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DRAFTMathematical reasoning may be regarded
rather schematically as the exercise of a
combination of two facilities, which we may
call intuition and ingenuity.

Alan Turing1

1 The purpose of ordinal logics (from Systems of Logic Based on Ordinals), Proceedings of the
London Mathematical Society, series 2, vol. 45, 1939.
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Preface

The origins of this book lie their roots on more than 15 years of teaching a course on
formal semantics to graduate Computer Science to students in Pisa, originally called
Fondamenti dell’Informatica: Semantica (Foundations of Computer Science: Seman-
tics) and covering models for imperative, functional and concurrent programming. It
later evolved to Tecniche di Specifica e Dimostrazione (Techniques for Specifications
and Proofs) and finally to the currently running Models of Computation, where
additional material on probabilistic models is included.

The objective of this book, as well as of the above courses, is to present different
models of computation and their basic programming paradigms, together with their
mathematical descriptions, both concrete and abstract. Each model is accompanied by
some relevant formal techniques for reasoning on it and for proving some properties.

To this aim, we follow a rigorous approach to the definition of the syntax, the
typing discipline and the semantics of the paradigms we present, i.e., the way in which
well-formed programs are written, ill-typed programs are discarded and the way in
which the meaning of well-typed programs is unambiguously defined, respectively.
In doing so, we focus on basic proof techniques and do not address more advanced
topics in detail, for which classical references to the literature are given instead.

After the introductory material (Part I), where we fix some notation and present
some basic concepts such as term signatures, proof systems with axioms and inference
rules, Horn clauses, unification and goal-driven derivations, the book is divided in
four main parts (Parts II-V), according to the different styles of the models we
consider:

IMP: imperative models, where we apply various incarnations of well-founded
induction and introduce l -notation and concepts like structural recursion,
program equivalence, compositionality, completeness and correctness,
and also complete partial orders, continuous functions, fixpoint theory;

HOFL: higher-order functional models, where we study the role of type systems,
the main concepts from domain theory and the distinction between lazy
and eager evaluation;

ix
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CCS, p: concurrent, non-deterministic and interactive models, where, starting from
operational semantics based on labelled transition systems, we introduce
the notions of bisimulation equivalences and observational congruences,
and overview some approaches to name mobility, and temporal and modal
logics system specifications;

PEPA: probabilistic/stochastic models, where we exploit the theory of Markov
chains and of probabilistic reactive and generative systems to address
quantitative analysis of, possibly concurrent, systems.

Each of the above models can be studied in separation from the others, but previous
parts introduce a body of notions and techniques that are also applied and extended
in later parts.

Parts I and II cover the essential, classic topics of a course on formal semantics.
Part III introduces some basic material on process algebraic models and temporal

and modal logic for the specification and verification of concurrent and mobile
systems. CCS is presented in good detail, while the theory of temporal and modal
logic, as well as p-calculus, are just overviewed. The material in Part III can be used
in conjunction with other textbooks, e.g., on model checking or p-calculus, in the
context of a more advanced course on the formal modelling of distributed systems.

Part IV outlines the modelling of probabilistic and stochastic systems and their
quantitative analysis with tools like PEPA. It poses the basis for a more advanced
course on quantitative analysis of sequential and interleaving systems.

The diagram that highlights the main dependencies is represented below:
Imperative

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Functional
Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Concurrent
Chapter 11

Chapter 12

Chapter 13

Chapter 11

Chapter 12

Chapter 13

Probabilistic
Chapter 11

Chapter 12

Chapter 13

lambda 
notation

induction 
and 

structural 
recursion

CPO and
fixpoint

LTS and 
bisimulation

HM logic

The diagram contains a squared box for each chapter / part and a rounded-corner
box for each subject: a line with a filled-circle end joins a subject to the chapter
where it is introduced, while a line with an arrow end links a subject to a chapter or
part where it is used. In short:

Induction and recursion: various principles of induction and the concept of struc-
tural recursion are introduced in Chapter 4 and used
extensively in all subsequent chapters.
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CPO and fixpoint: the notion of complete partial order and fixpoint compu-
tation are first presented in Chapter 5. They provide the
basis for defining the denotational semantics of IMP and
HOFL. In the case of HOFL, a general theory of product
and functional domains is also introduced (Chapter 8).
The notion of fixpoint is also used to define a particular
form of equivalence for concurrent and probabilistic sys-
tems, called bisimilarity, and to define the semantics of
modal logic formulas.

Lambda-notation: l -notation is a useful syntax for managing anonymous
functions. It is introduced in Chapter 6 and used exten-
sively in Part III.

