Roberto Bruni, Ugo Montanari

Models of Computation

— Monograph —

April 11, 2016

Springer

Mathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing'

! The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.

Contents

Part I Preliminaries

1 Inmtroduction.......... 3
1.1 Structure and Meaning0..ee oo, 3
1.1.1 Syntax, Types and Pragmatics..........c............... 4

112 Semanticsoouuneeeiie et 4

1.1.3 Mathematical Models of Computation................... 6

1.2 A Taste of Semantics Methods: Numerical Expressions 9
1.3 Applications of Semanticscou. et eneenn.. 17
1.4 Key Topics and Techniqueso ..., 20
1.4.1 Induction and Recursion 20

1.4.2 Semantic Domainsc..... ... o i, 21

1.4.3 Bisimulation i 23

1.4.4 Temporal and Modal Logicsoiviinn... 25

1.4.5° Probabilistic Systems i, 25

1.5 Chapters Contents and Reading Guide 26
1.6 FurtherReading......... 28
Referenceso 30
2 Preliminaries 0. 33
2.1 NOTATOM &« . v ettt et e ettt e e e e e e e 33
2.1.1 BasicNotationccooiiiiiiiiiiinieinna.. 33
2.1.2 Signaturesand Termscouineiineiinnennn .. 34

2.1.3 Substitutions 35

2.1.4 Unification Problem 35

2.2 Inference Rules and Logical Systems 37
2.3 Logic Programmingcouuuuiiieiiiinneeennnnn... 45
Problems 47

Part I IMP: a simple imperative language

XV

Xvi

Contents

Operational Semanticsof IMP 53
3.1 Syntaxof IMP 53
3.1.1 Arithmetic Expressionsc.ooiioii.. 54

3.1.2 Boolean Expressionsoiiiiiiiiin. 54

313 Commands ...t 55

3.1.4 ADStract Syntaxoeiiiiii i 55

3.2 Operational Semanticsof IMP................................ 56
321 Memory Stateoutuunii et e 56

322 InferenceRules........., 57

323 Examples........oiiiii e 62

3.3 Abstract Semantics: Equivalence of Expressions and Commands ... 66
3.3.1 Examples: Simple Equivalence Proofs................... 67

3.3.2 Examples: Parametric Equivalence Proofs 69

3.3.3 Examples: Inequality Proofsc......... 71

3.3.4 Examples: Diverging Computationso..unooon. 73
Problems 75
Induction and Recursion0. e 79
4.1 Noether Principle of Well-founded Induction 79
4.1.1 Well-founded Relations oo .. 79
4.1.2 Noether Induction.0 a ... 85

4.1.3 Weak Mathematical Inductionc...c....... 86
4.1.4 Strong Mathematical Induction. 87
4.1.5 Structural Induction e 87

4.1.6 Induction on Derivationsc....... 90
4177 RuleInductionco i 91

4.2 Well-founded Recursion, 95
Problems . ..o 100
Partial Orders and Fixpointsou... 105
5.1 Orders and Continuous Functions 105
501 Orders 106

5.1.2. HasseDiagramsc.ouiiiiiiiinnneennnnn. 108

5.3 Chains ..o cut 111
5.1.4 Complete Partial Orders 113

5.2 Continuity and Fixpoints i ... 116
5.2.1 Monotone and Continuous Functions.................... 116
5.2.2 FIXPOINtS . .o ov ittt 118

5.3 Immediate Consequence Operator.c.c..vveeeennnn.... 122
5.3.1° The Operator Roovuueee e 122
532 FIXPOINtOF R ..ot 123

Problems 126

Contents
6 Denotational Semanticsof IMP
6.1 A-NOtAtionottt
6.1.1 A-Notation: MainIdeascccoevvn...
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution
6.2 Denotational Semanticsof IMP...........
6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function @
6.2.2 Denotational Semantics of Boolean Expressions: The
Function Zo i
6.2.3 Denotational Semantics of Commands: The Function %
6.3 Equivalence Between Operational and Denotational Semantics
6.3.1 Equivalence Proofs For Expressionsc............
6.3.2 Equivalence Proof for Commandsc..............
6.4 Computational Inductiono i,
Problems

Part III HOFL: a higher-order functional language

7 Operational Semanticsof HOFL
7.1 Syntax of HOFL
711 Typed Termsot i

7.1.2 Typability and Typechecking

7.2 Operational Semanticsof HOFLc............
Problems

8 DomainTheory i,
8.1 The Flat Domain of Integer Numbers Z |

8.2 Cartesian Product of Two Domains...c........................

8.3 Functional Domainsc.0iiiiiiieiiinaa..

8.4 Lifting.t e

8.5 Function’s Continuity Theorems

8.6 Apply, Curryand Fix i,
Problems

9 HOFL Denotational Semantics
9.1 HOFL Semantic Domainscooiiiiiineineenn..

9.2 HOFL Evaluation Function oo,
0.2.1 CONStantSovte et e

0.2.2 Variables

9.2.3 Binary Operatorsc.uuuieeeeuinnneeeennnn.

9.2.4 Conditionalcouiiiiiiin i

9.2.5 Pairingt

9.2.6 Projections.coiiiiiiiiii i

9.2.7 Lambda Abstraction................oviiiiiernenn....

9.2.8 Function Applicationoiiiiiineeennn...

Xviii

10

Contents

9.2.9 ReCUISIONcoouuuiiiiiii i, 197

9.3 Continuity of Meta-language’s Functions....................... 199
9.4 Substitution Lemma 201
Problems 202
Equivalence between HOFL denotational and operational semantics . 205
10.1 Completenessottt e et 206
10.2 Equivalence (on CONVErgence).uuveeeenunneeeennnnn... 209
10.3 Operational and Denotational Equivalences of Terms............. 211
10.4 A Simpler Denotational Semantics¢.... 212
Problems 213

