Roberto Bruni, Ugo Montanari

Models of Computation

— Monograph —

April 7, 2016

Springer

Contents

Part I Preliminaries

1 Inmtroduction.......... 3
1.1 Structure and Meaning0..ee oo, 3
1.1.1 Syntax, Types and Pragmatics..........c............... 4

112 Semanticsoouuneeeiie et 4

1.1.3 Mathematical Models of Computation................... 6

1.2 A Taste of Semantics Methods: Numerical Expressions 9
1.3 Applications of Semanticscou. et eneenn.. 17
1.4 Key Topics and Techniqueso ..., 20
1.4.1 Induction and Recursion 20

1.4.2 Semantic Domainsc..... ... o i, 21

1.4.3 Bisimulation i 23

1.4.4 Temporal and Modal Logicsoiviinn... 25

1.4.5° Probabilistic Systems i, 25

1.5 Chapters Contents and Reading Guide 26
1.6 FurtherReading......... 28
Referenceso 30
2 Preliminaries 0. 33
2.1 NOTATOM &« . v ettt et e ettt e e e e e e e 33
2.1.1 BasicNotationccooiiiiiiiiiiinieinna.. 33
2.1.2 Signaturesand Termscouineiineiinnennn .. 34

2.1.3 Substitutions 35

2.1.4 Unification Problem 35

2.2 Inference Rules and Logical Systems 37
2.3 Logic Programmingcouuuuiiieiiiinneeennnnn... 45
Problems 47

Part I IMP: a simple imperative language

XV

Xvi

Contents

Operational Semanticsof IMP 53
3.1 Syntaxof IMP 53
3.1.1 Arithmetic Expressionsc.ooiioii.. 54

3.1.2 Boolean Expressionsoiiiiiiiiin. 54

313 Commands ...t 55

3.1.4 ADStract Syntaxoeiiiiii i 55

3.2 Operational Semanticsof IMP................................ 56
321 Memory Stateoutuunii et e 56

322 InferenceRules........., 57

323 Examples........oiiiii e 62

3.3 Abstract Semantics: Equivalence of Expressions and Commands ... 66
3.3.1 Examples: Simple Equivalence Proofs................... 67

3.3.2 Examples: Parametric Equivalence Proofs 69

3.3.3 Examples: Inequality Proofsc......... 71

3.3.4 Examples: Diverging Computationso..unooon. 73
Problems 75
Induction and Recursion0. e 79
4.1 Noether Principle of Well-founded Induction 79
4.1.1 Well-founded Relations oo .. 79
4.1.2 Noether Induction.0 a ... 85

4.1.3 Weak Mathematical Inductionc...c....... 86
4.1.4 Strong Mathematical Induction. 87
4.1.5 Structural Induction e 87

4.1.6 Induction on Derivationsc....... 90
4177 RuleInductionco i 91

4.2 Well-founded Recursion, 95
Problems . ..o 100
Partial Orders and Fixpointsou... 105
5.1 Orders and Continuous Functions 105
501 Orders 106

5.1.2. HasseDiagramsc.ouiiiiiiiinnneennnnn. 108

5.3 Chains ..o cut 111
5.1.4 Complete Partial Orders 113

5.2 Continuity and Fixpoints i ... 116
5.2.1 Monotone and Continuous Functions.................... 116
5.2.2 FIXPOINtS . .o ov ittt 118

5.3 Immediate Consequence Operator.c.c..vveeeennnn.... 122
5.3.1° The Operator Roovuueee e 122
532 FIXPOINtOF R ..ot 123

Problems 126

Contents
6 Denotational Semanticsof IMP
6.1 A-NOtAtionottt
6.1.1 A-Notation: MainIdeascccoevvn...
6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution
6.2 Denotational Semanticsof IMP...........
6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function @
6.2.2 Denotational Semantics of Boolean Expressions: The
Function Zo i
6.2.3 Denotational Semantics of Commands: The Function %
6.3 Equivalence Between Operational and Denotational Semantics
6.3.1 Equivalence Proofs For Expressionsc............
6.3.2 Equivalence Proof for Commandsc..............
6.4 Computational Inductiono i,
Problems

Part III HOFL: a higher-order functional language

7 Operational Semanticsof HOFL
7.1 Syntax of HOFL
711 Typed Termsot i

7.1.2 Typability and Typechecking

7.2 Operational Semanticsof HOFLc............
Problems

8 DomainTheory i,
8.1 The Flat Domain of Integer Numbers Z |

8.2 Cartesian Product of Two Domains...c........................

8.3 Functional Domainsc.0iiiiiiieiiinaa..

8.4 Lifting.t e

8.5 Function’s Continuity Theorems

8.6 Useful Functionsouuviiiniiine i,
Problems

9 HOFL Denotational Semantics
9.1 HOFL Semantic Domainscooiiiiiineineenn..

9.2 HOFL Evaluation Function oo,
0.2.1 CONStantSovte et e

0.2.2 Variables

9.2.3 Binary Operatorsc.uuuieeeeuinnneeeennnn.

9.2.4 Conditionalcouiiiiiiin i

9.2.5 Pairingt

9.2.6 Projections.coiiiiiiiiii i

9.2.7 Lambda Abstraction................oviiiiiernenn....

9.2.8 Function Applicationoiiiiiineeennn...

Xviii

10

Contents

9.2.9 ReCUISIONcoouuuiiiiiii i, 197

9.3 Continuity of Meta-language’s Functions....................... 199
9.4 Substitution Lemma 201
Problems 202
Equivalence between HOFL denotational and operational semantics . 205
10.1 Completenessottt e et 206
10.2 Equivalence (on CONVErgence).uuveeeenunneeeennnnn... 209
10.3 Operational and Denotational Equivalences of Terms............. 211
10.4 A Simpler Denotational Semantics¢.... 212
Problems 213