LTS and bisimulation: Labelled transition systems are introduced in Chapter 11
to define the operational semantics of CCS in terms of the
interactions performed. They are then extended to deal
with name mobility in Chapter 13 and with probabilities
in Part V. A bisimulation is a relation over the states of an
LTS that is closed under the execution of transitions. The
before mentioned bisimilarity is the coarsest bisimulation
relation. Various forms of bisimulation are studied in Part
IV and V.

HM-logic: Hennessy-Milner logic is the logic counterpart of bisimi-
larity: two state are bisimilar if and only if they satisfy the
same set of HM-logic formulas. In the context of proba-
bilistic system, the approach is extended to Larsen-Skou
logic in Chapter 15.

Each chapter of the book is concluded by a list of exercises that span over the main
techniques introduced in that chapter. Solutions to selected exercises are collected at
the end of the book.

Pisa, Roberto Bruni
February 2016 Ugo Montanari
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Chapter 1
Introduction

It is not necessary for the semantics to determine an
implementation, but it should provide criteria for showing that an
implementation is correct. (Dana Scott)

Abstract This chapter overviews the motivation, guiding principles and main con-
cepts used in the book. It starts by explaining the role of formal semantics and
different approaches to its definition, then briefly exposes some important subjects
covered in the book, like domain theory and induction principles and it is concluded
by an explanation of the content of each chapter, together with a list of references to
the literature for studying some topics in more depth or for using some companion
textbooks in conjunction with the current text.

1.1 Structure and Meaning

Any programming language is fully defined in terms of three essential features:

Syntax: refers to the appearance of the programs of the language;
Types: restrict the syntax to enforce suitable properties on programs;
Semantics: refers to the meanings of (well-typed) programs.

Example 1.1. The alphabet of roman numerals, the numeric system used in ancient
Rome, consists of seven letters drawn from the Latin alphabet. A value is assigned
to each letter (see Table 1.1) and a number n is expressed by juxtaposing some
letters whose values sum to n. Not all sequences are valid though. Symbols are
usually placed from left to right, starting with the largest value and ending with the
smallest value. However, to avoid four repetitions in a row of the same letter, like
IIII, subtractive notation is used: when a symbol with smaller value u is placed to
the left of a symbol with higher value v they represent the number v � u. So the
symbol I can be placed before V or X; the symbol X before L or C and the symbol
C before D or M, and 4 is written IV instead of IIII. While IX and XI are both
correct sequences, with values 9 and 11, respectively, the sequence IXI is not correct
and has no corresponding value. The rules that prescribe the correct sequences of
symbols define the (well-typed) syntax of roman numerals. The rules that define how
to evaluate roman numerals to positive natural numbers give their semantics.

3
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Table 1.1: Alphabet of roman numerals

Symbol I V X L C D M

Value 1 5 10 50 100 500 1000

1.1.1 Syntax, Types and Pragmatics

The syntax of a formal language tells us which sequences of symbols are valid
statements and which ones make no sense and should be discarded.

Mathematical tools such as regular expressions, context-free grammars, and
Backus-Naur Form (BNF) are now widely applied tools for defining the syntax
of formal languages. They are studied in every computer science degree and are
exploited in technical appendices of many programming language manuals to define
the grammatical structure of programs without ambiguities.

Types can be used to limit the occurrence of errors or to allow compiler opti-
misations or to reduce the risk of introducing bugs or just to discourage certain
programming malpractices. Types are often presented as set of logic rules, called
type systems that are used to assign a type unambiguously to each program and
computed value. Different type systems can be defined over the same language to
enforce different properties.

However, grammars and types do not explain what a correctly written program
means. Thus, every language manual also contains natural language descriptions
of the meaning of the various constructs, how they should be used and styled, and
example code fragments. This attitude falls under the pragmatics of a language,
describing, e.g., how the various features should be used, which auxiliary tools
are available (syntax checkers, debuggers, etc.). Unfortunately this leaves space to
different interpretations that can ultimately lead to discordant implementations of the
same language or to compilers that rely on questionable code optimisation strategies.

If an official formal semantics of a language would be available as well, it could
accompany the language manual too and solve any ambiguity for implementors and
programmers. This is not yet the case because effective techniques for specifying the
run-time behaviour of programs in a rigorous manner have proved much harder to
develop than grammars.

1.1.2 Semantics

The origin of the word ‘semantics’ can be traced back to a book by French philologist
Michel Bréal (1832–1915), published in 1900, where it referred to the study of how
words change their meanings. Subsequently, the word ‘semantics’ has also changed
its meaning, and it is now generally defined as the study of the meanings of words
and phrases in a language.
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In Computer Science, the semantics is concerned with the study of the meaning of
(well-typed) programs.

