverse implication, we exploit the logical equivalence

(9k. A(k)) ) B , 8k. (A(k) ) B)

that holds whenever k does not appear (free) in the predicate B, to prove the univer-
sally quantified statement

8k > 0.8x,y.
�
(9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = y) ) x R+ y

�

by mathematical induction on k.
The base case is when k = 1. Take generic x and y. We assume the premise

9z0,z1. x = z0 ^ z0 R z1 ^ z1 = y

and the thesis x R+ y follows by applying the first inference rule.
For the inductive case, we assume that

8x,y.
�
(9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = y) ) x R+ y

�

and we want to prove that

8x,z.
�
(9z0, . . . ,zk+1. x = z0 ^ z0 R z1 ^ . . .^ zk R zk+1 ^ zk+1 = z) ) x R+ z

�

Take generic x,z and assume that there exist z0, . . . ,zk+1 satisfying the premise of the
implication:

x = z0 ^ z0 R z1 ^ . . .^ zk R zk+1 ^ zk+1 = z

By the inductive hypothesis, it follows that x R+ zk. Moreover, from zk R zk+1 = z we
can apply the first inference rule to derive zk R+ z. Finally, we conclude by applying
the second inference rule to x R+ zk and zk R+ z, obtaining x R+ z.

Regarding the second question, the relation R0 is just the reflexive and transitive
closure of R.

Problems of Chapter 5

5.2

1. It can be readily checked that f is monotone: let us take S1,S2 2 √(N), with
S1 ✓ S2; we need to check that f (S1) ✓ f (S2). Let x 2 f (S1) = S1 \ X . Then
x 2 S1 and x 2 X . Since S1 ✓ S2, we have also x 2 S2 and thus x 2 S2 \X = f (S2).
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The case of g is more subtle. Intuitively, the larger is S, the smaller is √(N)\S
and consequently (√(N)\ S)\ X . Let us take S1,S2 2√(N), with S1 ⇢ S2, and
let x 2 S2 \ S1. Then x 2 √(N) \ S1 and x 62 √(N) \ S2. Now if x 2 X we have
x 2 g(S1) and x 62 g(S2), contradicting the requirement g(S1) ✓ g(S2). Note that,
unless X = ?, such a counterexample can always be constructed.

2. Let us take a chain {Si }i2N in √(N). We need to prove that f (
S

i2N Si) =S
i2N f (Si), i.e., that (

S
i2N Si)\X =

S
i2N(Si \X). We have

x 2
 
[

i2N
Si

!
\X , x 2

 
[

i2N
Si

!
^ x 2 X

, 9k 2 N. x 2 Sk ^ x 2 X
, 9k 2 N. x 2 Sk \X
, x 2

[

i2N
(Si \X)

Since g is in general not monotone, it is not continuous (unless X = ?, in which
case g is the constant function returning ? and thus trivially monotone and
continuous).

3. f is monotone and continuous for any X , while g is monotone and continuous
only when X = ?.

5.3
1. Let D1 be the discrete order with two elements 0 and 1. All chains in D1 are

constant (and finite) and all functions f : D1 ! D1 are monotone and continuous.
The identity function f1(x) = x has two fixpoints but no least fixpoint (as discussed
also in Example 5.18).

2. Let D2 = D1. If we let f2(0) = 1 and f2(1) = 0, then f2 has no fixpoint.
3. If D3 is finite, then any chain is finite and any monotone function is continuous.

So we must choose D3 with infinitely many elements. We take D3 and f3 as in
Example 5.17.

5.4 Let us take D = N with the usual “less than or equal to” order. As discussed in
Chapter 5, it is a partial order with bottom but it is not complete, because, e.g., the
chain of even numbers has no upper bound.

1. From what said above, the chain

0 � 2 � 4 � 6 � · · ·

is an infinite descending chain, and thus D 0 is not well-founded.
2. The answer is no: if D is not complete, then D 0 is not well-founded. To show this,

let us take a chain
d0 v d1 v d2 v · · ·

that has no least upper bound (it must exists, because D is not complete). The
chain {di}i2N cannot be finite, as otherwise the maximum element would be the
least upper bound. However, it is not necessarily the case that
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d0 � d1 � d2 � · · ·

is an infinite descending chain of D 0, because {di}i2N can contain repeated
elements. To discard clones, we define the function next : N ! N to select the
smallest index with which the ith different element appears in the chain (letting
d0 be the 0th element)

next(0)
def
= 0

next(i+1)
def
= min{ j | d j 6= d j�1 ^next(i) < j}

and take the infinite descending chain

dnext(0) � dnext(1) � dnext(2) � · · ·

5.5

1. We need to check that v is reflexive, antisymmetric and transitive.

reflexive: for any string a 2 V ⇤ [V • we have a = ae and hence a v a ;
antisymmetric: we assume a v b and b v a and we need to prove that a = b ;

let g and d such that b = ag and a = bd , then a = agd : if
a 2 V ⇤, then it must be g = d = e and a = b ; if a 2 V •, from
b = ag it follows b = a;

transitive: we assume a v b and b v g and we need to prove that a v g;
let d and w such that b = ad and g = bw , then g = adw and
thus a v g .

2. To prove that the order is complete we must show that any chain has a limit. Take

a0 v a1 v a2 v · · · v an v · · ·

If the chain is finite, then the greatest element of the chain is the least upper bound.
Otherwise, it must be ai 2 V ⇤ for any i 2 N and for any length n we can find a
string akn in the sequence such that |akn | � n (if not, the chain would be finite).
Then we can construct a string a 2 V • such that for any position n in a the nth
symbol of a appears in the same position in one of the strings in the chain. In fact
we let a(n)

def
= akn(n) and a is the limit of the chain.

3. The bottom element is the empty string e , in fact for any a 2 V ⇤ [V • we have
ea = a and thus e v a .

4. The maximal elements are all and only the strings in V •. In fact, on the one hand,
taken a 2 V • we have

a v b , 9g. b = ag , b = a

On the other hand, if a 2 V ⇤, then a v aa and a 6= aa.
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Problems of Chapter 6

6.1

1. The expression lx. lx. x is a-convertible to the expressions a, c, e.
2. The expression ((lx. ly. x) y) is equivalent to the expressions d and e.

6.3 Let c00 def
= if x = 0 then c1 else c2. Using the operational semantics we have:

hc,si ! s 0 - hx := 0,si ! s 00, hc00,s 00i ! s 0

- ⇤s 00=s [0/x] hx = 0,s [0/x]i ! true, hc1,s [0/x]i ! s 0

-⇤ hc1,s [0/x]i ! s 0

hc0,si ! s 0 - hx := 0,si ! s 00, hc1,s 00i ! s 0

- ⇤s 00=s [0/x] hc1,s [0/x]i ! s 0

Since both goals reduce to the same goal hc1,s [0/x]i ! s 0, the two commands c and
c0 are equivalent.

Using the denotational semantics, we have:

C JcKs = C
q

c00y⇤
(C Jx := 0Ks)

= C
q

c00y⇤
(s [0/x])

= C
q

c00y(s [0/x])

= (ls 0. (B Jx = 0Ks 0 ! C Jc1Ks 0 , C Jc2Ks 0))(s [0/x])

= B Jx = 0Ks [0/x] ! C Jc1Ks [0/x] , C Jc2Ks [0/x]
= true ! C Jc1Ks [0/x] , C Jc2Ks [0/x]
= C Jc1Ks [0/x]

C
q

c0ys = C Jc1K⇤ (C Jx := 0Ks)

= C Jc1K⇤ (s [0/x])
= C Jc1K(s [0/x]).

6.4 Let c0 def
= if b then c else skip. We have that

Gb,c j s = B JbKs ! j⇤(C JcKs) , s
Gb,c0 j s = B JbKs ! j⇤(C

q
c0ys) , s

= B JbKs ! j⇤(B JbKs ! C JcKs , B JskipKs) , s
= B JbKs ! j⇤(B JbKs ! C JcKs , s) , s

Let us show that Gb,c = Gb,c0 .
If B JbKs = false, then Gb,c j s = s = Gb,c j s .
If B JbKs = true, then
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Gb,c j s = j⇤(C JcKs)

Gb,c0 j s = j⇤(B JbKs ! C JcKs , s)

= j⇤(C JcKs)

6.5 We have already seen in Example 6.6 that C Jwhile true do skipK = ls . ?S? .
For the second command we have C Jwhile true do x := x+1K = fix G , where

G j s = B JtrueKs ! j⇤(C Jx := x+1Ks) , s
= true ! j⇤(C Jx := x+1Ks) , s
= j⇤(C Jx := x+1Ks)

= j⇤(s [s(x)+1/x])
= j(s [s(x)+1/x])

Let us compute the first elements of the chain {jn}n2N with jn = G n ?S!S? :

j0 s = ?S?

j1 s = G j0 s
= j0(s [s(x)+1/x])
= (ls . ?S?)(s [s(x)+1/x])
= ?S?