Part IV Concurrent Systems

11

12

CCS, the Calculus for Communicating Systems 219
11.1 Syntax of CCS i 224
11.2 Operational Semantics of CCS oo, 225
11.2.1 ActionPrefix. ... it 226
11.2.2 ReSIICHON « .« vt vt e e e e e i e et 226
11.2.3 Relabellingiiiiiiii i, 226
11.24 ChOICe . ..ottt 227
11.2.5 Parallel Compositioniiiiinneaeenn... 227
11.2.6 Recursionc.oiiuneeeinunnneeiiiinneeeennnn. 228
11.2.7 CCS with Value Passingcc...ooooiiii ... 231
11.2.8 Recursive Declarations and the Recursion Operator. 232
11.3 Abstract Semantics of CCS« . i 234
11.3.1 GraphlIsomorphism, 234
11.3.2 Trace Equivalencecccooiiiiiiinneeon. 236
11.3.3 - Bisimilarityovv ot 237
11.4 Compositionalityo i, 243
11.4.1 Bisimilarity is Preserved by Choice 244
11.5 A Logical View to Bisimilarity: Hennessy-Milner Logic 245
11.6 Axioms for Strong Bisimilarity 248
11.7 Weak Semanticsof CCS'....... 250
11.7.1 Weak Bisimilarity oo, 250
11.7.2 Weak Observational Congruence 252
11.7.3 Dynamic Bisimilarity................, 253
Problems 254
Temporal Logic and pu-Caleulus 259
12.1 Temporal Logic ... 259
12.1.1 Linear Temporal Logic, 260
12.1.2 Computation Tree Logic, 262
122 p-Caleuluso 264
12.3 Model Checkingo 267

Problems 268

Contents XiX

13 7m-Calculus ... 271
13.1 Name Mobility i 271
13.2 Syntax of the m-calculus 274
13.3 Operational Semantics of the w-calculus 276

13.3.1 ActionPrefix............ .. i 277
13.32 ChOICe . ..ottt 278
13.3.3 Name Matching i, 278
13.3.4 Parallel Compositioncoiiiiuniinneenn .. 278
13.3.5 ReStrictionovvet i 279
13.3.6 Scope EXtrusionccouuuiiiiiinnnnnee i, 279
13.3.7 Replicationooiuniiiniiiniiniitenn.. 279
13.3.8 A Sample Derivation, 280
13.4 Structural Equivalence of m-calculus 281
13.4.1 Reduction semanticsveuuuneeeennnas 281
13.5 Abstract Semantics of the -calculusc. o oo oo 282
13.5.1 Strong Early Ground Bisimulations «.................... 283
13.5.2 Strong Late Ground Bisimulations 284
13.5.3 Strong Full Bisimilarities.o ... 285
13.5.4 Weak Early and Late Ground Bisimulations 286
Problems 287

Part V Probabilistic Systems

14 Measure Theory and Markov Chainsc............ 291
14.1 Probabilistic and Stochastic Systems 291

142 Measure Theory i it 292
1421 o-field o oo 292

14.2.2 Constructinga o-field, 293

14.2.3 Continuous Random Variables 295

14.2.4 Stochastic Processes., 299

14.3 Markov Chains i i i 299
14.3.1 Discrete and Continuous Time Markov Chain 300

1432 DTMCasLTS. 301

14.3.3 DTMC Steady State Distribution 303

1434 CTMC as LTS e 305

14.3.5 Embedded DTMC of aCTMC 306

14.3.6 CTMC Bisimilarity, 306

1437 DTMC Bisimilarityoo oo, 308

Problems 309

15 Markov Chains with Actions and Non-determinism 313
15.1 Discrete Markov Chains With Actions 313
15.1.1 Reactive DTMC 314

15.1.2 DTMC With Non-determinism 316

Problems 319

XX Contents

16 PEPA - Performance Evaluation Process Algebra 321
16.1 From Qualitative to Quantitative Analysis 321

16,2 CSP . 322
16.2.1 Syntax of CSP. 322

16.2.2 Operational Semanticsof CSP 323

16.3 PEPA . .. o 324
16.3.1 Syntax of PEPA 324

16.3.2 Operational Semantics of PEPA 326

Problemso e 331
GlosSary 335
Solutions 337

Acronyms

2

|
U
Q
S

d
<

oy X

020 IR X IR

2 22
NN

Lo Ne
try

!
&

]

ack
Aexp

Bexp

CCS
Com
CPO
CPO
CSP
CTL
CTMC

operational equivalence in IMP (see Definition 3.3)
denotational equivalence in HOFL (see Definition 10.4)
operational equivalence in HOFL (see Definition 10.3)
CCS strong bisimilarity (see Definition 11.5)

CCS weak bisimilarity (see Definition 11.16)

CCS weak observational congruence (see Section 11.7.2)
CCS dynamic bisimilarity (see Definition 11.17)
m-calculus early bisimilarity (see Definition 13.3)
m-calculus late bisimilarity (see Definition 13.4)
m-calculus strong early full bisimilarity (see Section 13.5.3)
m-calculus strong late full bisimilarity (see Section 13.5.3)

n-calculus weak early bisimilarity (see Section 13.5.4)

n-calculus weak late bisimilarity (see Section 13.5.4)

interpretation function for the denotational semantics of IMP arithmetic
expressions (see Section 6.2.1)

Ackermann function (see Example 4.18)

set of IMP arithmetic expressions (see Chapter 3)

interpretation function for the denotational semantics of IMP boolean
expressions (see Section 6.2.2)

set of IMP boolean expressions (see Chapter 3)

set of booleans

interpretation function for the denotational semantics of IMP com-
mands (see Section 6.2.3)

Calculus of Communicating Systems (see Chapter 11)

set of IMP commands (see Chapter 3)

Complete Partial Order (see Definition 5.11)

Complete Partial Order with bottom (see Definition 5.12)
Communicating Sequential Processes (see Section 16.2)
Computation Tree Logic (see Section 12.1.2)

