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Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.
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Part 111
HOFL: a higher-order functional language



This part focuses on models for sequential computations that are associated to HOFL,
a higher-order declarative language that follows the functional style. Chapter 7
presents the syntax, typing and operational semantics of HOFL, while Chapter 9
defines its denotational semantics. The two are related in Chapter 10. Chapter 8
extends the theory presented in Chapter 5 to allow the construction of more complex
domains, as needed by the type-constructors available in HOFL.



Chapter 8
Domain Theory

Order, unity and continuity are human inventions just as truly as
catalogues and encyclopedias. (Bertrand Russell)

Abstract As done for IMP we would like to introduce the denotational semantics
of HOFL, for which we need to develop a proper domain theory that is more so-
phisticated than the one presented in Chapter 5. In order to define the denotational
semantics of IMP we have shown that the semantic domain of commands, for which
we need to apply fixpoint theorem, has the required properties. The situation is more
complicated for HOFL, because HOFL provides constructors for infinitely many
term types, so there are infinitely many domains to be considered. We will handle
this problem by showing, using structural induction, that the type constructors of
HOFL correspond to domains which are equipped with adequate CPO | structures
and that we can define useful continuous functions between them.

8.1 The Flat Domain of Integer Numbers Z |

The first domain we introduce is very simple: it consists of all the integers numbers
together with a distinguished bottom element. It relies on a flat order in the sense of
Example 5.5.

Definition 8.1 (Z ). We define the CPO with bottom Z | = (ZU{L},C) as follows:

e 7 is the set of integer numbers;
e | is a distinguished bottom element that we add to the purpose;
o VxeZU{L}. LCxandxCx

It is immediate to check that Z | is a CPO with bottom, where _L is the bottom
element and each chain has a lub because chains are all finite: they either contain 1
or 2 different elements.

Remark 8.1. Since in this chapter we present several different domains, each coming
with its proper order relation and bottom element, we find it useful to annotate them
with the name of the domain as a subscript to avoid ambiguities. For example, we
can write 17 to make explicit that we are referring to the bottom element of the

177



178 8 Domain Theory

domain Z . Also note that the subscript L we attach to the name of the domain Z is
just a tag and it should not be confused with the name of the bottom element itself: it
is the standard way to indicate that the domain Z is enriched with a bottom element
(e.g., we could have used a different notation like Z to the same purpose).

8.2 Cartesian Product of Two Domains

Given two CPO | s we can combine them to obtain another CPO | whose elements
are pairs formed with one element from each CPO | .

Definition 8.2. Let:
2 = (D,Cp) & =(E,Cg)

be two CPO, s. Now we define their Cartesian product domain
DxXE = (DXE’EDXE)

1. whose elements are the pairs of elements from D and E; and
2. whose order Cpyf is defined as follows:!

Vdy,d) € D, Veg,e; € E. (do,ep) Epxke (di,e1) < doEpd Neg T ey
Proposition 8.1. (D x E,Cpyg) is a partial order with bottom.

Proof. We need to show that the relation Cpyp is reflexive, antisymmetric and
transitive:

reflexivity: since Cp and Cg are reflexive we have Ve € E. e Cg e and Vd €
D. d Cp d so by definition of Cpy g we have

VdeDVe€cE. (d,e) CpoxE (d,e).

antisymmetry: . let us assume (do,e0) Cpxg (d1,e1) and (d1,e1) Epxg (do,ep) so
by definition of Cp . g we have dy Cp d; (using the first relation)
and d; Cp dy (by using the second relation) so it must be dy = d
and similarly ey = e, hence (dy,ep) = (d1,e1).

transitivity: let us assume (do,e0) Epxg (d1,e1) and (d1,e1) Cpxg (d2,e2). By
definition of Cpyr we have dy Cp dy, di Cp d», eg Cg e1 and
e1 Cg e>. By transitivity of Cp and Cp we have dy Cp d» and
eo Cg ey. By definition of Cpy g we get (do,e0) Epxe (da,e2).

Finally, we show that the there is a bottom element. Let Lp.g = (Lp, Lg). In fact
VdeD,ecE. LpEdA_LgCe,thus (J_D,LE) CpxE (d,e). O

It remains to show the completeness of 7 x &.

! Note that the order is different from the lexicographic one considered in Example 4.9.
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Theorem 8.1 (Completeness of Z x &). The PO & x & defined above is complete.