The studies in formal semantics are not always easily accessible to a student of
computer science or engineering, without a good background in mathematical logic
and, as a consequence, they are often regarded as an exoteric subject by people not
familiar enough with the mathematical tools involved.

Following [36] we can ask ourselves: what do we gain by formalising the seman-
tics of a programming language?

After all, programmers can write programs that are trusted to “work as expected”,
once they have been thoroughly tested, so how would the effort spent in a rigorous
formalisation of the semantics pay back? An easy answer is that today, in the era of
the Internet of Things and cyberphysical systems, our lives, the machines and devices
we use, and the entire world run on software. It is not enough to require that medical
implants, personal devices, planes and nuclear reactors seem “to work as expected”!

To give a more circumstantiated answer, we can start from the related question:
What was gained when language syntax was formalised?

It is generally understood that the formalisation of syntax leads, e.g., to the
following benefits:

1. it standardises the language; this is crucial

• to programmers, as a guide to write syntactically correct programs, and
• to implementors, as a reference to develop a correct parser.

2. it permits a formal analysis of many properties, like finding and resolving parsing
ambiguities.

3. it can be used as input to a compiler front-end generating tool, such as Yacc,
Bison, Xtext. In this way, from the syntax definition one can automatically derive
an implementation of the compiler’s front-end.

Providing a formal semantics definition of a programming language can then lead
to similar benefits:

1. it standardises a machine-independent specification of the language; this is crucial:

• to programmers, for improving the programs they write, and
• to implementors, to design a correct and efficient code generator.

2. it permits a formal analysis of program properties, like type safety, termination,
specification compliance and program equivalence.

3. it can be used as input to a compiler back-end generating tool. In this way, the
semantics definition gives also the (prototypal and possibly inefficient) implemen-
tation of the back end of the language’s compiler. Moreover, efficient compilers
need to adhere to the semantics and their optimisations need correctness proofs.

What is then the semantics of a programming language?
A crude view is that the semantics of a programming language is defined by (the

back-end of) its compiler or interpreter: from the source program to the target code
executed by the computer. This view is clearly not acceptable because, e.g., it refers
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to specific pieces of commercial hardware and software, the specification is not
good for portability, it is not at the right level of abstraction to be understood by a
programmer, it is not at the right level of abstraction to state and prove interesting
properties of programs (for example, two programs written for the same purpose
by different programmers are likely different, even if they should have the same
meaning). Finally, if different implementations are given, how do we know that they
are correct and compatible?

Example 1.2. We can hardly claim to know that two programs mean the same if we
cannot tell what a program means. For example, consider the Java expressions:

x + (y + z) (x + y) + z

Are they equivalent? Can we replace the former with the latter (and viceversa) in
a program, without changing its meaning? Under which circumstances?1

To give a semantics for a programming language means to define the behaviour
of any program written in this language. As there are infinitely many programs,
one would like to have a finitary description of the semantics that can take into
account any of them. Only when the semantics is given one can prove such important
properties as program equivalence, or program correctness.

1.1.3 Mathematical Models of Computation

In giving a formal semantics to a programming language we are concerned with
building a mathematical model: Its purpose is to serve as a basis for understanding
and reasoning about how programs behave. Not only is a mathematical model
useful for various kinds of analysis and verification, but also, at a more fundamental
level, because the activity of trying to define precisely the meanings of program
constructions can reveal all kinds of subtleties which it is important to be aware of.

Unlike the acceptance of BNF as a standard definition method for syntax, there
is little hope that a single definition method will take hold for semantics. This is
because semantics

• is harder to formalise than syntax,
• has a wider variety of applications,
• is dependent on the properties we want to tackle, i.e., different models are best

suited for tackling different issues.

In fact, different semantic styles and models have been developed for different
purposes. The overall aim of the book is to study the main semantic styles, compare
their expressiveness, and apply them to study program properties. To this aim it is
fundamental to gain acquaintance with the principles and theories on which such
semantic models are based.
1 Remind that the ‘+’ is overloaded in Java: it sums integers, floating points and concatenates strings.
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Classically, semantics definition methods fall roughly into three groups: Opera-
tional, denotational and axiomatic. In this book we will focus mainly on the first two
kinds of semantics, which find wider applicability.

Operational Semantics

In the operational semantics it is of interest how the effect of a computation is
achieved. Some kind of abstract machine2 is first defined, then the operational
semantics describes the meaning of a program in terms of the steps/actions that this
machine executes. The focus of operational semantics is thus on states and state
transformations.

An early notable example of operational semantics was concerned with the seman-
tics of LISP (LISt Processor) by John McCarthy (1927–2011) [19]. A later example
was the definition of the semantics of Algol 68 over a hypothetical computer [42].