Continuous Time Markov Chain (see Definition 14.15)

XXi

xxii

DTMC
Env

fix

FIX
gcd
HML
HM-Logic
HOFL
IMP
int
Loc
LTL
LTS
lub

PEPA
Pf

PI
PO
PTS

Tf
Var

Acronyms

Discrete Time Markov Chain (see Definition 14.14)

set of HOFL environments (see Chapter 9)

(least) fixpoint (see Definition 5.2.2)

(greatest) fixpoint

greatest common divisor

Hennessy-Milner modal Logic (see Section 11.5)
Hennessy-Milner modal Logic (see Section 11.5)

A Higher-Order Functional Language (see Chapter 7)

A simple IMPerative language (see Chapter 3)

integer type in HOFL (see Definition 7.2)

set of locations (see Chapter 3)

Linear Temporal Logic (see Section 12.1.1)

Labelled Transition System (see Definition 11.2)

least upper bound (see Definition 5.7)

set of natural numbers

set of closed CCS processes (see Definition 11.1)
Performance Evaluation Process Algebra (see Chapter 16)
set of partial functions on natural numbers (see Example 5.13)
set of partial injective functions on natural numbers (see Problem 5.12)
Partial Order (see Definition 5.1)

Probabilistic Transition System (see Section 14.3.2)

set of real numbers

set of HOFL types (see Definition 7.2)

set of total functions from N to N (see Example 5.14)
set of HOFL variables (see Chapter 7)

set of integers

Part 111
HOFL: a higher-order functional language

This part focuses on models for sequential computations that are associated to HOFL,
a higher-order declarative language that follows the functional style. Chapter 7
presents the syntax, typing and operational semantics of HOFL, while Chapter 9
defines its denotational semantics. The two are related in Chapter 10. Chapter 8
extends the theory presented in Chapter 5 to allow the construction of more complex
domains, as needed by the type-constructors available in HOFL.

Chapter 7
Operational Semantics of HOFL

Typing is no substitute for thinking. (Richard Hamming)

Abstract In the previous part of the book we have introduced and studied an imper-
ative language called IMP. In this chapter we move our attention to functional lan-
guages. In particular, we introduce HOFL, a simple higher-order functional language
which allows for the explicit construction of infinitely many types. We overview
Church and Curry type theories. Then, we present a lazy operational semantics,
which corresponds to a call-by-name strategy, namely actual parameters are passed to
functions without evaluating them. This view is contrasted with the eager evaluation
semantics, which corresponds to a call-by-value strategy, where all actual parameters
are evaluated before being passed to functions. The operational semantics evaluates
(well-typed) terms to suitable canonical forms.

7.1 Syntax of HOFL

We start by introducing the plain syntax of HOFL. Then we discuss the type theory
and define the well-formed terms. Finally we present the operational semantics of
well-formed terms, which reduces terms to their canonical form (when it exists).

In IMP there are only three types: Aexp for arithmetic expressions, Bexp for
boolean expressions and Com for commands. Since IMP does not allow to construct
other types explicitly, these types are directly embedded in its syntax. HOFL, instead,
allows one to define a variety of types, so we first present the grammar for pre-terms,
then we introduce the concept of typed terms, namely the well-formed sentences of
HOFL. Due to the context-sensitive constraints induced by the types, it is possible to
see that well-formed terms could not be defined by a syntax expressed in a context-
free format. We assume a set of variables Var is given.

Definition 7.1 (HOFL: syntax). The following productions define the syntax of
HOFL pre-terms:

159

160 7 Operational Semantics of HOFL

| to+t1 | to—t1 | toxt; | if ¢ then 7y else 7 |

t = x| n
(to,r1) | fst(z) | snd(z) | Ax.t | (fot1) | recx.?

where x is a variable and n an integer.

Besides usual variables x, constants n and arithmetic operators +, —, X, we find:
a conditional construct if ¢ then 7, else #; that reads as if t = 0 then 7, else 7;;
the constructs for pairing terms (fo,#;) and for projecting over the first and second
component of a pair fst(z) and snd(z); function abstraction Ax. ¢ and application
(to 11); and recursive definition recx. 7. Recursion allows to define recursive terms,
namely recx. ¢ defines a term ¢ that can contain variable x, which in turn can be
replaced by its recursive definition recx. f.

We call pre-terms the terms generated by the syntax above, because it is evident
that one could write ill-formed terms, like applying a projection to an integer instead
of a pair (fst(1)) or summing an integer to a function (14 Ax. x). To avoid these
constructions we introduce the concepts of type and typed term.

7.1.1 Typed Terms

Definition 7.2 (HOFL types). A HOFL type is a term constructed by using the
following grammar:

T ou= int | TxT | T
We let . denote the set of all types.

We allow constant type int, the pair type Tp * 7; and the function type 79 — 7.
Using these productions we can define infinitely many types, like (int * int) — int
for functions that take as argument a pair of integers and return an integer, and
int — (int % (int — int)) for functions that take an integer and return an integer in
pair with a function from integers to integers.

Now we define the rule system which allows to say if a pre-term of HOFL is
well-formed (i.e., if we can or not associate a type expressed in the above grammar to
a given pre-term). The predicates we are interested in are of the form ¢ : 7, expressing
that the pre-term ¢ is well-formed and has type 7. We assume variables are typed, i.e.,

that a function (+) : Var — 7 is given, which assigns a unique type to each variable.

~

XX

The rule for variables assign to each variable x its type X.

to:int ty:int tiint tH:T 1:7T
V. op € {+,—,x} -
n:in to op ty : int if t then 7) else 7; : T

7.1 Syntax of HOFL 161

The rules for arithmetic expressions assign type int to each integer n and to each
expression built using +, —, X, whose arguments must be of type int too. The rule
for conditional expressions if ¢ then # else 7 : T requires the condition 7 to be of
type int and the the two branches 7y and #; to have the same type 7, which is also the
type of the conditional expression.

fo:7T0 H:7T1 t:T*xT) t:To*xT

(t(),t]) ITo* T fSt([)) snd(t) T

The rule for pairing says that the type of a term (fo,#;) is the pair type Ty * Ty,
where #; has type 7; for i = 0, 1. Vice versa, for projections it is required that the
argument ¢ has pair type 7y * 7] for some 7y and 7y, and the result has type 7y when
the first projection is used or 7; when the second projection is used.