Since j1 = j0 we have reached the fixpoint and have C Jwhile true do x := x+1K=
ls . ?S? .

6.6 We have immediately C Jx := 0Ks = s [0/x].
Moreover, we have C Jwhile x 6= 0 do x := 0K = fix G , where

G j s = B Jx 6= 0Ks ! j⇤(C Jx := 0Ks) , s
= s(x) 6= 0 ! j⇤(s [0/x]) , s
= s(x) 6= 0 ! j(s [0/x]) , s

Let us compute the first elements of the chain {jn}n2N with jn = G n ?S!S? :
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j0 s = ?S?

j1 s = G j0 s
= s(x) 6= 0 ! j0(s [0/x]) , s
= s(x) 6= 0 ! ?S? , s

j2 s = G j1 s
= s(x) 6= 0 ! j1(s [0/x]) , s
= s(x) 6= 0 ! (ls 0. s 0(x) 6= 0 ! ?S? , s 0)(s [0/x]) , s
= s(x) 6= 0 ! (s [0/x](x) 6= 0 ! ?S? , s [0/x]) , s
= s(x) 6= 0 ! (false ! ?S? , s [0/x]) , s
= s(x) 6= 0 ! s [0/x] , s
= s(x) 6= 0 ! s [0/x] , s [0/x]
= s [0/x]

j3 s = G j2 s
= s(x) 6= 0 ! j2(s [0/x]) , s
= s(x) 6= 0 ! (ls 0. s 0[0/x])(s [0/x]) , s
= s(x) 6= 0 ! s [0/x][0/x] , s
= s(x) 6= 0 ! s [0/x] , s [0/x]
= s [0/x]

Note in fact that, when s(x) 6= 0 is false, then s = s [0/x].
Since j3 = j2 we have reached the fixpoint and have C Jwhile x 6= 0 do x := 0K=

ls . s [0/x].
We conclude by observing that since j2 is a maximal element of its domain, it

must be already the lub of the chain, namely the fixpoint. Thus it is not necessary to
compute j3.

6.10

1.

hc,si ! s 0 hb,s 0i ! false
(do)

hdo c undoif b,si ! s 0

hc,si ! s 0 hb,s 0i ! true
(undo)

hdo c undoif b,si ! s

2.
C Jdo c undoif bKs def

= B JbK⇤ (C JcKs) !⇤ s , C JcKs

where B JbK⇤ : S? ! B? denotes the lifted version of the interpretation functions
for boolean expressions (as c can diverge) and t !⇤ t0, t1 denotes the lifted version
of the conditional operator, such that it returns ?S? when t is ?B? .

3. First we extend the proof of completeness by rule induction. We recall that:

P
�
hc,si ! s 0� def

= C JcKs = s 0
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do: we assume that hb,s 0i ! false and P(hc,si ! s 0)
def
= C JcKs = s 0. We

need to prove that

P
�
hdo c undoif b,si ! s 0� def

= C Jdo c undoif bKs = s 0

From hb,s 0i ! false it follows B JbK(s 0) = false. We have

C Jdo c undoif bKs def
= B JbK⇤ (C JcKs) !⇤ s , C JcKs
= B JbK⇤ s 0 !⇤ s , s 0

= B JbKs 0 !⇤ s , s 0

= false !⇤ s , s 0

= false ! s , s 0

= s 0.

undo: we assume that hb,s 0i ! true and P(hc,si ! s 0)
def
= C JcKs = s 0. We

need to prove that

P(hdo c undoif b,si ! s)
def
= C Jdo c undoif bKs = s

From hb,s 0i ! true it follows B JbK(s 0) = true. We have

C Jdo c undoif bKs def
= B JbK⇤ (C JcKs) !⇤ s , C JcKs
= B JbK⇤ s 0 !⇤ s , s 0

= B JbKs 0 !⇤ s , s 0

= true !⇤ s , s 0

= true ! s , s 0

= s .

Finally, we extend the proof of correctness by structural induction. We assume

P(c) def
= 8s ,s 0. C JcKs = s 0 ) hc,si ! s 0

and we want to prove that

P(do c undoif b)
def
= 8s ,s 0. C Jdo c undoif bKs = s 0 ) hdo c undoif b,si ! s 0

Let us take s and s 0 such that C Jdo c undoif bKs = s 0. We need to prove that
hdo c undoif b,si ! s 0. Since C Jdo c undoif bKs = s 0 it must be C JcKs =
s 00 for some s 00 6= ?S? and by inductive hypothesis hc,si ! s 00. We distinguish
two cases.

B JbKs 00 = false: then s 0 = s 00 and hb,s 00i ! false. Since hc,si ! s 00 we
apply rule (do) to derive hdo c undoif b,si ! s 00 = s 0.
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B JbKs 00 = true: then s 0 = s and hb,s 00i ! true. Since hc,si ! s 00 we apply
rule (undo) to conclude that hdo c undoif b,si ! s .

Problems of Chapter 7

7.2

rec f
t2!int

. l x
t⇤int

. if snd( x
t⇤int

)

int

then 1
int

else f
t2!int

( fst(x)
int!t1

, ( fst(x)
t=int!t1

snd(x)
int

)

t1

)

t2=(int!t1)⇤t1

int

(t⇤int)!int

From which we must have t2 ! int = (t ⇤ int) ! int, i.e., t2 = (t ⇤ int). But
since t2 = (int ! t1)⇤ t1, it must be t = (int ! t1) and int = t1. Summing up, we
have t1 = int, t = int ! int and t2 = (int ! int)⇤ int and the principal type of t is
((int ! int)⇤ int) ! int.

7.3

1. We let t = int ⇤(int ⇤(int ⇤ int)) be the type of a list of integers with three elements
(the last element of type int is 0 and it marks the end of the list) and we define

t def
= l `

t
. fst(snd( snd(`

t
)

int⇤(int⇤int)

)

int⇤int

)

int

t!int

Let L = (n1,(n2,(n3,0))) : t be a generic list of integers with three elements. Now
we check that (t L) ! n3:

(t L) ! c - t ! lx. t 0, t 0[L/x] ! c
-⇤

x=`, t 0=fst(snd(snd(`))) fst(snd(snd(L))) ! c
- snd(snd(L)) ! (t1, t2), t1 ! c
- snd(L) ! (t3, t4), t4 ! (t1, t2), t1 ! c
- L ! (t5, t6), t6 ! (t3, t4), t4 ! (t1, t2), t1 ! c

-t5=n1, t6=(n2,(n3,0)) (n2,(n3,0)) ! (t3, t4), t4 ! (t1, t2), t1 ! c
-t3=n2, t4=(n3,0) (n3,0) ! (t1, t2), t1 ! c

-t1=n3, t2=0 n3 ! c
-c=n3 ⇤
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2. The answer is negative. In fact a generic list of k integers has a type that depends
on the length of the list itself and we do not have polymorphic functions in HOFL.
The natural candidate

t def
= rec f . lx. if snd(x) then fst(x) else f (snd(x))

is not typable, in fact we have

rec f
int!t

. l x
t⇤int

. if snd( x
t⇤int

)

int

then fst(x)
t

else f
int!t

(snd(x))
int

t
t

(t⇤int)!t

From which we must have int ! t = (t ⇤ int) ! t , i.e., int = (t ⇤ int), which is
not possible.

7.4

1. We have:

t1
def
= l x

int

. l y
t1

. x
int

+ 3
int

int

t1!int

int!t1!int

t2
def
= l z

int⇤t2

. fst( z
int⇤t2

)

int

+ 3
int

int

(int⇤t2)!int

2. Assume t1 = t2 = t with c : t in canonical form. We compute the canonical forms
of ((t1 1) c) and (t2 (1,c)) as follows:

((t1 1) c) ! c1 - (t1 1) ! ly0. t 0, t 0[c/y0 ] ! c1
- t1 ! lx0. t 00, t 00[1/x0 ] ! ly0. t 0, t 0[c/y0 ] ! c1

-x0=x, t 00=ly. x+3 ly. 1+3 ! ly0. t 0, t 0[c/y0 ] ! c1
-y0=y, t 0=1+3 1+3 ! c1

-c1=n1+n2 1 ! n1, 3 ! n2
-⇤

n1=1, n2=3 ⇤

Thus c1 = n1+n2 = 1+3 = 4 is the canonical form of ((t1 1) c).