In 1981, Gordon Plotkin (1946–) introduced the structural operational seman-
tics style (SOS-style) in the technical report [28] which is still one of the most
cited technical reports in computer science, only recently revised and re-issued in a
journal [30, 31].

Gilles Kahn (1946-2006) introduced another form of operational semantics, called
natural semantics, or big-step semantics, in 1987, where possibly many steps of
execution are incorporated into a single logical derivation [16].

It is relatively easy to write the operational semantics in the form of Horn clauses,
a particular form of logical implications. In this way, they can be interpreted by a
logic programming system, such as Prolog.3

Because of the strong connection with the syntactic structure and the fact that the
mathematics involved is usually less complicated than in other semantic approaches,
SOS-style operational semantics can provide the programmers with a concise and
accurate description of what the language constructs do. In fact, it is syntax-oriented,
inductive and easy to grasp. Operational semantics is also versatile: it applies with
minor variations to most different computing paradigms.

Denotational Semantics

In denotational semantics, the meaning of a well-formed program is some mathemati-
cal object (e.g., a function from input data to output data). The steps taken to calculate

2 The term machine ordinarily refers to a physical device that performs mechanical functions. The
term abstract distinguishes a physically existent device from one that exists in the imagination of
its inventor or user: it is a convenient conceptual abstraction that leaves out many implementation
details. The archetypical abstract machine is the Turing machine.
3 However, we have to leave aside issues about performance and the fact that Prolog is not complete,
because it exploits a depth-first exploration strategy for the next step to execute: backtracking out of
wrong attempted steps is only possible if they are finitely many.
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the output and the abstract machine where they are executed are unimportant: Only
the effect is of interest, not how it is obtained.

The essence of denotational semantics lies in the principle of compositionality: the
semantics takes the form of a function that assigns an element of some mathematical
domain to each individual construct, in such a way that the meaning of a composite
construct does not depend on the particular form of the constituent constructs, but
only on their meanings.

Denotational semantics originated in the pioneering work of Christopher Strachey
(1916–1975) and Dana Scott (1932–) in the late 1960s and in fact it is sometimes
called Scott-Strachey semantics [38, 37, 39].

Denotational semantics descriptions can also be used to derive implementations.
Still there is a problem with performance: operations that can be efficiently performed
on computer hardware, such as reading or changing the contents of storage cells,
are first mapped to relatively complicated mathematical notions which must then be
mapped back again to a concrete computer architecture.

One limitation is that in the case of concurrent, interactive, non-deterministic
systems the body of mathematics involved in the definition of denotational semantics
is quite heavy.

Axiomatic Semantics

Instead of directly assigning a meaning to each program, axiomatic semantics gives
a description of the constructs in a programming language by providing logical
conditions that are satisfied by these constructs. Axiomatic semantics poses the focus
on valid assertions for proving program correctness: there may be aspects of the
computation and of the effect that are deliberately ignored.

The axiomatic semantics has been put forward by the work of Robert W.Floyd
(1936–2001) on flowchart languages [8] and of Tony Hoare (1934–) on structured
imperative programs [15]. In fact it is sometimes referred to as Floyd-Hoare logic.
The basic idea is that program statements are described by two logical assertions: a
pre-condition, prescribing the state of the system before executing the program, and
a post-condition, satisfied by the state after the execution, when the preconditions
are valid. Using such an axiomatic description it is possible, at least in principle, to
prove the correctness of a program with respect to a specification. Two main forms
of correctness are considered:

Partial: a program is partially correct w.r.t. a pre-condition and a post-condition
if whenever the initial state fulfils the pre-condition and the program
terminates, the final state is guaranteed to fulfil the post-condition. The
partial correctness property does not ensure that the program will terminate,
e.g., a program which never terminates satisfies every property.

Total: a program is totally correct w.r.t. a pre-condition and a post-condition
if whenever the initial state fulfils the pre-condition, then the program
terminates, and the final state is guaranteed to fulfil the post-condition.
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The axiomatic method becomes cumbersome in the presence of modular program
constructs, e.g., goto’s and objects, but also as simple as blocks and procedures.
Another limitation of axiomatic semantics is that it is scarcely applicable to the
case of concurrent, interactive systems, whose correct behaviour often involves
non-terminating computations (for which post-conditions cannot be used).

1.2 A Taste of Semantics Methods: Numerical Expressions

We can give a first, informal overview of the different flavours of semantics styles
we will consider in this book by taking a simple example of numerical expressions.4
Let us consider two syntactic categories Nums and Exp, respectively, for numerals
n 2 Nums and expressions E 2 Exp, defined by the grammar:

n ::= 0 | 1 | 2 | ...

e ::= n | e� e | e⌦ e

The above language of numerical expressions uses the auxiliary set of numerals,
Nums, which are syntactic representations of the more abstract set of natural numbers.