X:T t:7 :7— T fo: Ty

AX.t:Tyo— Ty (t1 10) : Ty

The rule for function abstraction assigns to Ax. ¢ the functional type 7y — 7,
where T is the type of x and 7 is the type of 7. In the case of function application
(t1 1o), it is required that #; has functional type 7o — 7; for some types 7y and 7,
where T is also the type of 7. Then, the result has type 7;.

X:T t:7T
rec x.t:7T

The last rule handles recursion: it check that the type 7 of the defining expression
t is the same as the type of the recursively defined name x; if so, then 7 is also the
type of the recursive expression rec x. t.

Definition 7.3 (Well-Formed Terms of HOFL). Let ¢ be a pre-term of HOFL, we
say that 7 is well-formed if there exists a type T such that ¢ : .

Note that our type system is very simple. Indeed it does not allow to construct
useful types, such as recursive, parametric, dependent, polymorphic or abstract types.
These limitations imply that we cannot construct many useful terms. For instance,
while it is easy to express the types for lists of integer numbers of fixed length (using
the type pairing operator *) and functions that manipulate them, in our type system
lists of integer numbers of variable length are not typable, because some form of
recursion should be allowed at the level of types to express them.

162 7 Operational Semantics of HOFL

7.1.2 Typability and Typechecking

As we said in the last section we will give semantics only to well-formed terms,
namely terms which have a type in our type system. Therefore we need an algorithm
to say if a term is well-formed. In this section we will present two different solutions
to the typability problem, introduced by Church and by Curry, respectively.

7.1.2.1 Church Type Theory

In Church type theory we explicitly associate a type to each variable and deduce
the type of each term by structural recursion (i.e., by using the inference rules in a
bottom-up fashion).

In this case, we sometimes annotate directly the bounded variables with their type,
like in Ax : inf. x+x orrec f:int — int. Ax : int. fx.

Example 7.1 (Factorial with Church types). Let x :int and f : int — int in the pre-
term:]
factdé rec f. Ax. if x then 1 else (x X (f(x—1)))

So we can type fact and all its subterms as below:

X =int

~

f=int —int x:int 1:int

X=int f:int— int x—1:int
X=int X int flx—=1):int
X=int x:imt 1:int (xx (f(x=1))) :int
f=int —int ~ x:int if x then 1 else (xx (f(x—1))) : int

frint —int Ax. if x then 1 else (x X (f(x—1))) : int — int

fact - int — int

More concisely, we write:

def . . .
fact=rec f A x.if xthenlelsex x(f (x—1)) s int — int
] oo u u u u u
i i int int int int i int it it
int—int int—int
int
e — |

int

int

int

int—int

7.1 Syntax of HOFL 163

7.1.2.2 Curry Type Theory

In Curry style, we do not need to explicitly declare the type of each variable. Instead
we use the inference rules to calculate type equations (i.e., equations which have
types as variables) whose solutions define all the possible type assignments for the
term. This means that the result will be a set of types associated to the typed term.
The surprising fact is that this set can be represented as all the instances of a single
type term with variables, where one instance is obtained by freely replacing each
variable with any type. We call this term with variables the principal type of the term.
This construction is made by using the rules in a goal-oriented fashion, as we have
done in Example 7.5.

Example 7.2 (Identity). Let us consider the identity function:
Ax. x

By using the type system we have:

Ax.x:7 Ni=ton, 22, XD
}\)?:’52 |:|

So we have X = 1) = 1, and the principal type of Ax. x is 7] — 7. Now each solution
of the type equation will be an identity function for a specified type. For example if
we set T) = int we have T = int — int, but if we set 7] = int * (int — int) we have
T = (int x (int — int)) — (int = (int — int)).

Example 7.3 (Non-typable term of HOFL). Let us consider the following function,
which computes the factorial without using recursion.

begin
fact(f,x) & if x=0 then 1 else x x f(f,x— 1)
fact(fact,3)

end

The first instruction defines fact as a function that takes two arguments (e.g., a
function f and an integer x) and returns 1 if x = 0 and returns x x f(f,x— 1) otherwise.
The second instruction invokes fact by passing fact as a first argument and the
number 3 as second argument. Since 3 # 0, the invocation will trigger the calculation
3 X fact(fact,2) and so on. It can be translated to HOFL as follows:

fact 3 Ay. if snd(y) =0 then 1 else snd(y) x fst(y)(fst(y),snd(y) — 1)

We can try to infer the type of fact as follows:

164 7 Operational Semantics of HOFL

Ay.ifsnd(y) then I elsesnd(y)x(fst(y) (fst(y), snd(y)— 1)
u u | I | L] L] L] u

u

T Ty =Toxint int int Ty=(Tyxint)—int T int i
I | I |
int int
L 1
Tyxint

int

int

int

(Toxint)—int

We derive fst(y) : 7> and fst(y) : (72 * int) — int. Thus we have 7, = (Ty xint) — int
which has no solution.

We recall the unification algorithm from Section 2.1.4 that can be used to solve
general systems of type equations as well. We recall it here, in compact form, to
address explicitly the unification of terms that denote types. The idea is that types
are terms built over a suitable signature. In the case of HOFL, the signature just
consists of the constant int and two binary operators * and — and variables are
usually denoted as 7’s. We start from a system of type equations like:

n=t

4l
=t
tk:t]/{

and then we apply iteratively in any order the following steps:

1. We eliminate all the equations like T = 7 for 7 a type variable.
2. For each equation of the form f(u1,...,u,) = f'(u},...,ul,):!

if f# f': then the system has no solutions and we stop.
if f=f: then n= m so we musthave:

/ / /
ui :u17u2:1/l2,...,u” :M”

and thus we replace the original equation with these.