Proof. We prove that for each chain (d;, ),y it holds:

I_l dl)el = <|_|dla|_|ez>
ieN ieN  ieN

Obviously (|liendi,Lliene:) is an upper bound, indeed for each j € N we have
dj Cp | Jiendi and e; Cf | |iey e so by definition of Cpyf it holds (dj,e;) Cpxe
(Uiendi, Uien i)-

Moreover (| liendi,licnei) is also the least upper bound. Indeed, let (d,e) be an
upper bound of {(d;,e;) }ien. since | |;cn d; is the lub of {d; } ey we have | l;endi Cp d,
furthermore we have that | |,cye; is the lub of {e;};en then | fieyei Tk e. So by
definition of Cpy g we have (| |iendi, | ien e,') CpoxE (d,e). Thus (l_lieN di,| lien e,~)
is the least upper bound. a

We can now define suitable projection operators over & x &.

Definition 8.3 (Projection operators 7, and 7, ). Let (d,e) € D X E be a pair, we
define the left and right projection functions 7; : DX E — D and m, : DX E — E as
follows. X
m((de)®ad and  m(de) e

Recall that in order to use a function in domain theory we have to show that it
is continuous; this ensures that the function respects the domain structure (i.e., the
function preserves the order and limits) and so we can calculate its fixpoints to solve
recursive equations. So we have to prove that each function which we use on & x &
is continuous. The proof that projections are monotone is immediate and left as an
exercise (see Problem 8.1).

Theorem 8.2 (Continuity of 7; and m,). Let'm; and m, be the projection functions
in Definition 8.3 and let {(d;, ;) }ien be a chain of elements in 9 x &, then:

<|_| d,,e,> | m (die)) (|_| d;,e; ) || 7 ((diei)

ieN ieN ieN ieN

Proof. Let us prove the first statement:

Vi) <|_| (di,ei)> =m <<|_| d;, |_| ei>> (by definition of limit in D x E)

ieEN ieN  ieN
= d; (by definition of projection)
ieN
= |_| m ((diyei)) (by definition of projection).
icN

For the second statement the proof is completely analogous. a
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8.3 Functional Domains

Let (D,Cp) and (E,Cg) be two CPOs. In the following we denote by D — E def

{f| f:D — E} the set of all functions from D to E (where the order relations are not
important), while we denote by [D — E] C D — E the set of all continuous functions
from D to E (i.e., [D — E] contains just the functions that preserve order and limits).
As for Cartesian product, we can define a suitable order on the set [D — E] to get a
CPO, . Note that as usual we require the continuity of the functions to preserve the
applicability of fixpoint theory.

Definition 8.4. Let us consider the CPO | s:
% = (D,Cp) & = (E,Cg)

We define an order on the set of continuous functions from D to E as follows:
(2 — &)= ([D— E],Epsp)

where:

1.[D—=E]={f|f:D— E,f is continuous}
2. fEpsEg g VdeD.f(d) Tk g(d)

We leave as an exercise the proof that [2 — &] is a PO with bottom, namely
that the relation Cyp ) is reflexive, antisymmetric, transitive and that the function
Lip~E) : D — E defined by letting, for any d € D:

def
Lipog(d) = 1r

is continuous and that it is also the bottom element of [Z — & (see Problem 8.2).
We show that the PO [Z — &] is complete. In order to simplify the proof we
introduce first the following lemmas.

Lemma 8.1 (Switch Lemma). Let (E,Cg) be a CPO whose elements are of the
form e, ,, withn,m € N. If Eg is such that:

enm CE €y if n<n' and m <m'
then, it holds:

Ll enm= || <|_| emm) =] <|_| emm) = | | exx

n,meN neN \meN meN \neN keN

Proof. The relation between the elements of E can be summarized as follows:
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(i Ll (i Ul

eno & én.1 C én2 E--CemC -
LI LI LI Ll

LI LI LI Ll

e2oC e Eepl--CepyE -
LI LI LI L

etoC e Cep---CeppE -
LI LI LI [

enoEep1 Eep - EegmE -

We show that all the following sets have the same upper bounds:

{en,m}n,mGN { U en,m} { |_| en,m} {ek,k}keN
meN neN neN meN

Let us consider the first two sets. For any n € N, let e, = | |jcy s, This amounts
to consider each row of the above diagram and compute the least upper bound for
the elements in the same row. Clearly, e,, C e,, when n; < n, because for any
J € N an upper bound of e,, ; is also-an upper bound of e, ;.