(t2 (1,c)) ! c2 - t2 ! l z0. t 0, t 0[(1,c)/z0 ] ! c2
-z0=z, t 0=fst(z)+3 fst((1,c))+3 ! c2

-c2=n1+n2 fst((1,c)) ! n1, 3 ! n2
- (1,c) ! (t 00, t 000), t 00 ! n1, 3 ! n2

-t 00=1, t 000=c 1 ! n1, 3 ! n2
-⇤

n1=1, n2=3 ⇤

Thus c2 = n1+n2 = 1+3 = 4 is the canonical form also of (t2 (1,c)).
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7.5 We find the principal type of map:

map def
= l f

t1!t

. l x
t1⇤t1

. (( f
t1!t

fst( x
t1⇤t2

)

t1

)

t

,( f
t1!t

snd( x
t1⇤t2

)

t2=t1

)

t

)

t⇤t

(t1⇤t1)!(t,t)

(t1!t)!(t1⇤t1)!(t,t)

We now compute the canonical form of the term ((map t) (1,2)) where t def
= lx. 2⇥x:

((map t) (1,2)) ! c - (map t) ! ly.t 0, t 0[(1,2)/y] ! c
- map ! lg.t 00, t 00[t/g] ! ly.t 0, t 0[(1,2)/y] ! c

-g= f , t 00=... lx. ((t fst(x)),(t snd(x))) ! ly.t 0, t 0[(1,2)/y] ! c
-y=x, t 0=... ((t fst((1,2))),(t snd((1,2)))) ! c

-c=((t fst((1,2))),(t snd((1,2)))) ⇤

So the canonical form is c = (((lx. 2⇥ x) fst((1,2))),((lx. 2⇥ x) snd((1,2)))).

Problems of Chapter 8

8.4 We prove the monotonicity of the lifting operator (·)⇤ : [D ! E] ! [D? ! E].
Let us take two continuous functions f ,g 2 [D ! E] such that f vD!E g. We want
to prove that f ⇤ vD?!E g⇤. So we need to prove that for any x 2 D? we have
f ⇤(x) vE g⇤(x). We have two possibilities:

• if x = ?D? , then f ⇤(?D?) = ?E = g⇤(?D?);
• if x = bdc for some d 2 D, we have f ⇤(bdc) = f (d) v g(d) = g⇤(bdc), because

f vD!E g by hypothesis.

8.5 We prove that the function apply : [D ! E]⇥D ! E is monotone. Let us take
two continuous functions f1, f2 2 [D ! E] and two elements d1,d2 2 D such that
( f1,d1) v[D!E]⇥D ( f2,d2), we want to prove that apply ( f1,d1) vE apply ( f2,d2).
By definition of the cartesian product domain, ( f1,d1) v[D!E]⇥D ( f2,d2) means that
f1 v[D!E] f2 and d1 vD d2. Then, we have:

apply ( f1,d1) = f1(d1) (by definition of apply)
vE f1(d2) (by monotonicity of f1)
vE f2(d2) (because f1 v[D!E] f2)
= apply ( f2,d2) (by definition of apply).

8.6 Let F f = {d | d = f (d)} ✓ D be the set of fixpoints of f : D ! D. It is immediate
that F f is a PO, because it is a subset of the partial order D from which it inherits



DRAFT

Solutions 377

the order relation. It remains to be proved that it is complete. Take a chain {di}i2N
in F f . Since F f ✓ D and D is a CPO, the chain {di}i2N has a limit d =

F
i2N di in D.

We want to prove that d 2 F f , i.e., that d = f (d). We note that for any i 2 N we have
di = f (di), because di 2 F f . Since f is continuous, we have:

f (d) = f

 
G

i2N
di

!
=
G

i2N
f (di) =

G

i2N
di = d.

8.8 We divide the proof in two parts: first we show that f v g implies f � g and
then that f � g implies f v g.

For the first implication, suppose that f v g. Taken any two elements d1,d2 2 D
such that d1 vD d2 we want to prove that f (d1) vE g(d2). From the monotonicity of f
we have f (d1) vE f (d2) and by the hypothesis f v g it follows that f (d2) vE g(d2);
thus, f (d1) vE f (d2) vE g(d2).

For the second implication, suppose f � g. We want to prove that for any element
d 2 D we have f (d) vE g(d). But this is immediate, because by reflexivity we have
d vD d and thus f (d) vE g(d) by definition of �.

Problems of Chapter 9

9.1 We show that t is typable:

t def
= rec f

int!int

. l x
int

. if x
int

then 0
int

else ( f
int!int

( x
int

)

int

⇥ f
int!int

( x
int

)

int

int

int

)

int!int

int!int

So we conclude t : int ! int.
The canonical form is readily obtained by unfolding once the recursive definition:

t ! c - lx. if x then 0 else (t(x)⇥ t(x)) ! c
-c=lx. if x then 0 else (t(x)⇥t(x)) ⇤

Finally, the denotational semantics is computed as follows:
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JtKr = fix ld f . Jlx. if x then 0 else ( f (x)⇥ f (x))Kr[d f / f ]

= fix ld f . bldx. Jif x then 0 else ( f (x)⇥ f (x))Kr[d f / f ,
dx /x]| {z }

r 0

c

= fix ld f . bldx. Cond(JxKr 0,J0Kr 0,J f (x)⇥ f (x)Kr 0)c
= fix ld f . bldx. Cond(dx,b0c,J f (x)Kr 0⇥?J f (x)Kr 0)c
= fix ld f . bldx. Cond(dx,b0c,(let j ( d f . j(dx))⇥?(let j ( d f . j(dx)))c

because

J f (x)Kr 0 = let j ( J f Kr 0. j(JxKr 0)

= let j ( d f . j(dx)

Let us compute the fixpoint by successive approximations:

f0 = ?(Vint!int )?

f1 = bldx. Cond(dx,b0c,(let j ( f0. j(dx))⇥?(let j ( f0. j(dx)))c
= bldx. Cond(dx,b0c,(?(Vint )?)⇥?(?(Vint )?))c
= bldx. Cond(dx,b0c,?(Vint )?)c

f2 = bldx. Cond(dx,b0c,(let j ( f1. j(dx))⇥?(let j ( f1. j(dx)))c
= bldx. Cond(dx,b0c,(Cond(dx,b0c,?(Vint )?))⇥?(Cond(dx,b0c,?(Vint )?)))c
= bldx. Cond(dx,b0c,(?(Vint )?)⇥?(?(Vint )?))c
= bldx. Cond(dx,b0c,?(Vint )?)c
= f1

So we have reached the fixpoint and

JtKr = bldx. Cond(dx,b0c,?(Vint )?)c

9.9

1. Assume t1 : t . We have
t2

def
= l x

t1

. ( t1
t1!t2

x
t1

)

t2

t1!t2

Unless t = t1 ! t2 the pre-term t2 is not typable.
2. Let us compute the denotational semantics of t2:
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Jt2Kr =
j

ldx. Jt1 xKr[dx/x]
k

=
j

ldx. let j ( Jt1Kr[dx/x]. j(JxKr[dx/x])
k

=
j

ldx. let j ( Jt1Kr[dx/x]. j(dx)
k

Suppose x 62 fv(t1). Then we have 8y 2 fv(t1). r(y) = r[dx/x](y) and thus by
Theorem 9.5 we have Jt1Kr[dx/x] = Jt1Kr .
Now, if Jt1Kr = ?(Vt )? , then Jt2Kr =

j
ldx. ?(Vt2 )?

k
6= Jt1Kr .

Otherwise, it must be Jt1Kr = b f c for some f 2 Vt1!t2 and hence Jt2Kr =
bldx. f dxc = b f c = Jt1Kr .