3. For each equation of the type T =t with t # 7:

if T appears in ¢: then the system has no solutions.
if 7 does not appear in#: we replace each occurrence of 7 with ¢ in all the other
equations.

Eventually, either the system is recognised as unsolvable, or all the variables in the
original equations are assigned to solution terms. Note that the order of the step
executions can affect the complexity of the algorithm but not the solution. The best

!In our case f and f’ can be taken from {int,*,—}.

7.1 Syntax of HOFL 165

execution strategies yield a complexity linear or quasi linear with the size of the
original system of equations.

Example 7.4. Let us now apply the algorithm to the Example 7.3: We have the type
equation
T = (T *int) — int

1. We cannot apply step 1 of the algorithm, because the equation does not express a
trivial equality.

2. We cannot apply step 2 either, because the left-hand side of the equation consists
of a variable and not of an operator applied to some subterms, as required.

3. Step 3 can be applied and it fails, because the type variable 7, appears in the right
hand side.

Here we show another interesting term which is not typable:

Example 7.5 (Non-typable terms). Let us define a pre-term ¢ which, when applied to
the argument 0, should define the list of all even numbers:

t % rec p- Ax. (x,(p.(x+2)))

Intuitively, the term ¢ O takes the value 0 and place it in the first position of a pair,
whose second component is the term # itself applied to 0 +2 = 2, so recursively 7 0
should represent the infinite list of all even numbers:

10=(0,(t2))=(0,(2,(t4))) =---=(0,(2,(4,:..)))

Let us show that this term is not typable:

t=rec p. Ax. (x,(p (x+2))): 7 Npor Ax. (x,(p(x+2))):7
\1::7:1%12, =T (x,(p (x+2))):
’\‘52:’53*‘[4 x:73, (p(x+2)): 1
Nz, (P(x+2)): 1
N PiTs— T, (x+2): 15
Npotson *+2):1s
\‘L‘5Zinl x:int
\)?:int U

So we have:

~

:.n

56\21712

S

T =(T3%Ty) = (intx7y) T= (11— ©) = (int — (intx14))
From which:
p=1=(int — (int x14)) and p= (75— 1) = (int = 14)

Thus it must be the case that

Ts = int

166 7 Operational Semantics of HOFL

nt*Ty =Ty

which is absurd, because it is not possible to unify 74 with a composed term containing
an occurrence of 74. The above argument is represented more concisely below:

t=recp. Ax.(x.,(p (x+2))
int int intim int int

int
e — |
Ty
L 1
intxTy
L 1

(int—(intx14)) = (int—14) = T4=(int*74)

So we have no solutions, and the term is not a well-formed term.

7.2 Operational Semantics of HOFL

In Section 6.1 we have defined the concepts of free variables and substitution for the
A-calculus. Now we define the same concepts in the case of HOFL, which will be
necessary to define its operational semantics.

Definition 7.4 (Free variables). We define the set of free-variables of HOFL terms
by structural recursion, as follows:

fv(x

fv(to op 1y

fv(if ¢ then 1y else f;
tv((r0,11)

fv(fst(z)
)

Finally as done for A-calculus we define the substitution operator on HOFL.

Definition 7.5 (Capture-avoiding substitution). Capture avoiding substitution [' /]
of x with ¢ is defined by structural recursion over HOFL terms as follows:

7.2 Operational Semantics of HOFL 167

n['/x] =n
poqdef [t ify=x
/A {y ify#£x
(toopt)['/x déftg[’/x] opti['/x] withop € {+,—,x}

€t /'['/,] then 1o[' /] else 11['/.]

= (0l /.0 /)

= tst((/)

= snd(r'[' /x])

= (/] nl'/d)

C Az (FFLI/L]) withz ¢ fv(Ay. ') Utv(e) Ufx}
©rec 2. ('F/y)[[/4]) withz'¢ fv(rec y. ') Ufv(r) U {x}

(t()vtl

Note that in the last two rules we perform o-conversion [*/,] of the bound variable
y with a fresh identifier z before the substitution. This ensures that the free occurrences
of y in ¢, if any, are not bound accidentally after the substitution. As discussed
in Section 6.1, the substitution is well-defined if we consider the terms up to -
conversion (i.e., up to the renaming of bound variables). Obviously, we would like
to extend these concepts to typed terms. So we are interested in understanding how
substitution and ¢-conversion interact with typing. We have the following results:

Theorem 7.1 (Substitution Respects Types). Let x,t : Tand t' : T'. Then, we have
t/[t /x] : T/

Proof. We leave as an exercise to prove the property by induction on the derivation,
after having proved that for the special case where r =z : T we have #'[*/,] : T/ with a
derivation that has the same length as the derivation of ¢’ : 7’ O

We are now ready to present the operational semantics of HOFL. Unlike IMP, the
operational semantics of HOFL is a simple manipulation of terms. This means that
the operational semantics of HOFL defines a method to calculate the canonical form
of a given term of HOFL. In particular, we focus on closed terms only, i.e., terms
t with no free variables (fv(¢#) = @). Canonical forms are particular closed terms,
which we will assume to be the results of calculations (i.e., as ordinary values). For
each type we fix the set of terms in canonical form by taking a subset of terms which
reasonably represent the notion of values for that type.

As shown in the previous section, HOFL has three type constructors: the constant
int, and the binary operators * for pairs and — for functions. Terms which represent
the integers provide the obvious canonical forms for the integer type. For pair types
we take any pair of terms as canonical form: note that this choice is arbitrary; for
example we could have taken instead pairs of terms that are themselves in canonical

168 7 Operational Semantics of HOFL

form. We will explain later the rationale of our choice. Finally, since HOFL is a
higher-order language, functions are values. So is quite natural to take all abstractions
as canonical forms for the arrow type.