Ll ( ( Ll il

€n,0 C €n,1 C €n2 c.-C €nm C.---Ce = leeN €n,m
[ ] ] Ll LI
Ll ] L L [
eoCeiLeppl ---Cenl- - Ce=|]enem
[ ] [ ] LI
eloCe1CesC--Cerpl - Cep =peneim
Ll [ ]l Ll LI

eoCe1Cenrl - Cepnl - Cep=|]ueneom

Let e be an upper bound of {e; };cn, we want to show that e is an upper bound for
{€nm }nmen. Take any n,m € N. Then

€n.m C |_| €n,j = €n Ce
jeEN

since ey, is an element of the chain {e, ;} jen whose limit is e, = | | ;cryen,j. Thus
e is an upper bound for {e, ;n }» men.
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Vice versa, let e be an upper bound of {e; j},», jen and consider e, = | |,,ery €n,m
for some n. Since {e,n}men C {eij}i jen, obviously e is an upper bound for
{enm}men and therefore e, C e, because e, is the lub of {e, » }men.

e The correspondence between the sets of upper bounds of {emu}nmen and
{Uren €nm }men can be proved analogously.

e Finally, let us consider the sets {€, » }n men and {ex i }xeny and show that they have
the same set of upper bounds.
Taken any n,m € N the element, let k = max{n,m}. We have

enm & €n.k C €.k

thus any upper bound of {ej i }xen is also an upper bound of {e;u }nmen.
Vice versa, it is immediate to check that {ej  }ren is a subset Of {€pm } men SO
any upper bound of {e,, n }» men is also an upper bound of {eg i } ren.

We conclude by noting that the set of upper bounds {en,m}mmeN has a least
element. In fact, {| |,,cr €nm fnen is a chain, and it has a'lub because E is a CPO. O

Lemma 8.2. Let {f,}nen be a chain of functions® in 9 — &. Then the lub | |,cy fn
exists and it is defined as:

<|_| fn) (d) = |_| (fn(d))

neN neN

Proof. The function

hE 2d. | (fuld))

neN

is clearly an upper bound for {f, },cn since for every k € N and d € D we have

fi(d) Tk Len fa(d).

The function 4 is also the lub of {f, },en. In fact, given any other upper bound g,
i.e., such that f,, Cp_,g g for any n € N; we have that for any d € D the element g(d)
is an upper bound of the chain {f,(d) },en and therefore | |,cn(f4(d)) Cg g(d). O

Lemma 8.3. Let {f, },cn be a chain of continuous functions in (2 — &| and let
{dn}nen be a chain of 9. Then, the function

hE2d. | (fuld))

neN

is continuous, namely
h ( | ] dm> = || i(dm)
meN meN

Furthermore, h is the lub of { fu }nen not only in 9 — & as stated by Lemma 8.2, but
also in [2 — &).

2 Note that the f, are not necessarily continuous, because we select 2 — & and not [2 — &).
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Proof.

h ( L] dm> =] < I ( | ] dm>> (by definition of h)
meN neN meN

= < (fn (dm))> (by continuity of f;,)
eN \meN

= |_| |_| (fa (dm))> by Lemma 8.1 (switch lemma)

[
:‘
=
&

(by definition of &)

The upper bounds of { f,; }sen in the PO & — & are a larger set then those in [Z — &7,
thus if 4 is the lub in 2 — &, it is also the lub in [Z — &]. O

Theorem 8.3 ((Z — &]isa CPO ). The PO |2 — &) is a CPO

Proof. The statement follows immediately from the previous lemmas. a

8.4 Lifting

In IMP we introduced a lifting operator (see Definition 6.9) on functions f: X — X to
derive a function f*: X, — X, defined over the lifted domain X | , and thus able to
handle the argument Ly, . In the semantics of HOFL we need the same operator in a
more general fashion: we need to apply the lifting operator to any domain, not just X.

Definition 8.5 (Lifted domain). Let 2 = (D,Cp) be a CPO and let L be an element
not in D. We define the lifted domain 2| = (D, ,Cp, ) as follows:

o D, E{13wD={(0,1)}U{I}xD
° _LDLdéf(O,J_)
e VxeD,.1p Ep, x

e Vdi,deD.d\ Cpdy, = (1,dy) Ep, (1,dp)

We leave it as an exercise to show that &, is a CPO | (see Problem 8.3).
We define a lifting function |- | : D — D by letting, for any d € D:

ld] € (1,d)

As it was the case for X in the IMP semantics, when we add a bottom element
to a domain & we would like to extend the continuous functions in [D — E] to

continuous functions in [D; — E|. The function defining the extension should itself
be continuous.
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Definition 8.6 (Lifting). Let Z be a CPO and let & be a CPO | . We define the lifting
operator (+)* : [D — E] — [D; — E] as follows:

VfeD—E]. f*(x) déf{fl(j) iiifdl?