Part IV Concurrent Systems

11

12

CCS, the Calculus for Communicating Systems 219
11.1 Syntax of CCS i 224
11.2 Operational Semantics of CCS oo, 225
11.2.1 ActionPrefix. ... it 226
11.2.2 ReSIICHON « .« vt vt e e e e e i e et 226
11.2.3 Relabellingiiiiiiii i, 226
11.24 ChOICe . ..ottt 227
11.2.5 Parallel Compositioniiiiinneaeenn... 227
11.2.6 Recursionc.oiiuneeeinunnneeiiiinneeeennnn. 228
11.2.7 CCS with Value Passingcc...ooooiiii ... 231
11.2.8 Recursive Declarations and the Recursion Operator. 232
11.3 Abstract Semantics of CCS« . i 234
11.3.1 GraphlIsomorphism, 234
11.3.2 Trace Equivalencecccooiiiiiiinneeon. 236
11.3.3 - Bisimilarityovv ot 237
11.4 Compositionalityo i, 243
11.4.1 Bisimilarity is Preserved by Choice 244
11.5 A Logical View to Bisimilarity: Hennessy-Milner Logic 245
11.6 Axioms for Strong Bisimilarity 248
11.7 Weak Semanticsof CCS'....... 250
11.7.1 Weak Bisimilarity oo, 250
11.7.2 Weak Observational Congruence 252
11.7.3 Dynamic Bisimilarity................, 253
Problems 254
Temporal Logic and pu-Caleulus 259
12.1 Temporal Logic ... 259
12.1.1 Linear Temporal Logic, 260
12.1.2 Computation Tree Logic, 262
122 p-Caleuluso 264
12.3 Model Checkingo 267

Problems 268

Contents XiX

13 7m-Calculus ... 271
13.1 Name Mobility i 271
13.2 Syntax of the m-calculus 274
13.3 Operational Semantics of the w-calculus 276

13.3.1 ActionPrefix............ .. i 277
13.32 ChOICe . ..ottt 278
13.3.3 Name Matching i, 278
13.3.4 Parallel Compositioncoiiiiuniinneenn .. 278
13.3.5 ReStrictionovvet i 279
13.3.6 Scope EXtrusionccouuuiiiiiinnnnnee i, 279
13.3.7 Replicationooiuniiiniiiniiniitenn.. 279
13.3.8 A Sample Derivation, 280
13.4 Structural Equivalence of m-calculus 281
13.4.1 Reduction semanticsveuuuneeeennnas 281
13.5 Abstract Semantics of the -calculusc. o oo oo 282
13.5.1 Strong Early Ground Bisimulations «.................... 283
13.5.2 Strong Late Ground Bisimulations 284
13.5.3 Strong Full Bisimilarities.o ... 285
13.5.4 Weak Early and Late Ground Bisimulations 286
Problems 287

Part V Probabilistic Systems

14 Measure Theory and Markov Chainsc............ 291
14.1 Probabilistic and Stochastic Systems 291

142 Measure Theory i it 292
1421 o-field o oo 292

14.2.2 Constructinga o-field, 293

14.2.3 Continuous Random Variables 295

14.2.4 Stochastic Processes., 299

14.3 Markov Chains i i i 299
14.3.1 Discrete and Continuous Time Markov Chain 300

1432 DTMCasLTS. 301

14.3.3 DTMC Steady State Distribution 303

1434 CTMC as LTS e 305

14.3.5 Embedded DTMC of aCTMC 306

14.3.6 CTMC Bisimilarity, 306

1437 DTMC Bisimilarityoo oo, 308

Problems 309

15 Markov Chains with Actions and Non-determinism 313
15.1 Discrete Markov Chains With Actions 313
15.1.1 Reactive DTMC 314

15.1.2 DTMC With Non-determinism 316

Problems 319

XX Contents

16 PEPA - Performance Evaluation Process Algebra 321
16.1 From Qualitative to Quantitative Analysis 321

16,2 CSP . 322
16.2.1 Syntax of CSP. 322

16.2.2 Operational Semanticsof CSP 323

16.3 PEPA . .. o 324
16.3.1 Syntax of PEPA 324

16.3.2 Operational Semantics of PEPA 326

Problemso e 331
GlosSary 335
Solutions 337

Acronyms

2

|
U
Q
S

d
<

oy X

020 IR X IR

2 22
NN

Lo Ne
try

!
&

]

ack
Aexp

Bexp

CCS
Com
CPO
CPO
CSP
CTL
CTMC

operational equivalence in IMP (see Definition 3.3)
denotational equivalence in HOFL (see Definition 10.4)
operational equivalence in HOFL (see Definition 10.3)
CCS strong bisimilarity (see Definition 11.5)