9.10

1. Let us compute the principal types for t1 and t2:

t1
def
= l x

t1

. rec y
int

. y
int

+ 1
int

int

int

t1!int

t2
def
= rec y

t2!int

. l x
t2

. ( y
t2!int

x
t2

)

int

+ 2
int

int

t2!int

t2!int

Therefore t1 and t2 have the same type if and only if t1 = t2.
2. Let us compute the denotational semantics of t1:

Jt1Kr = bldx. Jrec y. y+1Kr[dx/x]c
= bldx. fix ldy. Jy+1Kr[dx/x,

dy /y]c
= bldx. fix ldy. JyKr[dx/x,

dy /y]+?J1Kr[dx/x,
dy /y]c

= bldx. fix ldy. dy+?b1cc

We need to compute the fixpoint fix ldy. dy+?b1c:

d0 = ?(Vint )?

d1 = d0+?b1c = ?(Vint )? = d0

From which it follows

Jt1Kr = bldx. ?(Vint )?c = b?(Vt!int )c

Let us now turn the attention to t2:
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Jt2Kr = fix ldy. Jlx. (y x)+2Kr[dy/y]

= fix ldy. bldx. J(y x)+2Kr[dy/y,
dx /x]| {z }

r 0

c

= fix ldy. bldx. Jy xKr 0+?J2Kr 0c
= fix ldy. bldx. (let j ( JyKr 0. j(JxKr 0))+?b2cc
= fix ldy. bldx. (let j ( dy. j(dx))+?b2cc

Let us compute the fixpoint:

f0 = ?(Vt!int )?

f1 = bldx. (let j ( f0. j(dx))+?b2cc
= bldx. (?(Vint )?)+?b2cc
= bldx. ?(Vint )?c
= b?(Vt!int )c

f2 = bldx. (let j ( f1. j(dx))+?b2cc
= bldx. (?(Vt!int )(dx))+?b2cc
= bldx. (?(Vint )?)+?b2cc
= bldx. ?(Vint )?c
= b?(Vt!int )c
= f1

So we have computed the fixpoint and got

Jt2Kr = b?(Vt!int )c = Jt1Kr.

9.15 Let us try to change the denotational semantics of the conditional construct of
HOFL by defining:

Jif t then t0 else t1Kr def
= Cond0(JtKr,Jt0Kr,Jt1Kr)

where
Cond0(x,d0,d1) =

⇢
d0 if x = bnc for some n 2 Z
d1 if x = ?(Vint )? .

The problem is that the newly defined operation Cond0 is not monotone (and thus not
continuous)! To see this, remind that ?(Vint )? v b1c and take any d0,d1: we should
have Cond0(?(Vint )? ,d0,d1) v Cond0(b1c,d0,d1). However, if we take d0,d1 such
that d1 6v d0 it follows that:

Cond0(?(Vint )? ,d0,d1) = d1 6v d0 = Cond0(b1c,d0,d1)

For a concrete example, take d1 = b1c and d0 = b0c.
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At the level of HOFL syntax, the previous cases arise when considering, e.g., the
terms t1

def
= if (rec x. x) then 0 else 1 and t2

def
= if 1 then 0 else 1, as

Jt1Kr = b1c 6v b0c = Jt2Kr

As a consequence, typable terms such as

t def
= lx. if x then 0 else 1 : int ! int

would not be assigned a semantics in (Vint!int)? because the function JtKr would
not be continuous.

Problems of Chapter 10

10.1 Let us check the type of t1 and t2:

rec f
t2!t1

. l x
t2

. ((l y
t1

. 1
int

)

t1!int

( f
t2!t1

x
t2

)

t1

)

int

t2!int

t2!t1=t2!int

l x
t
. 1

int

t!int

So it must be t1 = int and the terms have the same type if t2 = t .
The denotational semantics of t1 requires the computation of the fixpoint:

Jt1Kr = fix ld f . Jlx. ((ly. 1) ( f x))Kr[d f / f ]

= fix ld f . bldx. J((ly. 1) ( f x))Kr[d f / f ,
dx /x]| {z }

r 0

c

= fix ld f . bldx. (let j ( Jly. 1Kr 0. j(J f xKr 0))c
= fix ld f . bldx. (let j ( bldy. b1cc. (j(letj 0 ( d f . j 0(dx))))c
= fix ld f . bldx. ((ldy. b1c)(letj 0 ( d f . j 0(dx)))c
= fix ld f . bldx. b1cc

f0 = ?(Vt!int )?

f1 = bldx. b1cc

We can stop the calculation of the fixpoint, as we have reached a maximal element.
Thus Jt1Kr = bldx. b1cc. For t2 we have directly:
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Jt2Kr = bldx. J1Kr[dx/x]c
= bldx. b1cc
= Jt1Kr

To show that the canonical forms are different, we note that t2 is already in
canonical form, while for t1 we have:

t1 ! c1 - lx. ((ly. 1) (t1 x)) ! c1
-c1=lx. ((ly. 1) (t1 x)) ⇤

10.2

1. We compute the denotational semantics of map and of t def
= (map l z. z):

JmapKr = bld f . Jlx. (( f fst(x)),( f snd(x)))Kr[d f / f ]c
= bld f . bldx. J(( f fst(x)),( f snd(x)))Kr[d f / f ,

dx /x]| {z }
r 0

cc

= bld f . bldx. b(J( f fst(x))Kr 0,J( f snd(x))Kr 0)ccc
= bld f . bldx. b((let j1 ( J f Kr 0. j1(Jfst(x)Kr 0)),

(let j2 ( J f Kr 0. j2(Jsnd(x)Kr 0)))ccc
= bld f . bldx. b((let j1 ( d f . j1(let d1 ( JxKr 0. p1 d1)),

(let j2 ( d f . j2(let d2 ( JxKr 0. p2 d2)))ccc
= bld f . bldx. b((letj1 ( d f . j1(let d1 ( dx. p1 d1)),

(let j2 ( d f . j2(let d2 ( dx. p2 d2)))ccc
JtKr = let j ( JmapKr. j(Jl z. zKr)

= let j ( JmapKr. j(bldz. JzKr[dz/z]c)
= let j ( JmapKr. j(bldz. dzc)
= bldx. b((let j1 ( bldz. dzc. j1(let d1 ( dx. p1 d1)),

(let j2 ( bldz. dzc. j2(let d2 ( dx. p2 d2)))cc
= bldx. b(((ldz. dz)(let d1 ( dx. p1 d1)),

((ldz. dz)(let d2 ( dx. p2 d2)))cc
= bldx. b((let d1 ( dx. p1 d1),(let d2 ( dx. p2 d2))cc

2. It suffices to take t1
def
= 1+1 and t2

def
= 2. It can be readily checked that

J(t1, t2)Kr = b(b2c,b2c)c = J(t2, t1)Kr.

Letting t0
def
= (map l z. z), we have that the terms (t0 (t1, t2)) and (t0 (t2, t1)) have

the same denotational semantics
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Jt0 (t1, t2)Kr = let j ( Jt0K . j(J(t1, t2)Kr)

= let j ( Jt0K . j(b(b2c,b2c)c)
= b((let d1 ( b(b2c,b2c)c. p1 d1),(let d2 ( b(b2c,b2c)c. p2 d2))c
= b((p1 (b2c,b2c)),(p2 (b2c,b2c)))c
= b(b2c,b2c)c

Jt0 (t2, t1)Kr = let j ( Jt0K . j(J(t2, t1)Kr)

= let j ( Jt0K . j(b(b2c,b2c)c)
= Jt0 (t1, t2)Kr

The same result can be obtained by observing that (t0 (t1, t2)) = (t0 y)[(t1,t2)/y]
and (t0 (t2, t1)) = (t0 y)[(t2,t1)/y]. Then, by compositionality we have:

Jt0 (t1, t2)Kr =
r
(t0 y)[(t1,t2)/y]

z
r

= J(t0 y)Kr[J(t1,t2)Kr/y]

= J(t0 y)Kr[b(b2c,b2c)c/y]

= J(t0 y)Kr[J(t2,t1)Kr/y]

=
r
(t0 y)[(t2,t1)/y]

z
r

= Jt0 (t2, t1)Kr.

We conclude by showing that the terms (t0 (t1, t2)) and (t0 (t2, t1)) have different
canonical forms:

(t0 (t1, t2)) ! c1 - t0 ! lx0.t, t[(t1,t2)/x0 ] ! c1
- map ! l f 0.t 0, t 0[l z. z/ f 0 ] ! lx0.t, t[(t1,t2)/x0 ] ! c1

- f 0= f ,t 0=... lx. (((l z. z) fst(x)),((l z. z) snd(x))) ! lx0.t,
t[(t1,t2)/x0 ] ! c1

-x0=x,t=... (((l z. z) fst((t1, t2))),((l z. z) snd((t1, t2)))) ! c1
-c1=(...,...) ⇤

(t0 (t2, t1)) ! c2 -⇤ (((l z. z) fst((t2, t1))),((l z. z) snd((t2, t1)))) ! c2
-c2=(...,...) ⇤

10.11

1. We extend the proof of correctness to take into account the new rules. We recall
that the predicate to be proved is

P(t ! c) def
= 8r. JtKr = JcKr.