We need to prove that the definition is well-given and that the lifting operator is
continuous.

Theorem 8.4. Let 9,8 be two CPOs.

1. If f : D — E is continuous, then f* is continuous.
2. The operator (-)* is continuous.

Proof. We prove the two statements separately.

1. We need to prove that if f € [D — E], then f* € [D, — E]. Let {x, },en be a
chain in &, . We have to prove f*(|,enXn) = Lnen S (xn)-
If Vn € N. x, = Lp, then this is obvious.
Otherwise, for some k € N there must exist a set of elements {d,, . },en in D
such that for all m > k we have x,, = |dy] and also | ,cnxn = UnenXnik =
|Llnen @nrk ] (by prefix independence of the limit, Lemma 5.1). Then:

fr <|_| x,,) = f* ( { |_| deJ ) by the above argument

neN neN
=f ( L dn+k> by definition of lifting
neN

= | f(duss) by continuity of f
neN

= [ £ (ldnsi)) by definition of lifting
neN

= |_| I (Xn4) by definition of x,,,
neN

= L] f ) by Lemma 5.1
neN

2. We leave the proof that (-)* is monotone as an exercise (see Problem 8.4).
Let {fi }icn be a chain of functions in [Z — &]. We will prove that for all x € D :

(I_I ﬁ> (x) = (I_I f) (x)
ieN ieN

if x = Lp, both sides of the equation simplify to L. So let us assume x = |d|
for some d € D we have:
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<|_| ﬁ) (1d]) = <|_| ﬁ) (d) by definition of lifting

ieN ieN
= | |(fid)) by def. of lub in a functional domain
ieN
= | |(f(ld))) by definition of lifting
ieN

= (|_| f,-*) (ld]) by def. of lub in a functional domain
ieN

O

8.5 Function’s Continuity Theorems

In this section we show some theorems which allow to prove the continuity of some
functions. We start proving that the composition of two continuous functions is
continuous.

Theorem 8.5 (Continuity of compeosition). Ler f € [D — E| and g € [E — F). Their
composition

fig=gof ¥ ad. g(f(d):D—F

is a continuous function, i.e., go f € [D — F)|.
Proof. The statement is just a rephrasing of Theorem 5.5. ad

Now we consider a function whose outcome is a pair of values. So the function
has a single CPO as domain but it returns a result over a product of CPOs.

f:D—E XE;

For this type of functions we introduce a theorem which allows to prove the continuity
of f in a convenient way. We will consider f as the pairing of two simpler functions
g1:D — Ey and g2 : D — E», such that f(d) = (g1(d),g2(d)) for any d € D. Then
we can prove the continuity of f from the continuity of g; and g, (and vice versa).

Theorem 8.6. Let f: D — E| X E; be a function over CPOs and let
g fim:D-E 0 fim:D—E

where f;m; = Ax. m;(f(x)) is the composition of f and w; for i = 1,2. Then: f is
continuous if and only if g1 and g, are continuous.

Proof. Notice that we have
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vd e D. f(d) = (1(d),82(d))
We prove the two implications separately.

=) Since f is continuous, by Theorem 8.5 (continuity of composition) and The-
orem 8.2 (continuity of projections), also g; and g» are continuous, because
they are obtained as the composition of continuous functions.

<) We assume the continuity of g; and g, and we want to prove that f is continu-
ous. Let {d;};cn be a chain in D. We want to prove:

/ (udl-) _ s

ieN ieN
So we have:
f <|_| di) = <gl <|_| di) 82 <|_| di)) (by definition of g1, 2)
ieN ieN ieN
= <|_| g1(di), |_| gz(di)> (by continuity of g1 and g»)
ieN ieN
= | |(g1(di), 82(d))) (by definition of lub of pairs)
ieN
= |_| f(d) (by definition of g1,g2)
ieN
O

Now let us consider the case of a function f: D| x D, — E over CPOs which takes
a pair of arguments in D and D; and then returns an element of E. The following
theorem allows us to study the continuity of f by analysing each parameter separately.