CCS weak bisimilarity (see Definition 11.16)

CCS weak observational congruence (see Section 11.7.2)
CCS dynamic bisimilarity (see Definition 11.17)
m-calculus early bisimilarity (see Definition 13.3)
m-calculus late bisimilarity (see Definition 13.4)
m-calculus strong early full bisimilarity (see Section 13.5.3)
m-calculus strong late full bisimilarity (see Section 13.5.3)

n-calculus weak early bisimilarity (see Section 13.5.4)

n-calculus weak late bisimilarity (see Section 13.5.4)

interpretation function for the denotational semantics of IMP arithmetic
expressions (see Section 6.2.1)

Ackermann function (see Example 4.18)

set of IMP arithmetic expressions (see Chapter 3)

interpretation function for the denotational semantics of IMP boolean
expressions (see Section 6.2.2)

set of IMP boolean expressions (see Chapter 3)

set of booleans

interpretation function for the denotational semantics of IMP com-
mands (see Section 6.2.3)

Calculus of Communicating Systems (see Chapter 11)

set of IMP commands (see Chapter 3)

Complete Partial Order (see Definition 5.11)

Complete Partial Order with bottom (see Definition 5.12)
Communicating Sequential Processes (see Section 16.2)
Computation Tree Logic (see Section 12.1.2)

Continuous Time Markov Chain (see Definition 14.15)

XXi

xxii

DTMC
Env

fix

FIX
gcd
HML
HM-Logic
HOFL
IMP
int
Loc
LTL
LTS
lub

PEPA
Pf

PI
PO
PTS

Tf
Var

Acronyms

Discrete Time Markov Chain (see Definition 14.14)

set of HOFL environments (see Chapter 9)

(least) fixpoint (see Definition 5.2.2)

(greatest) fixpoint

greatest common divisor

Hennessy-Milner modal Logic (see Section 11.5)
Hennessy-Milner modal Logic (see Section 11.5)

A Higher-Order Functional Language (see Chapter 7)

A simple IMPerative language (see Chapter 3)

integer type in HOFL (see Definition 7.2)

set of locations (see Chapter 3)

Linear Temporal Logic (see Section 12.1.1)

Labelled Transition System (see Definition 11.2)

least upper bound (see Definition 5.7)

set of natural numbers

set of closed CCS processes (see Definition 11.1)
Performance Evaluation Process Algebra (see Chapter 16)
set of partial functions on natural numbers (see Example 5.13)
set of partial injective functions on natural numbers (see Problem 5.12)
Partial Order (see Definition 5.1)

Probabilistic Transition System (see Section 14.3.2)

set of real numbers

set of HOFL types (see Definition 7.2)

set of total functions from N to N (see Example 5.14)
set of HOFL variables (see Chapter 7)

set of integers

Part 111
HOFL: a higher-order functional language

This part focuses on models for sequential computations that are associated to HOFL,
a higher-order declarative language that follows the functional style. Chapter 7
presents the syntax, typing and operational semantics of HOFL, while Chapter 9
defines its denotational semantics. The two are related in Chapter 10. Chapter 8
extends the theory presented in Chapter 5 to allow the construction of more complex
domains, as needed by the type-constructors available in HOFL.

Chapter 8
Domain Theory

Order, unity and continuity are human inventions just as truly as
catalogues and encyclopedias. (Bertrand Russell)

Abstract As done for IMP we would like to introduce the denotational semantics
of HOFL, for which we need to develop a proper domain theory that is more so-
phisticated than the one presented in Chapter 5. In order to define the denotational
semantics of IMP we have shown that the semantic domain of commands, for which
we need to apply fixpoint theorem, has the required properties. The situation is more
complicated for HOFL, because HOFL provides constructors for infinitely many
term types, so there are infinitely many domains to be considered. We will handle
this problem by showing, using structural induction, that the type constructors of
HOFL correspond to domains which are equipped with adequate CPO | structures
and that we can define useful continuous functions between them.

8.1 The Flat Domain of Integer Numbers Z |

The first domain we introduce is very simple: it consists of all the integers numbers
together with a distinguished bottom element. It relies on a flat order in the sense of
Example 5.5.

Definition 8.1 (Z). We define the CPO with bottom Z | = (ZU{L},C) as follows:

e 7 is the set of integer numbers;
e | is a distinguished bottom element that we add to the purpose;
o VxeZU{L}. LCxandxCx

It is immediate to check that Z | is a CPO with bottom, where _L is the bottom
element and each chain has a lub because chains are all finite: they either contain 1
or 2 different elements.

Remark 8.1. Since in this chapter we present several different domains, each coming
with its proper order relation and bottom element, we find it useful to annotate them
with the name of the domain as a subscript to avoid ambiguities. For example, we
can write 17 to make explicit that we are referring to the bottom element of the

177

178 8 Domain Theory

domain Z . Also note that the subscript L we attach to the name of the domain Z is
just a tag and it should not be confused with the name of the bottom element itself: it
is the standard way to indicate that the domain Z is enriched with a bottom element
(e.g., we could have used a different notation like Z to the same purpose).