Definition 7.6 (Canonical forms). Let us define a set C; of canonical forms for each
type 7 as follows:

fo:Ty t:T1 1,1 closed Ax.t:7— T Ax.tclosed

n € Ciy (t0,11) € Cryery Ax.t € Cyysy

We now define the rules of the operational semantics; these rules define an evaluation
relation:
t—c

where ¢ is a well-formed closed term of HOFL and c is its canonical form.
For terms that are already in canonical form according to Definition 7.6 we let:

c—cC

For clarity, the above rule offers a concise representation to the otherwise verbose
rules:

fo:To t:T1 to,t closed Ax.t:T9— T Ax.t closed

n—n (to,t1) — (to,11) Ax.t = Ax.t

Next, we give the rules for arithmetic expressions.

Io—no 1 —m t—0 ty—=co t—n n#0 11—

Io Op 11 — ng Op 1y if ¢ then 1 else 11 — ¢g if ¢ then 1 else 1| — ¢y

For the arithmetic operators the semantics is obviously the simple application
of the correspondent meta-operator as well as in IMP. Only, here we distinguish
between HOFL syntactic operators and meta-operators by underlying the latter. For
instance, we have 142 — 3,since | — 1,2 — 2 and 142 =3.

We recall that for the conditional statement, since we have no boolean values, we
use the convention that if ¢ then f(else #; stands for if 7 = 0 then £ else 7;, so the
premise t — n % 0 means the test is false and + — 0 means the test is true.

Let us now consider the pairing. Obviously, since we consider pairs as canonical
values, we do not have to add further rules for simple pairs. We have instead two
rules for projections:

t— (to,r1) to— co t—(fo,t1) 1t —c

fst(z) — co snd(?) — ¢;

7.2 Operational Semantics of HOFL 169

The rules are obviously similar: the canonical form of ¢ is computed, which must
be of the form (79,), because ¢ must have pair type for the projection to be applicable
and fst(¢) typable. Note however that #y and #; need not be in canonical form. So
only the canonical form of the component indicated by the projection operator is
computed, with the other component discarded.

Function abstraction is handled by the axiom for terms already in canonical form,
as in the case of pairing. For function application, we show two rules, according
to two different evaluation strategies, called lazy and eager. In the lazy operational
semantics, we do not evaluate the canonical forms of the parameters when passing
them to the function body. The lazy semantics will be our primary focus.in the rest
of this part of the book concerned with HOFL.

nh—Aix.ty /] —c
(lazy)

(tl to) — C

We remark that the in the second premise of the rule, we replace with 7y each
occurrence of x in #{, i.e., we replace each instance of x with a copy of the (non
evaluated) parameter #y and not with its canonical form.

For the sake of discussion let us consider the eager alternative to this rule.

= Ax.t] to—co t[°)s] —c

(t1 t9) = ¢ (c22°Y

Unlike the lazy semantics, the eager semantics evaluates the parameters only once
and before the substitution. Note that these two types of evaluation are not equivalent.
If the evaluation of the argument does not terminate, and it is not needed, the lazy rule
will guarantee convergence, while the eager rule will diverge. Vice versa, according
to the lazy semantics, if the argument is actually needed it may be later evaluated
several times (every times it is used).

Finally, we have a last rule for recursive terms:

t{rec Xx. t/x] e
rec x.r —c¢

To evaluate the canonical form of rec x. t we first plug in ¢ the recursive definition
itself in place of every occurrence of x and then compute the canonical form.

Example 7.6. Let us consider the term ¢ & x.0 +x. Clearly the term ¢ is closed and
typable, with 7 : int — int. It is already in canonical form and we have in fact:

r—c \c:lx. 04x O

Example 7.7. Let us consider the term ¢ & rec x. 0+ x. Clearly the term ¢ is closed
and typable, with ¢ : int. We show that the term has no canonical form, in fact:

170 7 Operational Semantics of HOFL

t—c N (0+x)[/y] = ¢
= 0+r—=c
’\C:C]iCZ O0—ci,t—0
’\Clzo t—

Let us see an example which illustrates how rules are used to evaluate a function
application.

Example 7.8 (Factorial). Let us consider the well-formed factorial function seen in

the Example 7.1:

fact & rec f-Ax. if x then 1 else x x (f(x=1))

It is immediate to see that fact is closed and we know it has type int — int. So we
can calculate its canonical form by using the last rule seen and the axiom for terms
in canonical form:

Ax. if x then 1 else x x (fact(x— 1)) — Ax. if x then 1 else x x (fact(x— 1))

fact — Ax. ifxthen1elsex x (fact(x —1))

We can apply this function to a specific value and calculate the canonical form of the
result. For example, we see what is the canonical form c of the (closed and typable)
term (fact 2) : int

7.2 Operational Semantics of HOFL

N
N

(fact2) — ¢

\x’:x, t'=if x then 1 else xxfact(x—1)
F*
\C:L‘lib‘z

*
Cq =2
\x”:x, t"=if x then 1 else xxfact(x—1)

N
\n:n 1—ny

\;1 =2, n2=1
\§2:C3KC4
*

N
Ne=1

So we have

171

fact = Ax'.t', (P/y] —=c

Ax. if x then 1 else x x (fact(x—1)) — Ax'. ¢/,
('P /] =

if 2 then 1 else 2 x (fact(2—1)) —» ¢

2% (fact(2—1)) — ¢

2—=c¢1, (fact(2—1)) =

fact 5 AxX". 1", PV w] = e
e ——

note that 2 — 1 is not evaluated
if (2—1) then 1
else (2—1)x (fact(2—1)—1)) = e
2—1—=n, n#0,
(2—1) xfact((2—1)=1) —c
2%111, 1—)712, n1:n27é0,