For the rule
t ! 0 t0 ! c0 t1 ! c1

if t then t0 else t1 ! c0
we can assume
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P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

P(t1 ! c1)
def
= 8r. Jt1Kr = Jc1Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr.

We have:

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by definition)
= Cond(b0c,Jt0Kr,Jt1Kr) (by inductive hypothesis)
= Jt0Kr (by definition of Cond)
= Jc0Kr (by inductive hypothesis)

For the other rule the proof is analogous and thus omitted.
2. As a counterexample, we can take

t def
= if 0 then 1 else rec x. x.

In fact, its denotational semantics is

JtKr = Cond(J0Kr,J1Kr,Jrec x. xKr) = Cond(b0c,b1c,?(Vint )? = b1c

and therefore t +. Vice versa t ", as:

t ! c - 0 ! 0, 1 ! c, rec x. x ! c0

- 1 ! c, rec x. x ! c0

-c=1 rec x. x ! c0

- x[rec x. x/x] ! c0

= rec x. x ! c0

- · · ·

10.13 According to the operational semantics we have:

rec x. t ! c - t[rec x. t/x] ! c
= t ! c

because by hypothesis x 62 fv(t). So we conclude that either both terms have the same
canonical form or they do not have any canonical form.

According to the denotational semantics we have

Jrec x. tKr = fix ldx. JtKr[dx/x]

= fix ldx. JtKr
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When we compute the fixpoint, assuming t : t , we get:

d0 = ?(Vt )?

d1 = (ldx. JtKr) d0 = JtKr[d0/dx ] = JtKr
d2 = (ldx. JtKr) d1 = JtKr[d1/dx ] = JtKr = d1

So we have reached the fixpoint and have Jrec x. tKr = JtKr .
Alternatively, we could have computed the semantics as follows:

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)
= Jt[rec x. t/x]Kr (by Substituition Lemma)
= JtKr (because x 62 fv(t))

10.14

1. By Theorem 10.1 (Correctness) we have Jt0Kr = Jc0Kr . Hence:
q

t 01[
t0/x]

y
r =

q
t 01

y
r[Jt0Kr/x] =

q
t 01

y
r[Jc0Kr/x] =

q
t 01[

c0/x]
y

r.

2. If Jt 01[t0/x]Kr = Jt 01[c0/x]Kr = ?Z? , then we have that t 01[
t0/x] " and t 01[

c0/x] ",
because the operational semantics agrees on convergence with the denotational
semantics.
If Jt 01[t0/x]Kr = Jt 01[c0/x]Kr 6= ?Z? , it exists n 2 Z such that Jt 01[t0/x]Kr =
Jt 01[c0/x]Kr = bnc. Then, since t 01[

t0/x] and t 01[
c0/x] are closed, by Theorem 10.4,

we have t 01[
t0/x] ! n and t 01[

c0/x] ! n.
3. Suppose that (t1 t0) ! c in the eager semantics. Then it must be the case that

t1 ! lx. t 01 for some suitable x and t 01, and that t 01[c0/x] ! c (we know that t0 ! c0
by initial hypothesis). Since c : int it must be c = n for some integer n. Then, by
the previous point we know that t 01[

t0/x] ! n because t 01[
c0/x] ! n. We conclude

that (t1 t0) ! c in the lazy semantics by exploiting the (lazy) rule for function
application.

4. As a simple counterexample, we can take, e.g., t1 = lx. ((ly. x) (rec z. z)) with
y 62 fv(t0). In fact, in the lazy semantics, we have:

(t1 t0) ! c - t1 ! lx0. t 01, t 01[
t0/x0 ] ! c

-x0=x, t 01=((ly. x) (rec z. z)) ((ly. t0) (rec z. z)) ! c
- (ly. t0) ! ly0. t2, t2[(rec z. z)/y0 ] ! c

-y0=y, t2=t0 t0[(rec z. z)/y] ! c
= t0 ! c

-c=c0 ⇤

Whereas in the eager semantics we have:



DRAFT

386 Solutions

(t1 t0) ! c - t1 ! lx0. t 01, t0 ! c0, t 01[
c0
/x0 ] ! c

-x0=x, t 01=((ly. x) (rec z. z)) t0 ! c0, ((ly. c0) (rec z. z)) ! c
-c0=c0 ((ly. c0) (rec z. z)) ! c

- (ly. c0) ! ly0. t2, rec z. z ! c00, t2[c
00
/y0 ] ! c

-y0=y, t2=t0 rec z. z ! c00, t0[c
00
/y] ! c

- rec z. z ! c00, t0[c
00
/y] ! c

- · · ·

5. Let x, t0 : t0 and y : t and assume t0 6= c0. As a last counterexample, let us
take t 01 = ly. x (and t1 = lx. t 01), with t 01 : t ! t0. We have immediately that
t 01[

t0/x] = ly. t0 and t 01[
c0/x] = ly. c0 are already in canonical form and they are

different. Moreover, (t1 t0) ! ly. t0 in the lazy semantics, but (t1 t0) ! ly. c0 in
the eager semantics.

Problems of Chapter 11

11.3 Let us take the relation

R def
= {(Bn

k ,B
1
i1 | · · · | B1

in) |
n

Â
j=1

i j = k}

We show that R is a strong bisimulation.

• If k = 0 we have that (Bn
0,B

1
i1 | · · · | B1

in) 2 R iff 8 j 2 [1,n]. i j = 0. Then there

is a unique transitions leaving Bn
0, namely Bn

0
in�! Bn

1, while we have n different
transitions leaving B1

0 | · · · | B1
0, one for each buffer. The states reached are all

those processes B1
i1 | · · · | B1

in such that Ân
j=1 i j = 1. In fact, we have that Bn

1 is
related via R to any such process.

• If k = n we have that (Bn
n,B1

i1 | · · · | B1
in) 2 R iff 8 j 2 [1,n]. i j = 1. Then there is

a unique transitions leaving Bn
n, namely Bn

n
out�! Bn

n�1, while we have n different
transitions leaving B1

1 | · · · | B1
1, one for each buffer. The states reached are all

those processes B1
i1 | · · · | B1

in such that Ân
j=1 i j = n�1. In fact, we have that Bn

n�1
is related via R to any such process.

• If 0 < k < n we have that (Bn
k ,B

1
i1 | · · · | B1

in) 2 R iff Ân
j=1 i j = k. Then there are

two transitions leaving Bn
k , namely Bn

k
in�! Bn

k+1 and Bn
k

out�! Bn
k�1, while we have

n� k different in-transitions leaving B1
i1 | · · · | B1

in , one for each empty buffer and
k different out-transitions, one for each full buffer. In the first case, the states
reached are all those processes B1

i1 | · · · | B1
in such that Ân

j=1 i j = k+1, because one
empty buffer has become full, and we have that Bn

k+1 is related by R to any such
process. In the second case, the states reached are all those processes B1

i1 | · · · | B1
in

such that Ân
j=1 i j = k �1, because one of the full buffers has become empty, and

we have that Bn
k�1 is related by R to any such process.



DRAFT

Solutions 387

11.6

Conditionals: We encode the conditional statement by testing in input the value
stored in x and setting the continuation to p1 only when such value
is i (in all the other cases, the continuation is p2):

xr1.p2 + ... + xri�1.p2 +
xri.p1 +
xri+1.p2 + ... + xrn.p2

Iteration: Let f be the permutation that switches d and done. By using the
recursive process, we let

rec W. xr1.Done + ... + xri�1.Done+
xri.(p[f ] | d.W )\d +
xri+1.Done + ... + xrn.Done

that, in the case the value i can be read from x, activates the continu-
ation

(p[f ] | d.rec W. (...))\d

that executes p and (if and) when it terminates activates another
instance of the recursive process. In all the other cases it activates
the termination process Done.

Concurrency: Let fi be the permutation that switches di and done. We encode the
concurrent execution of c1 and c2 as

( p1[f1] | (p2[f2]) | d1.d2.Done )\d1\d2

Note that we can use the simpler process

d1.d2.Done

to wait for the termination of p1[f1] and p2[f2] instead of the more
complex process

d1.d2.Done+d2.d1.Done

because the termination message cannot be released anyway until
both p1 and p2 have terminated.