8.2 Cartesian Product of Two Domains

Given two CPO | s we can combine them to obtain another CPO | whose elements
are pairs formed with one element from each CPO | .

Definition 8.2. Let:
2 = (D,Cp) & =(E,Cg)

be two CPO, s. Now we define their Cartesian product domain
DxXE = (DXE’EDXE)

1. whose elements are the pairs of elements from D and E; and
2. whose order Cpyf is defined as follows:!

Vdy,d) € D, Veg,e; € E. (do,ep) Epxke (di,e1) < doEpd Neg T ey
Proposition 8.1. (D x E,Cpyg) is a partial order with bottom.

Proof. We need to show that the relation Cpyp is reflexive, antisymmetric and
transitive:

reflexivity: since Cp and Cg are reflexive we have Ve € E. e Cg e and Vd €
D. d Cp d so by definition of Cpy g we have

VdeDVe€cE. (d,e) CpoxE (d,e).

antisymmetry: . let us assume (do,e0) Cpxg (d1,e1) and (d1,e1) Epxg (do,ep) so
by definition of Cp . g we have dy Cp d; (using the first relation)
and d; Cp dy (by using the second relation) so it must be dy = d
and similarly ey = e, hence (dy,ep) = (d1,e1).

transitivity: let us assume (do,e0) Epxg (d1,e1) and (d1,e1) Cpxg (d2,e2). By
definition of Cpyr we have dy Cp dy, di Cp d», eg Cg e1 and
e1 Cg e>. By transitivity of Cp and Cp we have dy Cp d» and
eo Cg ey. By definition of Cpy g we get (do,e0) Epxe (da,e2).

Finally, we show that the there is a bottom element. Let Lp.g = (Lp, Lg). In fact
VdeD,ecE. LpEdA_LgCe,thus (J_D,LE) CpxE (d,e). O

It remains to show the completeness of 7 x &.

! Note that the order is different from the lexicographic one considered in Example 4.9.

8.2 Cartesian Product of Two Domains 179
Theorem 8.1 (Completeness of Z x &). The PO & x & defined above is complete.

Proof. We prove that for each chain (d;,),y it holds:

I_l dl)el = <|_|dla|_|ez>
ieN ieN ieN

Obviously (|liendi,Lliene:) is an upper bound, indeed for each j € N we have
dj Cp | Jiendi and e; Cf | |iey e so by definition of Cpyf it holds (dj,e;) Cpxe
(Uiendi, Uien i)-

Moreover (| liendi,licnei) is also the least upper bound. Indeed, let (d,e) be an
upper bound of {(d;,e;) }ien. since | |;cn d; is the lub of {d; } ey we have | l;endi Cp d,
furthermore we have that | |,cye; is the lub of {e;};en then | fieyei Tk e. So by
definition of Cpy g we have (| |iendi, | ien e,') CpoxE (d,e). Thus (l_lieN di,| lien e,~)
is the least upper bound. a

We can now define suitable projection operators over & x &.

Definition 8.3 (Projection operators 7, and 7,). Let (d,e) € D X E be a pair, we
define the left and right projection functions 7; : DX E — D and m, : DX E — E as
follows. X
m((de)®ad and m(de) e

Recall that in order to use a function in domain theory we have to show that it
is continuous; this ensures that the function respects the domain structure (i.e., the
function preserves the order and limits) and so we can calculate its fixpoints to solve
recursive equations. So we have to prove that each function which we use on & x &
is continuous. The proof that projections are monotone is immediate and left as an
exercise (see Problem 8.1).

Theorem 8.2 (Continuity of 7; and m,). Let'm; and m, be the projection functions
in Definition 8.3 and let {(d;, ;) }ien be a chain of elements in 9 x &, then:

<|_| d,,e,> | m (die)) (|_| d;,e;) || 7 ((diei)

ieN ieN ieN ieN

Proof. Let us prove the first statement:

Vi) <|_| (di,ei)> =m <<|_| d;, |_| ei>> (by definition of limit in D x E)

ieEN ieN ieN
= d; (by definition of projection)
ieN
= |_| m ((diyei)) (by definition of projection).
icN

For the second statement the proof is completely analogous. a

180 8 Domain Theory
8.3 Functional Domains

Let (D,Cp) and (E,Cg) be two CPOs. In the following we denote by D — E def

{f| f:D — E} the set of all functions from D to E (where the order relations are not
important), while we denote by [D — E] C D — E the set of all continuous functions
from D to E (i.e., [D — E] contains just the functions that preserve order and limits).
As for Cartesian product, we can define a suitable order on the set [D — E] to get a
CPO, . Note that as usual we require the continuity of the functions to preserve the
applicability of fixpoint theory.