2-1)xfact((2—1)—1) = c2

2—1)xfact((2—1)—1)= ¢
2—1—c3, fact((2—1)—1) = ¢4
Jact(2—1)—1) = ca

if (2—1)—1 then 1

else((2—1)—1)x (fact((2—=1)—1)—1)) = c4
2-1)-1-0, 1—cs

O

c=c1xer=2x(c3xcq) =2x(1x1) =2

Example 7.9 (Lazy vs eager evaluation). The aim of this example is to illustrate the
difference between lazy and eager semantics. Let us consider the term

t dﬁf(()tx sint. 3)(rec y:int.y)) :int

also written more concisely as

de:
=

f (Ax.3)rec y. y

assuming X =y = int. It consists of the constant function Ax. 3 applied to a diverging
term rec y. y (i.e., a term with no canonical form).

e Lazy evaluation

Lazy evaluation evaluates a parameter only if needed: if a parameter is never used
in a function or in a specific instance of a function it will never be evaluated. Let

us show our example:

172 7 Operational Semantics of HOFL

((Ax.3)rec y.y) —c N Ax3—=Axt, Y/]—=c
Ni=s [V a = e
\013 U

So although the argument rec y. y has no canonical form the application can be
evaluated.

e Eager evaluation
On the contrary in the eager semantics this term has no canonical form since
the parameter must be evaluated before the application, leading to a diverging
computation:

((Ax.3)rec y.y) = ¢ N Ax3—=Axt, recyy—cy, t/]—c
Nuas recy.y—cy, 3[/y] —e
Nreey.y—cr 31/]=c
N
So the evaluation does not terminate.
However if the parameter of a function is used n times, the parameter would be
evaluated n times (at most) in the lazy semantics and only once in the eager case.
We conclude this chapter by presenting a theorem that guarantees that

1. if a term can be reduced to a canonical form then it is unique (determinacy);
2. the evaluation of the canonical form preserves the type assignments (type preser-
vation).

Theorem 7.2. Let t be a closed and typable term.

1. For any canonical form c,c’, ift — c andt — ¢’ then c = ¢
2. For any canonical form c and type 7, ift - candt:Tthenc:7T

Proof. Property 1 is proved by rule induction, taking the predicate

def

Pt—c)=Vd.t—>d=c=¢

We show only the case of the application rule, the remainder of the proof of the
theorem, including the proof of Property 2, is left as an exercise (see Problem 7.11).
We have the rule:

= Ax.ty t[°/x] —c

(l] t()) — C
We assume the inductive hypotheses:

def
o Pt — Ax.1}) =Y. 1 —d = Ax. fn=c

o P[0/] =)V f[0)] =e=C

7.2 Operational Semantics of HOFL 173
We want to prove:
P((t1 1) — ¢) Lrye, (tito) > =c=¢
As usual, we assume the premise of the implication:
(t1 tg) — ¢
From it, by goal reduction:
(tito) > N t—=Ax.tf, t[°)u]—=¢
Then we have by the first inductive hypothesis:
Ax.t] = Ax. 1]

e, x=x"andt] =¢]. Then /[0 /] =1 [/,] and by the second inductive hypothesis
we have ¢ = ¢’ 0

Problems

7.1. Let x,y,w : int, and f : int — (int — int). Consider the HOFL term

t & rec f. Ax. if x then (Ly. (y= w)) else (f w)

1. Compute the term ¢[/*3)/,].
2. Compute the term ¢[(/ *¥) /..

Hint: You are allowed to introduce additional (typed) variables if needed.

7.2. Is it possible to assign a type to the HOFL pre-term below? If yes, compute its
principal type.

rec f. Ax. if snd(x) then 1 else f(fst(x) , (fst(x) snd(x)))
7.3. A list of positive numbers is defined by the following syntax, where n € N,n > 0:
L == (n,0) | (n,L)
For instance the list with 3 followed by 5 is represented by the term (3,(5,0)).

1. Define a HOFL term # (closed and typable) such that the application (¢ L) to a list
L of 3 elements returns the last element of the list.

2. Is it possible to find a closed and typable HOFL term which returns the last
element of a generic list?

174 7 Operational Semantics of HOFL
7.4. Given the two HOFL terms

H & 2. Ay.x+3
n & Az fst(z) +3

1. Compute their types.
2. Prove that, given the canonical form c : 7, the two terms

(1 1) o) and (12 (1,¢))
yield the same canonical form.

7.5. Let us consider the HOFL term

map & Af. Ax. ((f fst(x)), (f snd(x)))

Show that map is a typable term and give its principal type. Then, compute the
canonical form of the term

map (Ax. 2 xx) (1,2)
7.6. Determine the type of the HOFL term
t % rec x. ((Ay.if y then O else 0) x).
Then compute its operational semantics.

n

k

@ G GR)=0)05h)

where n,k € N and 0 <k < n. Consider the corresponding HOFL program:

7.7. Recall the definition of binomial coefficients () from Problem 4.13:

t © rec f. An. Ak. if k then 1

else if n —k then 1
else ((f (n—1)) k) +((f (n—1)) (k—1)).

Compute its type and evaluate the canonical form of the term ((z 2) 1).

7.8. Consider the Fibonacci sequence already found in Problem 4.14

FOY1T rO)E1 Fu+2) ¥ Fu+1)+F0n)s.

where n € N.

1. Write a well-formed, closed HOFL term ¢ : int — int to compute F.

7.2 Operational Semantics of HOFL 175
2. Compute the operational semantics of (2)
7.9. Check if the HOFL pre-term
Ax. Ay. Az. if z then (y x) else (xy).
is typable, in which case give its type.

7.10. Let us consider the HOFL pre-term ¢ = Ax. (x x). Prove that it is not typable.
Try to compute anyway the canonical form of the application (¢ ¢). Given that any
well-typed term without recursion has a canonical form, argue why the given term is
not typable.