Remark 1.1 (Numbers vs numerals). The natural numbers 0,1,2, ... are mathemat-
ical objects which exist in some abstract world of concepts. They find concrete
representations in different languages. For example, the number 5 is represented by:

• the string “five” in English,
• the string “101” in binary notation,
• the string “V” in roman numerals.

To differentiate between numerals (5) and numbers (5) we use here different fonts.

From the grammar it is evident that there are three ways to build expressions:

• any numeral n is also an expression;
• if we are given any two expressions e0 and e1, then e0 � e1 is also an expression;
• if we are given any two expressions e0 and e1, then e0 ⌦ e1 is also an expression.

In the book we will always use abstract syntax representations, as if all concrete
terms were parsed before we start to work with them.

Remark 1.2 (Concrete and abstract syntax). While the concrete syntax of a language
is concerned with the precise linear sequences of symbols which are valid terms of
the language, we are interested in the abstract syntax, which describes expressions
purely in terms of their structure. We will never be worried about where the brackets
are in expressions like

1�2⌦3

4 The example has been inspired from some course notes on the “Semantics of programming
languages”, by Matthew Hennessy.
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because we will never deal with such unparsed terms.
In other words we are considering only (valid) abstract syntax trees, like

⌦

� 3

1 2

Since it would be tedious to draw trees every time, we use linear syntax and brackets,
like (1�2)⌦3 to save space while avoiding ambiguities.

An Informal Semantics

Since in the expressions we deliberately used some non-standard symbols � and ⌦,
we must define what is their meaning. Programmers primarily learn the semantics
of a language through examples, their intuitions about the underlying computa-
tional model, and some natural language description. An informal description of the
meaning of the expressions we are considering could be the following:

• a numeral n is evaluated to the corresponding natural number n;
• to find the value associated with an expression of the form e0 �e1 we evaluate the

expressions e0 and e1 and take the sum of the results;
• to find the value associated with an expression of the form e0 ⌦e1 we evaluate the

expressions e0 and e1 and take the product of the results.

We hope the reader agrees that the above guidelines are sufficient to determine
the value of any well-formed expression, no matter how large.5

To accompany the description with examples, we can add that:

• 2 is evaluated to 2
• (1�2)⌦3 is evaluated to 9
• (1�2)⌦ (3�4) is evaluated to 21

Since natural language is notoriously prone to mis-interpretations and mis-
understandings, in the following we try to make the above description more accurate.

We show next how the operational semantics can formalise the steps needed
to evaluate an expression over some abstract computational device and how the
denotational semantics can assign meaning to numerical expressions (their valuation).

A Small-Step Operational Semantics

There are several versions of operational semantics for the above language of expres-
sions. The first one we present is likely familiar to you: it simplifies expressions until
a value is met. This is achieved by defining judgements of the form

5 Note that we are not telling the order in which e0 and e1 must be evaluated: is it important?
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n0 �n1 ! n
n = n0 +n1 (sum)

e0 ! e0
0

e0 � e1 ! e0
0 � e1

(sumL)
e1 ! e0

1

e0 � e1 ! e0 � e0
1

(sumR)

n1 ⌦n2 ! n
n = n1 ⇥n2 (prod)

e0 ! e0
0

e0 ⌦ e1 ! e0
0 ⌦ e1

(prodL)
e1 ! e0

1

e0 ⌦ e1 ! e0 ⌦ e0
1

(prodR)

Fig. 1.1: Small-step semantics rules for numerical expressions

e0 ! e1

to be read as: after performing one step of evaluation of e0, the expression e1 remains
to be evaluated.

Small-step semantics formally describes how individual steps of a computation
take place on an abstract device, but it ignores details like the use of registers and
storage addresses. This makes the description independent of machine architectures
and implementation strategies.

The logic inference rules are written in the general form (see Section 2.2):

premises
conclusion

side-condition (rule name)

meaning that if the premises and the side-condition are met then the conclusion
can be drawn, where the premises consist of one, none or more judgements and the
side-condition is a single boolean predicate. The rule name is just a convenient label
that can be used to refer the rule. Rules with no premises are called axioms and their
conclusion is postulated to be always valid.

The rules for the expressions are given in Figure 1.1. For example, the rule sum
says that � applied to two numerals evaluates to the numeral representing the sum of
the two arguments, while the rule sumL (respectively, sumR) says that we are allowed
to simplify the left (resp., right) argument. Analogously for product.