Definition 8.4. Let us consider the CPO | s:
% = (D,Cp) & = (E,Cg)

We define an order on the set of continuous functions from D to E as follows:
(2 — &)= ([D— E],Epsp)

where:

1.[D—=E]={f|f:D— E,f is continuous}
2. fEpsEg g VdeD.f(d) Tk g(d)

We leave as an exercise the proof that [2 — &] is a PO with bottom, namely
that the relation Cyp) is reflexive, antisymmetric, transitive and that the function
Lip~E) : D — E defined by letting, for any d € D:

def
Lipog(d) = 1r

is continuous and that it is also the bottom element of [Z — & (see Problem 8.2).
We show that the PO [Z — &] is complete. In order to simplify the proof we
introduce first the following lemmas.

Lemma 8.1 (Switch Lemma). Let (E,Cg) be a CPO whose elements are of the
form e, ,, withn,m € N. If Eg is such that:

enm CE €y if n<n' and m <m'
then, it holds:

Ll enm= || <|_| emm) =] <|_| emm) = | | exx

n,meN neN \meN meN \neN keN

Proof. The relation between the elements of E can be summarized as follows:

8.3 Functional Domains 181

(i Ll (i Ul

eno & én.1 C én2 E--CemC -
LI LI LI Ll

LI LI LI Ll

e2oC e Eepl--CepyE -
LI LI LI L

etoC e Cep---CeppE -
LI LI LI [

enoEep1 Eep - EegmE -

We show that all the following sets have the same upper bounds:

{en,m}n,mGN { U en,m} { |_| en,m} {ek,k}keN
meN neN neN meN

Let us consider the first two sets. For any n € N, let e, = | |jcy s, This amounts
to consider each row of the above diagram and compute the least upper bound for
the elements in the same row. Clearly, e,, C e,, when n; < n, because for any
J € N an upper bound of e,, ; is also-an upper bound of e, ;.

Ll ((Ll il

€n,0 C €n,1 C €n2 c.-C €nm C.---Ce = leeN €n,m
[]] Ll LI
Ll] L L [
eoCeiLeppl ---Cenl- - Ce=|]enem
[] [] LI
eloCe1CesC--Cerpl - Cep =peneim
Ll []l Ll LI

eoCe1Cenrl - Cepnl - Cep=|]ueneom

Let e be an upper bound of {e; };cn, we want to show that e is an upper bound for
{€nm }nmen. Take any n,m € N. Then

€n.m C |_| €n,j = €n Ce
jeEN

since ey, is an element of the chain {e, ;} jen whose limit is e, = | | ;cryen,j. Thus
e is an upper bound for {e, ;n }» men.

182 8 Domain Theory

Vice versa, let e be an upper bound of {e; j},», jen and consider e, = | |,,ery €n,m
for some n. Since {e,n}men C {eij}i jen, obviously e is an upper bound for
{enm}men and therefore e, C e, because e, is the lub of {e, » }men.

e The correspondence between the sets of upper bounds of {emu}nmen and
{Uren €nm }men can be proved analogously.

e Finally, let us consider the sets {€, » }n men and {ex i }xeny and show that they have
the same set of upper bounds.
Taken any n,m € N the element, let k = max{n,m}. We have

enm & €n.k C €.k

thus any upper bound of {ej i }xen is also an upper bound of {e;u }nmen.
Vice versa, it is immediate to check that {ej }ren is a subset Of {€pm } men SO
any upper bound of {e,, n }» men is also an upper bound of {eg i } ren.

We conclude by noting that the set of upper bounds {en,m}mmeN has a least
element. In fact, {| |,,cr €nm fnen is a chain, and it has a'lub because E is a CPO. O

Lemma 8.2. Let {f,}nen be a chain of functions® in 9 — &. Then the lub | |,cy fn
exists and it is defined as:

<|_| fn) (d) = |_| (fn(d))

neN neN

Proof. The function

hE 2d. | (fuld))

neN

is clearly an upper bound for {f, },cn since for every k € N and d € D we have

fi(d) Tk Len fa(d).

The function 4 is also the lub of {f, },en. In fact, given any other upper bound g,
i.e., such that f,, Cp_,g g for any n € N; we have that for any d € D the element g(d)
is an upper bound of the chain {f,(d) },en and therefore | |,cn(f4(d)) Cg g(d). O

Lemma 8.3. Let {f, },cn be a chain of continuous functions in (2 — &| and let
{dn}nen be a chain of 9. Then, the function

hE2d. | (fuld))

neN

is continuous, namely
h (|] dm> = || i(dm)
meN meN

Furthermore, h is the lub of { fu }nen not only in 9 — & as stated by Lemma 8.2, but
also in [2 — &).

2 Note that the f, are not necessarily continuous, because we select 2 — & and not [2 — &).

8.4 Lifting 183

Proof.

h (L] dm> =] < I (|] dm>> (by definition of h)
meN neN meN

= < (fn (dm))> (by continuity of f;,)
eN \meN

= |_| |_| (fa (dm))> by Lemma 8.1 (switch lemma)

[
:‘
=
&

(by definition of &)

The upper bounds of { f,; }sen in the PO & — & are a larger set then those in [Z — &7,
thus if 4 is the lub in 2 — &, it is also the lub in [Z — &]. O

Theorem 8.3 ((Z — &]isa CPO). The PO |2 — &) is a CPO

Proof. The statement follows immediately from the previous lemmas. a

8.4 Lifting

In IMP we introduced a lifting operator (see Definition 6.9) on functions f: X — X to
derive a function f*: X, — X, defined over the lifted domain X | , and thus able to
handle the argument Ly, . In the semantics of HOFL we need the same operator in a
more general fashion: we need to apply the lifting operator to any domain, not just X.