Theorem 8.7. Let f : D1 X Dy — E be a function over CPOs. Then f is continuous
if and only if all the functions in the following two classes are continuous:

1.¥d' € Dy. fy : Dy — E is defined as fy def Ay.f(d,y);
2.¥d" € Dy. fyr : Dy — E is defined as f def Ax.f(x,d").

Proof. We prove the two implications separately:

=) If fis continuous then for all ' € Dy,d" € D, the functions f,y and f» are
continuous, since we are considering only certain chains (where one element of
the pair is fixed). For example, let us fix d’ € D; and consider a chain {d/' };en
in D,. Then we prove that f; is continuous as follows:
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<)

f < d//) < d”) (by definition of f;)
ieN i€N

d' d) > (by definition of lub)

i
ieN
fd

'.d") (by continuity of f)

(d) (by definition of f;)

(U
L
L

Similarly, if we fix d” € D, and take a chain {d/},cy in Dy we have
Jar (Uiend;) = Uien far (d)).

In the opposite direction, assume that £, and f,;»are continuous for all elements
d' € Dy and d” € D,. We want to prove that f is continuous. Take a chain
{(d},d}) }ken. By definition of lub on pairs, we have

o) - (U

keN ieN  jeN

Letd” & | ] d/. It follows:
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; (u <d;,dz>>

keN

f <|_| d,| | d}’) (by definition of lub on pairs)

ieN  jeN

=f <|_| d;,d”) (by definition of d")

ieN
= fu <|_| d > (by definition of f,)
ieN

= |_| far(dl) (by continuity of f)
ieN

= | | f(d},d") (by definition of f;)
ieN

= || fud") (by definition of /)
ieN

=]/ <|_| d;’) (by definition of d”)
ieN jeN

=L fa@) (by continuity of f,)
ieN jeN

= || L] f(d,d5) (by definition of f;/)
ieN jeN '

= | | f(d}.4}) (by Lemma 8.1 (switch lemma))
keN

O

8.6 Apply, Curry and Fix

As done for IMP we will use the A-notation as meta-language for the denotational
semantics of HOFL. In Section 8.2 we have already defined two new continuous
functions for our meta-language (7; and 7). In this section we introduce some
additional functions that will form the kernel of our meta-language.

Definition 8.7 (Apply). Let D and E be two CPOs. We define a function apply :
[D — E] x D — E as follows:

apply(f,d) & f(d)

The function apply represents the application of a function in our meta-language: it
takes a continuous function f : D — E and an element d € D and then returns f(d) as
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aresult. We leave it as an exercise to prove that apply is monotone (see Problem 8.5).
We prove that it is also continuous.

Theorem 8.8 (Continuity of apply). Let apply : [D — E| X D — E be the function
defined above and let {(fy,dn) }nen be a chain in the CPO | [2 — &) X D then:

apply <|_| (fnadn)> = || apply(fn,dn)

neN neN

Proof. By Theorem 8.7 we can prove the continuity on each parameter separately.

e Letus fix d € D and take a chain {f;, },en in [D — E]. We have:

apply <<|_| fn> ,d> = <|_| fn> (d)  (by definition)
neN neN

= L] (fu(@)) (by definition of lub of functions)
neN

= | | apply(f;,d) ~(by definition)
neN

e Now we fix f € [D — E|] and take a chain {d,, },en in D. We have:

apply (f N dn> =f <|_| d,,) (by definition)

neN neN
= || £(dn) (by continuity of f)
neN
= | | apply(fidy) (by definition)
neN
So apply is a continuous function. 0

Currying is the name of a technique for transforming a function that takes a pair
(or, more generally, a tuple) of arguments into a function that takes each argument
separately but computes the same result.

Definition 8.8 (Curry and un-curry). We define the function
cury: (DXE —-F)— (D—E —F)
by letting, forany g: DX E - F,d € Dande € E:
curry gd e Cl:efg(d,e)
And we define the function

un-curry : (D —-E —F)— (DXE — F)
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by letting, forany h: D - E - F,d € Dande € E:

un-curry % (d,e) hde

Theorem 8.9 (Continuity of curry). Let D,E,F be CPOsand g:D X E — F be a
continuous function. Then (curryg) : D — (E — F) is a continuous function, namely
given any chain {d;}cy in D:

(curry g) <|_| df> = | |(curry g)(di).

ieN ieN

Proof. Let us note that since g is continuous, by Theorem 8.7, g is continuous
separately on each argument. Then let us take e € E we have:

(curry g) <|_| di> (e) =g <<|_| d,-) ,e) (by definition of curry g)

ieN ieN
= |_| g(di,e) (by continuity of g)
ieN
= |_| ((curry g)(d;)(e)) (by definition of curry g)
ieN

O

To define the denotational semantics of recursive definitions we need to provide a
fixpoint operator. So it seems useful to introduce fix in our meta-language.