For example, we can derive both the judgements

(1�2)⌦ (3�4) ! 3⌦ (3�4) (1�2)⌦ (3�4) ! (1�2)⌦7

as witnessed by the formal derivations

1�2 ! 3
3 = 1+2 (sum)

(1�2)⌦ (3�4) ! 3⌦ (3�4)
(prodL)

3�4 ! 7
7 = 3+4 (sum)

(1�2)⌦ (3�4) ! (1�2)⌦7
(prodR)

A derivation is represented as an (inverted) tree, with the goal to be verified at the
root. The tree is generated by applications of the defining rules, with the terminating
leaves being generated by axioms. As derivations tend to grow large, we will intro-
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duce a convenient alternative notation for them in Chapter 2 (see Example 2.5 and
Section 2.3) and will use it extensively in the subsequent chapters.

Note that even for a deterministic program, there can be many different computa-
tion sequences leading to the same final result, since the semantics may not specify a
totally ordered sequence of evaluation steps.

If we want to enforce a specific evaluation strategy, then we can change the rules
so to guarantee, e.g., that the left-most occurrence of an operator �/⌦ which has
both its operands already evaluated is always executed first, while the evaluation
of the second-operand is conducted only after the left-operand has been evaluated.
We show only the two rules that need to be changed (changes are highlighted with
boxes):

e1 ! e0
1

n0 � e1 ! n0 � e0
1

(sumR)
e1 ! e0

1

n0 ⌦ e1 ! n0 ⌦ e0
1

(prodR)

Now the step judgement

(1�2)⌦ (3�4) ! (1�2)⌦7

is no longer derivable.
Instead, it is not difficult to derive the judgements:

(1�2)⌦ (3�4) ! 3⌦ (3�4) 3⌦ (3�4) ! 3⌦7 3⌦7 ! 21

The steps can be composed: let us write

e0 !k ek

if e0 can be reduced to ek in k-steps: that is there exists e1,e2, ...,ek�1 such that we
can derive the judgements

e0 ! e1 e1 ! e2 ... ek�1 ! ek

This includes the case when k = 0: then ek must be the same as e0, i.e., in 0 steps any
expression can reduce to itself.

In our example, by composing the above steps, we have

(1�2)⌦ (3�4) !3 21

We also write
e 6!

when no expression e0 can be found such that e ! e0.
It is immediate to see that for any numeral n, we have n 6!, as no conclusion of

the inference rules has a numeral as source of the transition.
To fully evaluate an expression, we need to indefinitely compute successive

derivations until eventually a final numeral is obtained, that cannot be evaluated



DRAFT

1.2 A Taste of Semantics Methods: Numerical Expressions 13

n⇣ n
(num)

e0 ⇣ n1 e1 ⇣ n2
e0 � e1 ⇣ n

n = n1 +n2 (sum)
e0 ⇣ n1 e1 ⇣ n2

e0 ⌦ e1 ⇣ n
n = n1 ⇥n2 (prod)

Fig. 1.2: Natural semantics for numerical expressions

further. We write
e !⇤ n

to mean that there is some natural number k such that e !k n, i.e., e can be evaluated
to n in k steps. The relation !⇤ is called the reflexive and transitive closure of !.
Note that we have, e.g., n !⇤ n for any numeral n.

In our example we can derive the judgement

(1�2)⌦ (3�4) !⇤ 21

Small-step operational semantics will be especially useful in Parts IV and V to
assign different semantics to non-terminating systems.

A Big-Step Operational Semantics (or Natural Semantics)

Like small-step semantics, a natural semantics is a set of inference rules, but a
complete computation is done as a single, large derivation. For this reason, a natural
semantics is sometimes called a big-step operational semantics.

Big-step semantics formally describes how the overall results of the executions are
obtained. It hides even more details than the small-step operational semantics. Like
small-step operational semantics, natural semantics shows the context in which a com-
putation step occurs, and like denotational semantics, natural semantics emphasises
that the computation of a phrase is built from the computations of its sub-phrases.

Natural semantics have the advantage of often being simpler (needing fewer
inference rules) and of often directly corresponding to an efficient implementation of
an interpreter for the language. In our running example, we disregard the individual
steps that led to the result and focus on the final outcome, i.e., we formalise the
predicate e !⇤ n. Typically, the same predicate symbol ! is used also in the case of
natural semantics. To avoid ambiguities and to not overload the notation, here, for
the sake of the running example, we use a different symbol. We define the predicate

e ⇣ n

to be read as: the expression e is (eventually) evaluated to n.
The rules are reported in Figure 1.2. This time only three rules are needed, which

immediately correspond to the informal semantics we gave for numerical expressions.
We can now verify that the judgement
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(1�2)⌦ (3�4) ⇣ 21

can be derived as follows:

1⇣ 1
(num)

2⇣ 2
(num)

1�2⇣ 3
3 = 1+2 (sum) 3⇣ 3

(num)
4⇣ 4

(num)

3�4⇣ 7
7 = 3+4 (sum)

(1�2)⌦ (3�4) ⇣ 21
21 = 3⇥7 (prod)

Small-step operational semantics gives more control of the details and order
of evaluation. These properties make small-step semantics more convenient when
proving type soundness of a type system against an operational semantics. Natural
semantics can lead to simpler proofs, e.g., when proving the preservation of correct-
ness under some program transformation. Natural semantics is also very useful to
define reduction to canonical forms.