Definition 8.5 (Lifted domain). Let 2 = (D,Cp) be a CPO and let L be an element
not in D. We define the lifted domain 2| = (D, ,Cp,) as follows:

o D, E{13wD={(0,1)}U{I}xD
° _LDLdéf(O,J_)
e VxeD,.1p Ep, x

e Vdi,deD.d\ Cpdy, = (1,dy) Ep, (1,dp)

We leave it as an exercise to show that &, is a CPO | (see Problem 8.3).
We define a lifting function |- | : D — D by letting, for any d € D:

ld] € (1,d)

As it was the case for X in the IMP semantics, when we add a bottom element
to a domain & we would like to extend the continuous functions in [D — E] to

continuous functions in [D; — E|. The function defining the extension should itself
be continuous.

184 8 Domain Theory

Definition 8.6 (Lifting). Let Z be a CPO and let & be a CPO | . We define the lifting
operator (+)* : [D — E] — [D; — E] as follows:

VfeD—E]. f*(x) déf{fl(j) iiifdl?

We need to prove that the definition is well-given and that the lifting operator is
continuous.

Theorem 8.4. Let 9,8 be two CPOs.

1. If f : D — E is continuous, then f* is continuous.
2. The operator (-)* is continuous.

Proof. We prove the two statements separately.

1. We need to prove that if f € [D — E], then f* € [D, — E]. Let {x, },en be a
chain in &, . We have to prove f*(|,enXn) = Lnen S (xn)-
If Vn € N. x, = Lp, then this is obvious.
Otherwise, for some k € N there must exist a set of elements {d,, . },en in D
such that for all m > k we have x,, = |dy] and also | ,cnxn = UnenXnik =
|Llnen @nrk] (by prefix independence of the limit, Lemma 5.1). Then:

fr <|_| x,,) = f* ({ |_| deJ) by the above argument

neN neN
=f (L dn+k> by definition of lifting
neN

= | f(duss) by continuity of f
neN

= [£ (ldnsi)) by definition of lifting
neN

= |_| I (Xn4) by definition of x,,,
neN

= L] f) by Lemma 5.1
neN

2. We leave the proof that (-)* is monotone as an exercise (see Problem 8.4).
Let {fi }icn be a chain of functions in [Z — &]. We will prove that for all x € D :

(I_I ﬁ> (x) = (I_I f) (x)
ieN ieN

if x = Lp, both sides of the equation simplify to L. So let us assume x = |d|
for some d € D we have:

8.5 Function’s Continuity Theorems 185

<|_| ﬁ) (1d]) = <|_| ﬁ) (d) by definition of lifting

ieN ieN
= | |(fid)) by def. of lub in a functional domain
ieN
= | |(f(ld))) by definition of lifting
ieN

= (|_| f,-*) (ld]) by def. of lub in a functional domain
ieN

O

8.5 Function’s Continuity Theorems

In this section we show some theorems which allow to prove the continuity of some
functions. We start proving that the composition of two continuous functions is
continuous.

Theorem 8.5 (Continuity of compeosition). Ler f € [D — E| and g € [E — F). Their
composition

fig=gof ¥ ad. g(f(d):D—F

is a continuous function, i.e., go f € [D — F)|.
Proof. The statement is just a rephrasing of Theorem 5.5. ad

Now we consider a function whose outcome is a pair of values. So the function
has a single CPO as domain but it returns a result over a product of CPOs.

f:D—E XE;

For this type of functions we introduce a theorem which allows to prove the continuity
of f in a convenient way. We will consider f as the pairing of two simpler functions
g1:D — Ey and g2 : D — E», such that f(d) = (g1(d),g2(d)) for any d € D. Then
we can prove the continuity of f from the continuity of g; and g, (and vice versa).

Theorem 8.6. Let f: D — E| X E; be a function over CPOs and let
g fim:D-E 0 fim:D—E

where f;m; = Ax. m;(f(x)) is the composition of f and w; for i = 1,2. Then: f is
continuous if and only if g1 and g, are continuous.

Proof. Notice that we have

186 8 Domain Theory

vd e D. f(d) = (1(d),82(d))
We prove the two implications separately.

=) Since f is continuous, by Theorem 8.5 (continuity of composition) and The-
orem 8.2 (continuity of projections), also g; and g» are continuous, because
they are obtained as the composition of continuous functions.

<) We assume the continuity of g; and g, and we want to prove that f is continu-
ous. Let {d;};cn be a chain in D. We want to prove:

/ (udl-) _ s

ieN ieN
So we have:
f <|_| di) = <gl <|_| di) 82 <|_| di)) (by definition of g1, 2)
ieN ieN ieN
= <|_| g1(di), |_| gz(di)> (by continuity of g1 and g»)
ieN ieN
= | |(g1(di), 82(d))) (by definition of lub of pairs)
ieN
= |_| f(d) (by definition of g1,g2)
ieN
O

Now let us consider the case of a function f: D| x D, — E over CPOs which takes
a pair of arguments in D and D; and then returns an element of E. The following
theorem allows us to study the continuity of f by analysing each parameter separately.