11.7 We show that strong bisimilarity is a congruence w.r.t. sum. Formally, we want
to prove that for any CCS processes p1, p2,q1,q2 we have that

p1 ' q1 ^ p2 ' q2 implies p1 + p2 ' q1 +q2

Let us assume the premise p1 ' q1 ^ p2 ' q2; we want to prove that p1 + p2 '
q1 +q2. Since p1 ' q1, there exists a strong bisimulation R1 such that p1 R1 q1. Since
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p2 ' q2, there exists a strong bisimulation R2 such that p2 R2 q2. We want to find a
relation R such that:

1. p1 + p2 R q1 +q2
2. R is a strong bisimulation (i.e., R ✓ F(R);

Let us define R as follows and then prove that it is a strong bisimulation:

R def
= {(p1 + p2,q1 +q2)}[R1 [R2

Obviously, we have p1 + p2 R q1 +q2, by definition of R. For the second point, we
need to take a pair in R and prove that it satisfies the definition of bisimulation. Let
us consider the various cases.

• for the pairs in R1 and R2 the proof is trivial, since R1 and R2 are bisimulation
themselves and they are included in R.

• Take (p1 + p2,q1 + q2) 2 R and take µ, p such that p1 + p2
µ�! p. We want to

prove that there exists q with q1 +q2
µ�! q and p R q. Since p1 + p2

µ�! p, by the
operational semantics of CCS it must be the case that either p1

µ�! p or p2
µ�! p.

– If p1
µ�! p, since p1 R1 q1, there exists q with q1

µ�! q and p R1 q. Then q1 +

q2
µ�! q and (p,q) 2 R1 ✓ R, so we are done.

– If p2
µ�! p, since p2 R2 q2, there exists q with q2

µ�! q and p R2 q. Then q1 +

q2
µ�! q and (p,q) 2 R2 ✓ R, so we are done.

The case where p1 + p2 has to (bi)simulate a transition q1 +q2
µ�! q is analogous

to the previous case.

11.15

1. Suppose R is a loose bisimulation. We want to show that it is a weak bisimulation.
Take any pair (p,q) 2 R and any transition p

µ�! p0. We want to prove that there
exists some q0 such that q

µ
=) q0 and (p0,q0) 2 R. By definition of

µ
=) we have

p
µ
=) p0. Since R is a loose bisimulation, there must exist some q0 such that q

µ
=) q0

with (p0,q0) 2 R and we conclude. The case when p has to (bi)simulate a transition
of q is analogous and thus omitted.

2. Suppose R is a weak bisimulation. We want to show that it is a loose bisimulation.
Take any pair (p,q) 2 R and any weak transition p

µ
=) p0. (The case when q

µ
=) q0

is analogous and thus omitted). We want to prove that there exists q0 such that
q

µ
=) q0 and (p0,q0) 2 R. We first prove by mathematical induction on n that if

p t�! p1
t�! p2

t�! · · · t�! pn

then there exists some q0 such that q t
=) q0 and (pn,q0) 2 R.

• The base case is when n = 0, i.e., pn = p. Then we just take q0 = q.
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• for the inductive case, suppose the property holds for n, we want to prove it for
n+1. Suppose

p t�! p1
t�! · · · t�! pn

t�! pn+1.

By inductive hypothesis, there exists q00 such that q t
=) q00 and (pn,q00) 2 R.

Since R is a weak bisimulation and pn
t�! pn+1, there exists some q0 such that

q00 t
=) q0 and (pn+1,q0) 2 R. Since q t

=) q00 t
=) q0 we have q t

=) q0 and we are
done.

Now we distinguish two cases:

• If µ = t , since p t
=) p0, there exist p1, ..., pn such that

p t�! p1
t�! p2

t�! · · · t�! pn = p0

and, by the argument above, there exists q0 such that q t
=) q0 and (p0,q0) 2 R.

• If µ 6= t , since p
µ
=) p0, there exist p00, p000 such that

p t
=) p00 µ�! p000 t

=) p0.

By the argument above, we can find q00 such that q t
=) q00 and (p00,q00) 2 R. Since

p00 µ�! p000 and R is a weak bisimulation, there exists q000 such that q00 µ
=) q000 and

(p000,q000) 2 R. By the argument above, we can find q0 such that q000 t
=) q0 and

(p0,q0) 2 R. Since q t
=) q00 µ

=) q000 t
=) q0 we have q

µ
=) q0 and we are done.

Problems of Chapter 12

12.1

1. Mutual exclusion: G ¬(use1 ^use2).
2. Release: G (usei ) F reli).
3. Priority: G ((req1 ^ req2) ) ((¬use2) U (use1 ^¬use2))).
4. Absence of starvation: G (reqi ) F usei)

12.3 The CTL⇤ formula f def
= AF G (p_O q) expresses the property that along all

paths we can enter a state v such that, from that moment on, any state that does not
satisfy p is followed by a state that satisfies q. A simple branching structure where f
is satisfied is:
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•p // •p // •p // · · ·

•

??

//

��

• // • // •q // •q // · · ·

• // •p,q // • // •p,q // • // •p,q // · · ·

The formula f is an LTL formula (as LTL formulas are tacitly quantified by the path
operator A), but it is not a CTL formula (because the linear operators G and O are
not preceded by path operators).

12.6 We let f def
= nx. (p_3x)^ (q_2x). We have

Jnx. (p_3x)^ (q_2x)Kr def
= FIX lS. J(p_3x)^ (q_2x)Kr[S/x]

= FIX lS. Jp_3xKr[S/x]\ Jq_2xKr[S/x]

= FIX lS. (JpKr[S/x][ J3xKr[S/x])\
(JqKr[S/x][ J2xKr[S/x])

= FIX lS. (r(p)[{v | 9v0 2 S.v ! v0})\
(r(q)[{v | 8v0. v ! v0 ) v0 2 S})

Let V = {s1,s2,s3,s4,s5,s6}. We have r(p) = {s6} and r(q) = {s3} We compute
the fixpoint by successive approximations:

S0 = V
S1 = ({s6}[{v | 9v0 2 V.v ! v0})\ ({s3}[{v | 8v0. v ! v0 ) v0 2 V})

= ({s6}[{s1,s2,s4,s5})\ ({s3}[V )

= {s1,s2,s4,s5,s6}
S2 = ({s6}[{v | 9v0 2 S1.v ! v0})\ ({s3}[{v | 8v0. v ! v0 ) v0 2 S1})

= ({s6}[{s1,s2,s4,s5})\ ({s3}[{s1,s3,s4,s5,s6})

= {s1,s4,s5,s6}
S3 = ({s6}[{v | 9v0 2 S2.v ! v0})\ ({s3}[{v | 8v0. v ! v0 ) v0 2 S2})

= ({s6}[{s1,s2,s4,s5})\ ({s3}[{s3,s4,s5,s6})

= {s4,s5,s6}
S4 = ({s6}[{v | 9v0 2 S3.v ! v0})\ ({s3}[{v | 8v0. v ! v0 ) v0 2 S3})

= ({s6}[{s1,s2,s4,s5})\ ({s3}[{s3,s4,s5,s6})

= {s4,s5,s6} = S3

We have reached the (greatest) fixpoint and therefore JfKr = {s4,s5,s6}.

12.8 We let f def
= nx. (p^2x). We have
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Jnx. (p^2x)Kr def
= FIX lS. Jp^2xKr[S/x]

= FIX lS. JpKr[S/x]\ J2xKr[S/x]

= FIX lS. r(p)\{v | 8v0. v ! v0 ) v0 2 S}

Let V = {s1,s2,s3,s4}. We have r(p) = {s1,s3,s4} We compute the fixpoint by
successive approximations:

S0 = V
S1 = {s1,s3,s4}\{v | 8v0. v ! v0 ) v0 2 V}

= {s1,s3,s4}\{s1,s2,s3,s4}
= {s1,s3,s4}

S2 = {s1,s3,s4}\{v | 8v0. v ! v0 ) v0 2 S1}
= {s1,s3,s4}\{s2,s3,s4}
= {s3,s4}

S3 = {s1,s3,s4}\{v | 8v0. v ! v0 ) v0 2 S2}
= {s1,s3,s4}\{s2,s4}
= {s4}

S4 = {s1,s3,s4}\{v | 8v0. v ! v0 ) v0 2 S3}
= {s1,s3,s4}\{s4}
= {s4} = S3

We have reached the (greatest) fixpoint and therefore JfKr = {s4}.