An interesting drawback of natural semantics is that semantics derivations can be
drawn only for terminating programs. The main disadvantage of natural semantics is
thus that non-terminating (diverging) computations do not have an inference tree.

We will exploit natural semantics mainly in Parts II and III of the book.

A Denotational Semantics

Differently from operational semantics, denotational semantics is concerned with
manipulating mathematical objects and not with executing programs.

In the case of expressions, the intuition is that a term represents a number (ex-
pressed in form of a calculation). So we can choose as a semantic domain the set
of natural numbers N, and the interpretation function will then map expressions to
natural numbers.

To avoid ambiguities between pieces of syntax and mathematical objects, we
usually enclose syntactic terms within a special kind of brackets J·K that serve as a
separation. It is also common, when different interpretation functions are considered,
to use calligraphic letters to distinguish the kind of terms they apply to (one for each
syntax category).

In our running example, we define two semantics functions:

N J·K : Nums ! N
E J·K : Exp ! N

Remark 1.3. When we will study more complex languages, we will find that we
need more complex (and less familiar) domains than N. For example, as originally
developed by Strachey and Scott, denotational semantics provides the meaning of
a computer program as a function that maps input into output. To give denotations
to recursively defined programs, Scott proposed working with continuous functions
between domains, specifically complete partial orders.
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Notice that our choice of semantic domain has certain immediate consequences
for the semantics of our language: it implies that every expression will mean exactly
one number! Without having defined yet the interpretation functions, and contrary to
the operational semantics definitions, anyone looking at the semantics already knows
that the language is:

deterministic: each expression has at most one answer;
normalising: every expression has an answer.

Giving a meaning to numerals is immediate

N JnK = n

For composite expressions, the meaning will be determined by composing the
meaning of the arguments

E JnK = N JnK
E Je0 � e1K = E Je0K+E Je1K
E Je0 ⌦ e1K = E Je0K⇥E Je1K

We have thus defined the interpretation function by induction on the structure of
the expressions and it is

compositional: the meaning of complex expressions is defined in terms of the
meaning of the constituents.

As an example, we can interpret our running expression:

E J(1�2)⌦ (3�4)K = E J1�2K⇥E J3�4K
= (E J1K+E J2K)⇥ (E J3K+E J4K)
= (N J1K+N J2K)⇥ (N J3K+N J4K)
= (1+2)⇥ (3+4) = 21

Denotational semantics is best suited for sequential systems and thus exploited in
Parts II and III.

Semantic Equivalence

We have now available three different semantics for numerical expressions:

e !⇤ n e ⇣ n E JeK

and we are faced with several questions:

1. Is it true that for every expression e there exists some numeral n such that e !⇤ n?
The same property, often referred to as normalisation can be asked also for e ⇣ n,
while it is trivially satisfied by E JeK.
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2. Is it true that if e !⇤ n and e !⇤ m we have n = m?
The same property, often referred to as determinacy can be asked also for e ⇣ n,
while it is trivially satisfied by E JeK.

3. Is it true that e !⇤ n iff e ⇣ n?
This has to do with the consistency of the semantics and the question can be posed
between any two of the three semantics we have defined.

We can also derive some intuitive relations of equivalence between expressions:

• Two expressions e0 and e1 are equivalent if for any numeral n, e0 !⇤ n iff e1 !⇤ n.
• Two expressions e0 and e1 are equivalent if for any numeral n, e0 ⇣ n iff e1 ⇣ n.
• Two expressions e0 and e1 are equivalent if E Je0K = E Je1K.

Of course, if we prove the consistency of the three semantics, then we can conclude
that the three notions of equivalence coincide.

Expressions with Variables

Suppose now we want to extend numerical expressions with the possibility to include
formal parameters in them, drawn from an infinite set X , ranged over by x.

e ::= x | n | e� e | e⌦ e

How can we evaluate an expression like (x�4)⌦ y? We cannot, unless the values
assigned to x and y are known: in general, the result will depend on them.