Theorem 8.7. Let f : D1 X Dy — E be a function over CPOs. Then f is continuous
if and only if all the functions in the following two classes are continuous:

1.¥d' € Dy. fy : Dy — E is defined as fy def Ay.f(d,y);
2.¥d" € Dy. fyr : Dy — E is defined as f def Ax.f(x,d").

Proof. We prove the two implications separately:

=) If fis continuous then for all ' € Dy,d" € D, the functions f,y and f» are
continuous, since we are considering only certain chains (where one element of
the pair is fixed). For example, let us fix d’ € D; and consider a chain {d/' };en
in D,. Then we prove that f; is continuous as follows:

8.5 Function’s Continuity Theorems 187

<)

f < d//) < d”) (by definition of f;)
ieN i€N

d' d) > (by definition of lub)

i
ieN
fd

'.d") (by continuity of f)

(d) (by definition of f;)

(U
L
L

Similarly, if we fix d” € D, and take a chain {d/},cy in Dy we have
Jar (Uiend;) = Uien far (d)).

In the opposite direction, assume that £, and f,;»are continuous for all elements
d' € Dy and d” € D,. We want to prove that f is continuous. Take a chain
{(d},d}) }ken. By definition of lub on pairs, we have

o) - (U

keN ieN jeN

Letd” & |] d/. It follows:

188 8 Domain Theory

; (u <d;,dz>>

keN

f <|_| d,| | d}’) (by definition of lub on pairs)

ieN jeN

=f <|_| d;,d”) (by definition of d")

ieN
= fu <|_| d > (by definition of f,)
ieN

= |_| far(dl) (by continuity of f)
ieN

= | | f(d},d") (by definition of f;)
ieN

= || fud") (by definition of /)
ieN

=]/ <|_| d;’) (by definition of d”)
ieN jeN

=L fa@) (by continuity of f,)
ieN jeN

= || L] f(d,d5) (by definition of f;/)
ieN jeN '

= | | f(d}.4}) (by Lemma 8.1 (switch lemma))
keN

O

8.6 Apply, Curry and Fix

As done for IMP we will use the A-notation as meta-language for the denotational
semantics of HOFL. In Section 8.2 we have already defined two new continuous
functions for our meta-language (7; and 7). In this section we introduce some
additional functions that will form the kernel of our meta-language.

Definition 8.7 (Apply). Let D and E be two CPOs. We define a function apply :
[D — E] x D — E as follows:

apply(f,d) & f(d)

The function apply represents the application of a function in our meta-language: it
takes a continuous function f : D — E and an element d € D and then returns f(d) as

8.6 Apply, Curry and Fix 189

aresult. We leave it as an exercise to prove that apply is monotone (see Problem 8.5).
We prove that it is also continuous.

Theorem 8.8 (Continuity of apply). Let apply : [D — E| X D — E be the function
defined above and let {(fy,dn) }nen be a chain in the CPO | [2 — &) X D then:

apply <|_| (fnadn)> = || apply(fn,dn)

neN neN

Proof. By Theorem 8.7 we can prove the continuity on each parameter separately.

e Letus fix d € D and take a chain {f;, },en in [D — E]. We have:

apply <<|_| fn> ,d> = <|_| fn> (d) (by definition)
neN neN

= L] (fu(@)) (by definition of lub of functions)
neN

= | | apply(f;,d) ~(by definition)
neN

e Now we fix f € [D — E|] and take a chain {d,, },en in D. We have:

apply (f N dn> =f <|_| d,,) (by definition)

neN neN
= || £(dn) (by continuity of f)
neN
= | | apply(fidy) (by definition)
neN
So apply is a continuous function. 0

Currying is the name of a technique for transforming a function that takes a pair
(or, more generally, a tuple) of arguments into a function that takes each argument
separately but computes the same result.

Definition 8.8 (Curry and un-curry). We define the function
cury: (DXE —-F)— (D—E —F)
by letting, forany g: DX E - F,d € Dande € E:
curry gd e Cl:efg(d,e)
And we define the function

un-curry : (D —-E —F)— (DXE — F)

190 8 Domain Theory

by letting, forany h: D - E - F,d € Dande € E:

un-curry % (d,e) hde

Theorem 8.9 (Continuity of curry). Let D,E,F be CPOsand g:D X E — F be a
continuous function. Then (curryg) : D — (E — F) is a continuous function, namely
given any chain {d;}cy in D:

(curry g) <|_| df> = | |(curry g)(di).

ieN ieN

Proof. Let us note that since g is continuous, by Theorem 8.7, g is continuous
separately on each argument. Then let us take e € E we have:

(curry g) <|_| di> (e) =g <<|_| d,-) ,e) (by definition of curry g)

ieN ieN
= |_| g(di,e) (by continuity of g)
ieN
= |_| ((curry g)(d;)(e)) (by definition of curry g)
ieN

O

To define the denotational semantics of recursive definitions we need to provide a
fixpoint operator. So it seems useful to introduce fix in our meta-language.