Definition 8.9 (Fix). Let D be a CPO . We define fix : [D — D] — D as:

fix €| | A£.£1(Lp)

ieN

Note that, since {Af. fi(Lp)}ien is a chain of functions and [D — D] — D is
complete, we are guaranteed that the lub | |,cy A f.f'(Lp) exists.

Theorem 8.10 (Continuity of fix). The function fix : [D — D] — D is continuous,
namely fix € [[D — D] — D].

Proof. We know that [[D — D] — D] is complete, thus if for all i € N the function
Af. fi(Lp) is continuous, then fix =| Jieny A f. f'(Lp) is also continuous. We prove
that Vi € N. A f. f'(_Lp) is continuous by mathematical induction on i.

Base case: Af. fO(Lp)=Af. Lpisaconstant, and thus continuous, function.

Inductive case: Let us assume that g L f. fi(_Lp) is continuous, i.e., that given
a chain {f, }nen in [D — D] we have g (Uyen fu) = Lnen 8(/n)

and let us prove that s L f. f1(Lp) is continuous, namely that
h(Unen fr) = Unen A(f2)- In fact we have:
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(U -

(by def. of h)

L £

neN

L/

neN

(L) o
~(ur)
-(us)
~(ur)
~(us)

<|_| fn> (by def. of (-)i*1)

neN

( L] fn> ) (by def. of g)
neN

( ) (by ind. hyp.)
nEN

( | ] fi(Lp) ) (by def of g)
neN

Ll

neN

LI/

neN

( ( L] /i (dp )) (by def. of lub)
neN meN

= | Ll £ (fi(Lp)) (by cont. of f;,)
neNmeN

= || fe(fi(Lp)) (by Lemma 8.1)
keN
= | ] AN (by def. of (-)*1)
keN

= | | r(f) (by def. of h)
neN g

Finally we introduce the let operator, whose role is that of binding a name x to
a de-lifted expression. Note that the continuity of the let operator directly follows
from the continuity of the lifting operator.

Definition 8.10 (Let operator). Let & be a CPO, and Ax. e a function in [D — E].
We define the let operator as follows, where d’ € D :

let x <= d'. e X (Ax. e)* (d) =
| I |
D—E DL
| I |
DL—>E

 —
E

g ifd=1p,
e[?/s] ifd = |d]forsomed €D

Intuitively, taken d’ € D, if ' = L then let x <= d’. e returns Lg, otherwise
it means that ¢’ = |d] for some d € D and thus it returns e [¢/,], as if Ax. e was
applied to d, i.e., d' = |d] is de-lifted so that Ax. e can be used.
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Problems

8.1. Prove that the projection functions in Definition 8.3 are monotone.
8.2. Prove that the domain [2 — & from Definition 8.4 is a CPO .
8.3. Prove that the lifted domain &, from Definition 8.5 is a CPO | .

8.4. Complete the proof of Theorem 8.4 for what is concerned with the monotonicity
of the lifting function (-)*.

8.5. Prove that the function apply : [D — E] x D — E introduced in Definition 8.7 is
monotone.

8.6. Let D be a CPO and f : D — D be a continuous function. Prove that the set of
fixpoints of f is itself a CPO (under the order inherited from D).

8.7. Let D and E be two CPO  s. A function f : D — E is called strict if f(Lp)= Lg.
Prove that the set of strict functions from D to E is a CPO | under the usual order.

8.8. Let D and E be two CPOs. Prove that the following two definitions of the order
between continuous functions f,g : D — E are equivalent.

1. fCg & VdeD. f(d) Crg(d).
2. fg & Vd,,d, € D. (d1 Cpdy éf(dl) Cg g(dz))

8.9.Let 2 = (D,Cp) and & = (E,Cg) be two CPOs. Their sum & + & has:
1. The set of elements
[4b+£} UDBE = {1y, }U ({0} x D)U({1} X E)

2. The order relation Cp g defined by letting:

e (0,d1) Cpie (0,dp) if di Ep do;
o (lye1)Cpir (1,e0)if e Ck en;
e Vxe {J_D+E}UD&JE. 1pir Cpig x.

Prove that 7+ & is a CPO, .

8.10. Prove that un-curry is continuous and inverse to curry (see Definition 8.8).
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