Problems of Chapter 13

13.1 Let us consider processes such that whenever they contain an output prefixed
sub-term xy.p then p = nil. We abbreviate xy.nil as xy. Let us try to encode ordinary
(synchronous) p-calculus in asynchronous p-calculus. It is instructive to proceed by
successive attempts.

1. Let us define a first simple mapping A from synchronous processes to asyn-
chronous ones. The mapping is the identity except for output prefixed processes,
that have no correspondence in asynchronous p-calculus. Thus we let A be (the
homomorphic extension of) the function such that:

A (xy.p)
def
= xy | A (p)

Unfortunately, this solution is not satisfactory, because (the translated version of)
p can be executed before the message xy gets received.
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2. As a second attempt, we can try to prefix (the translated version of) p by the input
of an acknowledgment over some fixed channel a. Of course, we must then revise
also the translation of input prefixes, so to send the acknowledgment. We let:

A (xy.p)
def
= xy | a(xk).A (p) with xk 62 fn(p)

A (x(z).q)
def
= x(z).(aa | A (q))

Also this solution has some pitfall, because if a unique channel a is used to send
all the acknowledgments, then communications can interfere one with each other.

3. As a third attempt, we enforce the sharing of a private channel a for sending the
acknowledgment. The sender creates the channel and transmit it to the receiver,
the receiver gets the private channel and uses it to receive the message, then uses
it to send the acknowledgment. Consequently, we let

A (xy.p)
def
= (a)(xa | ay | a(xk).A (p)) with a,xk 62 fn(xy.p)

A (x(z).q)
def
= x(xa).a(z)(xaxa | A (q)) with xa 62 fn(x(z).q)

But then it is immediate to spot that, in the encoding of the sender, the message
ay can be directly taken in input from the input prefix a(xk) that is running in
parallel, waiting for the acknowledgment.

4. As a fourth attempt, we introduce two different private channels: one for receiving
the acknowledgment and one for sending the data:

A (xy.p)
def
= (a)(xa | a(xk).(xky | A (p))) with a,xk 62 fn(xy.p)

A (x(z).q)
def
= x(xa).(k)(xak | k(z).A (q)) with xa,k 62 fn(x(z).q)

This solution works fine: A (p) can be executed only after a receiver has started
the interaction protocol and has sent a message on a; vice versa, A (q) can be
executed only after the actual message has been received. However the above
solution requires three asynchronous communications to implement a single
synchronous communication.

5. As a fifth attempt, we try to improve the efficiency of the fourth solution by
switching the role of the sender and the receiver in starting the protocol: it is the
receiver that sends the first message on x, expressing its intention to receive some
data. The sender waits for some receiver to start the interaction and then sends the
data.

A (xy.p)
def
= x(xa).(xay | A (p)) with xa 62 fn(xy.p)

A (x(z).q)
def
= (a)(xa | a(z).A (q)) with a 62 fn(x(z).q)

Nicely, this solution only requires two asynchronous communications to imple-
ment a single synchronous communication.

13.2 The polyadic p-calculus allows prefixes of the form
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p ::= t | x(z1, ...,zn) | xhy1, ...,yni

Monadic processes are just the particular instance of polyadic ones (when n = 1 for
all prefixes).

Suppose we have defined a type system that guarantees that any two input and
output prefixes that may occur on the same channel carry the same number of
arguments. We restrict to encode only such well-typed process. Let us try to encode
polyadic p-calculus in ordinary (monadic) p-calculus. As for Problem 13.1, it is
instructive to proceed by successive attempts.

1. Let us define a first simple mapping M from polyadic processes to monadic ones.
The mapping is the identity except for input and output prefixed processes. Thus
we let M be (the homomorphic extension of) the function such that:

M (xhy1, ...,yni.p)
def
= xy1. · · · .xyn.M (p))

M (x(z1, ...,zn).q)
def
= x(z1). · · · .x(zn).M (q))

Unfortunately, this solution is not satisfactory, because if there are many senders
and receivers on the same channel x that run in parallel, then their sequence of
interactions can be mixed.

2. As a second attempt, we consider the possibility to exchange a private name in
the first communication and then to use this private name to send the sequence of
arguments. We modify the definition of M accordingly:

M (xhy1, ...,yni.p)
def
= (c)xc.cy1. · · · .cyn.M (p)

M (x(z1, ...,zn).q)
def
= x(xc).xc(z1). · · · .xc(zn).M (q)

with c 62 fn(xhy1, ...,yni.p) and xc 62 fn(q)[{z1, ...,zn}.

13.3 Let us consider the following syntax for HOp , the Higher Order p-calculus:

P ::= nil | p.P | P|Q | (y)P | Y
p ::= t | x(y) | xy | x(Y ) | xhPi

where x,y are names and X ,Y are process variables. The process output prefix xhPi
can be use to send a process P on the channel x, while the process input prefix x(Y )
can be used to receive the process P and to assign it to the process variable Y . Without
delving into the detail of operational and abstract semantics for HOp , higher order
communication can be realised by transitions such as:

xhPi.Q | x(Y ).R t�! Q | R[P/Y ]

For example, replication !P can be coded in HOp by the process:

(r)( Dup | rhP | Dupi.nil )
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where Dup def
= r(X).(X | rhXi.nil). Roughly, process Dup waits to receive a process

on r, stores it in X , spawns a copy of X and re-sends X on r. When Dup runs in
parallel with rhP | Dupi.nil, then the process P | Dup is released together with a
further activation rhP | Dupi.nil, so that many more copies of P can be created in the
same way. The name r is restricted so to avoid interferences from the environment.

To encode HOp in (ordinary, monadic) p-calculus, the idea is to encode a process
output prefix xhPi by installing a server that spawns new copies of P upon requests
on a (private) channel p which is communicated in place of P. Then, the name
passing mechanism of p-calculus allows to encode process input prefixes like x(Y ) as
ordinary input prefixes x(xY ) that will receive the name p and bind it to the variable
xY , which, in turn, can be used to invoke the server associated with P by replacing
all occurrences of Y with the simple process xY xY .nil (like a service invocation).
Formally, we define a mapping H from HOp processes to p-calculus ones as the
homomorphic extension of the function such that:

H (xhPi.Q)
def
= (p)( H (Q) | !p(xp).H (P) ) with p,xp 62 fn(P)

H (x(Y ).R)
def
= x(xY ).H (R) with xY 62 fn(R)

H (Y )
def
= xY xY .nil

where we assume a reserved set of names xY is available, one for each process
variable Y .

13.4 By using the axioms for structural congruence, we have (with x 62 fn(p)):

(x)p ⌘ (x)(p | nil) ⌘ p | (x)nil ⌘ p | nil ⌘ p

13.5 Take p def
= nil and q def

= nil | (x)xy.nil. We have fn(p) = ? and fn(q) = {y}, but
both p and q have no outgoing transitions and therefore are strong early full bisimilar.

Problems of Chapter 14

14.2

1. The PTS and its transition matrix P are
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2. It is immediate to check that the DTMC is ergodic, as it it strongly connected
and has self-loops. We compute the steady state distribution. The corresponding
system of linear equations is

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

1
2 p1 + 1

5 p3 = p1

1
2 p2 + 1

5 p3 = p2

1
2 p1 + 1

2 p2 + 1
5 p3 + 1

3 p4 + 1
3 p5 = p3

1
5 p3 + 1

3 p4 + 1
3 p6 = p4

1
5 p3 + 1

3 p5 + 1
3 p6 = p5

1
3 p4 + 1

3 p5 + 1
3 p6 = p6

p1 +p2 +p3 +p4 +p5 +p6 = 1

from which we derive 8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

p1 = 2
5 p3

p2 = 2
5 p3

2
5 p3 = 1

3 (p4 +p5)

p6 = 3
5 p3

p4 = 3
5 p3

p5 = 3
5 p3

18
5 p3 = 1.

Therefore: p3 = 5
18 , p1 = p2 = 2

18 and p3 = p4 = p5 = 3
18 , i.e., p =

�� 2
18

2
18

5
18

3
18

3
18

3
18

��.
3. We have:
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p(0) =
��1 0 0 0 0 0

��

p(1) = p(0)P =
�� 1

2 0 1
2 0 0 0

��

p(2) = p(1)P =
�� 1

4 + 1
10

1
10

1
4 + 1

10
1
10

1
10 0

��=
�� 7

20
1
10

7
20

1
10

1
10 0

��

p(3) = p(2)P =
��... 1

30 + 1
30

��=
��... 1

15

�� .