Definition 8.9 (Fix). Let D be a CPO . We define fix : [D — D] — D as:

fix €| | A£.£1(Lp)

ieN

Note that, since {Af. fi(Lp)}ien is a chain of functions and [D — D] — D is
complete, we are guaranteed that the lub | |,cy A f.f'(Lp) exists.

Theorem 8.10 (Continuity of fix). The function fix : [D — D] — D is continuous,
namely fix € [[D — D] — D].

Proof. We know that [[D — D] — D] is complete, thus if for all i € N the function
Af. fi(Lp) is continuous, then fix =| Jieny A f. f'(Lp) is also continuous. We prove
that Vi € N. A f. f'(_Lp) is continuous by mathematical induction on i.

Base case: Af. fO(Lp)=Af. Lpisaconstant, and thus continuous, function.

Inductive case: Let us assume that g L f. fi(_Lp) is continuous, i.e., that given
a chain {f, }nen in [D — D] we have g (Uyen fu) = Lnen 8(/n)

and let us prove that s L f. f1(Lp) is continuous, namely that
h(Unen fr) = Unen A(f2)- In fact we have:

8.6 Apply, Curry and Fix 191

(U -

(by def. of h)

L £

neN

L/

neN

(L) o
~(ur)
-(us)
~(ur)
~(us)

<|_| fn> (by def. of (-)i*1)

neN

(L] fn>) (by def. of g)
neN

() (by ind. hyp.)
nEN

(|] fi(Lp)) (by def of g)
neN

Ll

neN

LI/

neN

((L] /i (dp)) (by def. of lub)
neN meN

= | Ll £ (fi(Lp)) (by cont. of f;,)
neNmeN

= || fe(fi(Lp)) (by Lemma 8.1)
keN
= |] AN (by def. of (-)*1)
keN

= | | r(f) (by def. of h)
neN g

Finally we introduce the let operator, whose role is that of binding a name x to
a de-lifted expression. Note that the continuity of the let operator directly follows
from the continuity of the lifting operator.

Definition 8.10 (Let operator). Let & be a CPO, and Ax. e a function in [D — E].
We define the let operator as follows, where d’ € D :

let x <= d'. e X (Ax. e)* (d) =
| I |
D—E DL
| I |
DL—>E

 —
E

g ifd=1p,
e[?/s] ifd = |d]forsomed €D

Intuitively, taken d’ € D, if ' = L then let x <= d’. e returns Lg, otherwise
it means that ¢’ = |d] for some d € D and thus it returns e [¢/,], as if Ax. e was
applied to d, i.e., d' = |d] is de-lifted so that Ax. e can be used.

192 8 Domain Theory

Problems

8.1. Prove that the projection functions in Definition 8.3 are monotone.
8.2. Prove that the domain [2 — & from Definition 8.4 is a CPO .
8.3. Prove that the lifted domain &, from Definition 8.5 is a CPO | .

8.4. Complete the proof of Theorem 8.4 for what is concerned with the monotonicity
of the lifting function (-)*.

8.5. Prove that the function apply : [D — E] x D — E introduced in Definition 8.7 is
monotone.

8.6. Let D be a CPO and f : D — D be a continuous function. Prove that the set of
fixpoints of f is itself a CPO (under the order inherited from D).

8.7. Let D and E be two CPO s. A function f : D — E is called strict if f(Lp)= Lg.
Prove that the set of strict functions from D to E is a CPO | under the usual order.

8.8. Let D and E be two CPOs. Prove that the following two definitions of the order
between continuous functions f,g : D — E are equivalent.

1. fCg & VdeD. f(d) Crg(d).
2. fg & Vd,,d, € D. (d1 Cpdy éf(dl) Cg g(dz))

8.9.Let 2 = (D,Cp) and & = (E,Cg) be two CPOs. Their sum & + & has:
1. The set of elements
[4b+£} UDBE = {1y, }U ({0} x D)U({1} X E)

2. The order relation Cp g defined by letting:

e (0,d1) Cpie (0,dp) if di Ep do;
o (lye1)Cpir (1,e0)if e Ck en;
e Vxe {J_D+E}UD&JE. 1pir Cpig x.

Prove that 7+ & is a CPO, .

8.10. Prove that un-curry is continuous and inverse to curry (see Definition 8.8).

	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax, Types and Pragmatics
	Semantics
	Mathematical Models of Computation

	A Taste of Semantics Methods: Numerical Expressions
	Applications of Semantics
	Key Topics and Techniques
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide
	Further Reading
	References

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems

	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of R"0362R

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems

	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Apply, Curry and Fix
	Problems

	HOFL Denotational Semantics
	HOFL Semantic Domains
	HOFL Evaluation Function
	Constants
	Variables
	Binary Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion

	Continuity of Meta-language's Functions
	Substitution Lemma
	Problems

	Equivalence between HOFL denotational and operational semantics
	Completeness
	Equivalence (on Convergence)
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems

	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	Syntax of CCS
	Operational Semantics of CCS
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Choice

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Action Prefix
	Choice
	Name Matching
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems

	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions
	Index