7.11. Complete the proof of Theorem 7.2.
7.12. Suppose we extend HOFL with the inference rule:

HH—0
H Xthp—0

Prove that the determinism property
Vt,ci,c0.t—cp ANt—=cr=c1=¢3

is still valid. What if also the inference rule below is added?

Hh—0
tHxXth—0

	Part I Preliminaries
	Introduction
	Structure and Meaning
	Syntax, Types and Pragmatics
	Semantics
	Mathematical Models of Computation

	A Taste of Semantics Methods: Numerical Expressions
	Applications of Semantics
	Key Topics and Techniques
	Induction and Recursion
	Semantic Domains
	Bisimulation
	Temporal and Modal Logics
	Probabilistic Systems

	Chapters Contents and Reading Guide
	Further Reading
	References

	Preliminaries
	Notation
	Basic Notation
	Signatures and Terms
	Substitutions
	Unification Problem

	Inference Rules and Logical Systems
	Logic Programming
	Problems

	Part II IMP: a simple imperative language
	Operational Semantics of IMP
	Syntax of IMP
	Arithmetic Expressions
	Boolean Expressions
	Commands
	Abstract Syntax

	Operational Semantics of IMP
	Memory State
	Inference Rules
	Examples

	Abstract Semantics: Equivalence of Expressions and Commands
	Examples: Simple Equivalence Proofs
	Examples: Parametric Equivalence Proofs
	Examples: Inequality Proofs
	Examples: Diverging Computations

	Problems

	Induction and Recursion
	Noether Principle of Well-founded Induction
	Well-founded Relations
	Noether Induction
	Weak Mathematical Induction
	Strong Mathematical Induction
	Structural Induction
	Induction on Derivations
	Rule Induction

	Well-founded Recursion
	Problems

	Partial Orders and Fixpoints
	Orders and Continuous Functions
	Orders
	Hasse Diagrams
	Chains
	Complete Partial Orders

	Continuity and Fixpoints
	Monotone and Continuous Functions
	Fixpoints

	Immediate Consequence Operator
	The Operator R"0362R
	Fixpoint of R"0362R

	Problems

	Denotational Semantics of IMP
	-Notation
	-Notation: Main Ideas
	Alpha-Conversion, Beta-Rule and Capture-Avoiding Substitution

	Denotational Semantics of IMP
	Denotational Semantics of Arithmetic Expressions: The Function A
	Denotational Semantics of Boolean Expressions: The Function B
	Denotational Semantics of Commands: The Function C

	Equivalence Between Operational and Denotational Semantics
	Equivalence Proofs For Expressions
	Equivalence Proof for Commands

	Computational Induction
	Problems

	Part III HOFL: a higher-order functional language
	Operational Semantics of HOFL
	Syntax of HOFL
	Typed Terms
	Typability and Typechecking

	Operational Semantics of HOFL
	Problems

	Domain Theory
	The Flat Domain of Integer Numbers Z
	Cartesian Product of Two Domains
	Functional Domains
	Lifting
	Function's Continuity Theorems
	Useful Functions
	Problems

	HOFL Denotational Semantics
	HOFL Semantic Domains
	HOFL Evaluation Function
	Constants
	Variables
	Binary Operators
	Conditional
	Pairing
	Projections
	Lambda Abstraction
	Function Application
	Recursion

	Continuity of Meta-language's Functions
	Substitution Lemma
	Problems

	Equivalence between HOFL denotational and operational semantics
	Completeness
	Equivalence (on Convergence)
	Operational and Denotational Equivalences of Terms
	A Simpler Denotational Semantics
	Problems

	Part IV Concurrent Systems
	CCS, the Calculus for Communicating Systems
	Syntax of CCS
	Operational Semantics of CCS
	Action Prefix
	Restriction
	Relabelling
	Choice
	Parallel Composition
	Recursion
	CCS with Value Passing
	Recursive Declarations and the Recursion Operator

	Abstract Semantics of CCS
	Graph Isomorphism
	Trace Equivalence
	Bisimilarity

	Compositionality
	Bisimilarity is Preserved by Choice

	A Logical View to Bisimilarity: Hennessy-Milner Logic
	Axioms for Strong Bisimilarity
	Weak Semantics of CCS
	Weak Bisimilarity
	Weak Observational Congruence
	Dynamic Bisimilarity

	Problems

	Temporal Logic and -Calculus
	Temporal Logic
	Linear Temporal Logic
	Computation Tree Logic

	-Calculus
	Model Checking
	Problems

	 -Calculus
	Name Mobility
	Syntax of the -calculus
	Operational Semantics of the -calculus
	Action Prefix
	Choice
	Name Matching
	Parallel Composition
	Restriction
	Scope Extrusion
	Replication
	A Sample Derivation

	Structural Equivalence of -calculus
	Reduction semantics

	Abstract Semantics of the -calculus
	Strong Early Ground Bisimulations
	Strong Late Ground Bisimulations
	Strong Full Bisimilarities
	Weak Early and Late Ground Bisimulations

	Problems

	Part V Probabilistic Systems
	Measure Theory and Markov Chains
	Probabilistic and Stochastic Systems
	Measure Theory
	-field
	Constructing a -field
	Continuous Random Variables
	Stochastic Processes

	Markov Chains
	Discrete and Continuous Time Markov Chain
	DTMC as LTS
	DTMC Steady State Distribution
	CTMC as LTS
	Embedded DTMC of a CTMC
	CTMC Bisimilarity
	DTMC Bisimilarity

	Problems

	Markov Chains with Actions and Non-determinism
	Discrete Markov Chains With Actions
	Reactive DTMC
	DTMC With Non-determinism

	Problems

	PEPA - Performance Evaluation Process Algebra
	From Qualitative to Quantitative Analysis
	CSP
	Syntax of CSP
	Operational Semantics of CSP

	PEPA
	Syntax of PEPA
	Operational Semantics of PEPA

	Problems

	Glossary
	Solutions
	Index