Thus, the probability to find the mouse in room 6 after three steps is 1
15 .

14.6

1. The PTS and its transition matrix P (with states ordered as R,W,O) are

R

9
10

↵↵

1
10

��
W

1
10

KK

9
10

((
O

17
20

SS
1
10

hh

1
20

__

P =

��������

9
10

1
10 0

0 1
10

9
10

1
20

1
10

17
20

��������

It is immediate to check that the DTMC is ergodic, as it it strongly connected and
has self-loops.

2. Since the machine is waiting at time t, we can assume p(t) =
��0 1 0

��. Then,
p(t+1) = p(t)P =

��0 1
10

9
10

�� and the probability to be operating is 0.9.
3. We compute the steady state distribution. The corresponding system of linear

equations is 8
>>>><

>>>>:

9
10 p1 + 1

20 p3 = p1

1
10 p1 + 1

10 p2 + 1
10 p3 = p2

9
10 p2 + 17

20 p3 = p3

p1 +p2 +p3 = 1

from which we derive p1 = 3
10 , p2 = 1

10 and p3 = 3
5 and the probability to be

operating on the long run is 0.6.

14.8

1. The embedded DTMC is defined by the matrix

P =

����
0 1
1 0

���� .

2. Let p(0) =
��p q

�� for some p,q 2 [0.1] with q = 1 � p. We have p(1) = p(0)P =��q p
�� and p(2) = p(1)P =

��p q
��= p(0). Therefore:
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p(t) =
��p((t+1) mod 2)q(t mod 2) p(t mod 2)q((t+1) mod 2)

�� .

Note that the embedded DTMC exhibits a periodic behaviour that does not depend
in any way from the rates l and µ .

14.10

1. The sojourn time probability is defined as the probability of not leaving the state.
We have:

P(Xt = s0 | X0 = s0) = e�l t

with l = l1 +l1 = 2l1.
2. Since the sum of all the rates for the transitions leaving s0 is 2l1 and s1 and s3

have one single outgoing transition each with rate l2 > 2l1, then s0 cannot be
equivalent to s1 and s3. For the same reason, s2 is not equivalent to s1 and s3. Then,
let us consider the equivalence relation R def

= { {s0,s2} , {s1,s3} }. Next, we show
that R is a bisimulation relation. Let I1 = {s0,s2} and I2 = {s1,s3}. We have:

gC(s0, I1) = l1 gC(s0, I2) = l1
gC(s2, I1) = l1 gC(s2, I2) = l1

gC(s1, I1) = l2 gC(s1, I2) = 0
gC(s3, I1) = l2 gC(s3, I2) = 0.

Problems of Chapter 15

15.1 It can be seen that reactive, generative and simple Segala models can all be
expressed in terms of Segala models.

• Take a reactive model ar : S ! L ! (D(S)[1). We can define its corresponding
Segala model as : S !√(D(L⇥S)) as follows, for any s 2 S,` 2 L:

– if ar(s)(`) = ⇤, then as must be such that 8d 2 as(s) and 8s0 2 S it holds
d(`,s0) = 0;

– if ar(s)(`) = d (with d 2 D(S)), then there is d` 2 as(s) such that 8`0 2 L,
`0 6= ` and 8s0 2 S it holds d`(`0,s0) = 0 and d`(`,s0) = d(s0).

• Take a generative model ag : S ! (D(L⇥S)[1). We can define its corresponding
Segala model as : S !√(D(L⇥S)) as follows, for any s 2 S:

– if ag(s) = ⇤, then we simply set as(s) = ?;
– if ag(s) = d (with d 2 D(L⇥S)), then we let as(s) = {d}.

• Take a simple Segala model asim : S ! √(L ⇥D(S)). We can define its corre-
sponding Segala model as : S !√(D(L⇥S)) as follows, for any s 2 S:

– if (`,d) 2 asim(s) (with d 2 D(S)), then there is d(`,d) 2 as(s) such that 8`0 2 L,
`0 6= ` and 8s0 2 S it holds d(`,d)(`

0,s0) = 0 and d(`,d)(`,s0) = d(s0).
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Note that representing generative models in simple Segala ones is not always
possible. This is due to the fact that, in general, when ag(s) = d 2 D(L ⇥ S) then
d can assigns probabilities to pairs formed by a label ` and a target state s0, so that,
when we focus on a single label ` we can have Âs02S d(`,s0) < 1, while in a simple
Segala model, if (`,d) 2 asim(s) then Âs02S d(s0) = 1.

15.2 We have that s0 and s2 are bisimilar, while s0 and s1 are not (and therefore also
s2 is not bisimilar to s1).

The Larsen-Skou formula h2§i 1
3
(hcoffeeitrue^hbeeritrue) is satisfied by s1 and

not by s0.
The equivalence relation R def

= { {s0,s2} , {s0
0,s

0
2} , {s00

0 ,s
00
2 ,s

000
2 } } is a bisimulation

relation that relates s0 and s2. In fact, letting I1 = {s0,s2}, I2 = {s0
0,s

0
2} and I3 =

{s00
0 ,s

00
2 ,s

000
2 } we have the equalities:

g(s0)(2§)(I2) = 2
3 g(s2)(2§)(I2) = 2

3

g(s0)(2§)(I3) = 1
3 g(s2)(2§)(I3) = 1

3

g(s0)(3.5§)(I2) = 1
3 g(s2)(3.5§)(I2) = 1

3

g(s0)(3.5§)(I3) = 2
3 g(s2)(3.5§)(I3) = 1

3 + 1
3 = 2

3

g(s0
0)(coffee)(I1) = 1 g(s0

2)(coffee)(I1) = 1

g(s00
0)(beer)(I1) = 1 g(s00

2)(beer)(I1) = 1 = g(s000
2 )(beer)(I1)

where all the omitted cases are assigned null probabilities.

Problems of Chapter 16

16.1 Let aPEPA : S ! L ! S ! R be a transition function that assigns the rate
aPEPA(s)(`)(s0) to any transition s `�! s0 (it assigns rate 0 when there is no transition
from s to s0 with label `). We extend the transition function to deal with sets of target
states, by defining the function gPEPA : S ! L !√(S) ! R as:

gPEPA(s)(`)(I) = Â
s02I

aPEPA(s)(`)(s0).

Then, we define the function FPEPA :√(S ⇥S) !√(S ⇥S) by:

8s1,s2 2 S. s1 FPEPA(R) s2
def
= 8` 2 L. 8I 2 S/⌘R . gPEPA(s1)(`)(I) = gPEPA(s2)(`)(I).

Finally, a PEPA bisimulation is a relation R such that R ✓ FPEPA(R) and the PEPA
bisimilarity 'PEPA is the largest PEPA bisimulation, i.e.:



DRAFT

Solutions 399

simeqPEPA
def
=

[

R✓FPEPA(R)

R.

16.2

1. We let:
P def

= (get,rg).P0 R def
= (get,rg0).R0

P0 def
= (task,rt).P R0 def

= (update,ru).R
S def

= (P ⇤�
?

P)⇤�
{get}

R.

2. Since rg0 > 2rg, when computing the apparent rate of action get in S we have:

rget(S) = min{rget(P ⇤�
?

P),rget(R)}
= min{rget(P)+ rget(P),rg0}
= min{2rg,rg0} = 2rg.

3. The LTS of the system S has eight possible states:

(P ⇤�
?

P)⇤�
{get}

R0

(update,ru)

✏✏
(P0 ⇤�

?
P)⇤�

{get}
R0

(task,rt) 11

(update,ru)

✏✏

S
(get,rg)oo (get,rg) // (P ⇤�

?
P0)⇤�

{get}
R0

(task,rt)mm

(update,ru)

✏✏
(P0 ⇤�

?
P)⇤�

{get}
R

(task,rt)

66

(get,rg) ,,

(P0 ⇤�
?

P0)⇤�
{get}

R
(task,rt)oo (task,rt) // (P ⇤�

?
P0)⇤�

{get}
R

(task,rt)

hh

(get,rg)rr
(P0 ⇤�

?
P0)⇤�

{get}
R0

(update,ru)

OO

(task,rt)

HH

(task,rt)

VV
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