Operationally, we must provide such an information to the machine, e.g., in
form of some memory s : X ! N that is part of the machine state. We use the
notation he,si to denote the state where e is to be evaluated in the memory s . The
corresponding small-/big-step rules for variables would then look like:

hx,si ! n
n = s(x) (var)

hx,si ⇣ n
n = s(x) (var)

Exercise 1.1. The reader may complete the missing rules as an exercise.

Denotationally, the interpretation function needs to receive a memory as an addi-
tional argument:

E J·K : Exp ! ((X ! N) ! N)

Note that this is quite different from the operational approach, where the memory
is part of the state.

The corresponding defining equations would then look like:
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E JnKs = N JnK
E JxKs = s(x)

E Je0 � e1Ks = E Je0Ks +E Je1Ks
E Je0 ⌦ e1Ks = E Je0Ks ⇥E Je1Ks

Semantics equivalences must then take into account all the possible memories
where expressions are evaluated. To say that e0 is denotationally equivalent to e1 we
must require that for any memory s : X ! N we have E Je0Ks = E Je1Ks .

Exercise 1.2. The reader is invited to restate the consistency between the various
semantics and the operational notions of equivalences between expressions by taking
memories into account.

1.3 Applications of Semantics

Whatever care is taken to make a natural language description of programming
languages precise and unambiguous, there always remain some points that are open
for several different interpretations. Formal semantics can provide a useful basis
for the language design, its implementation, and the analysis and verification of
programs.

In the following we summarise some benefits for each of the above categories.

Language Design

The worst form of design errors are unintentional ones, where the language behaves
in a way that is not expected and even less desired by its designers. The effort spent
in fixing a formal semantics for a language is the best way of detecting weak points
in the language design itself. Starting from the natural language descriptions of the
various features, subtle ambiguities, inconsistencies, complexities and anomalies will
emerge, and better ways of dealing with each feature will be discovered.

While the presence of problems can be demonstrated by exhibiting example
programs, their absence can only be proved by exploiting a formal semantics. Opera-
tional semantics, denotational semantics and axiomatic semantics, in this order, are
increasingly sensitive tools for detecting problems in language design.

Increasingly, language designers are using semantics definitions to formalise their
creations. Famous examples include Ada [6], Scheme [17] and ML [22]. A more
recent witness is the use of Horn clauses to specify the type checker in the Java
Virtual Machine version 7.6

6
http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf

http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
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Implementation

Semantics can be used to validate prototype implementations of programming lan-
guages, to verify the correctness of code analysis techniques exploited in the im-
plementation, like type checking, and to certify many useful properties, like the
correctness of compilers optimisations.

A common phenomenon is the presence of underspecified behaviour in certain
circumstances. In practice, such underspecified behaviours can mine programs porta-
bility from one implementation to another.

Perhaps the most significant application of operational semantics definitions is
the straightforward generation of prototypal implementations, where the behaviour
of programs can be simulated and tested, even if the underlying interpreter can be
inefficient. Denotational semantics can also provide itself a good starting point for
automatic language implementation. Automatic generation of implementations is not
the only way in which formal semantics can help implementors. If a formal model is
available, then hand-crafted implementations can be related to the formal semantics,
e.g., to guarantee their correctness.

Analysis and Verification

Semantics offers the main support for reasoning about programs, specifications,
implementations and their properties, both mechanically and by hand. It is the
unique mean to state that an implementation conforms to a specification, or that two
programs are equivalent, or that a model satisfies some property.

For example, let us consider the following OCaml-like functions

let rec fib n = match n with

0 -> 0

| 1 -> 1

| x -> fib (x-1) + fib (x-2)

let fib n = let rec faux a b cnt = match cnt with

0 -> b

| x -> faux (a+b) a (x-1)

in faux 1 0 n

The second program offers a much more efficient version of the Fibonacci numbers
calculation (the number of recursive calls is linear in n, as opposed to the first program
where the number of recursive calls is exponential in n). If the two versions can be
proved equivalent from the functional point of view, then we can safely replace the
first version with the better performing one.
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Synergy Between Different Semantics Approaches

It would be wrong to view different semantics styles as in opposition to each other.
They each have their uses and their combined use is more than the sum of parts.
Roughly:

• A clear operational semantics is very helpful in implementation and in proving
program and language properties.

• Denotational semantics provides the deepest insights to the language designer,
being sustained by a rich mathematical theory.

• Axiomatic semantics can lead to strikingly elegant proof systems, useful in devel-
oping as well as verifying programs.7

As discussed above, the objective of the book is to present different models of
computation, their programming paradigms, their mathematical descriptions, and
some formal analysis techniques for reasoning about program properties. We shall
focus on the operational and denotational semantics.

A longstanding research topic is the relationship between the different forms of
semantic definitions. For example, while the denotational approach can be convenient
when reasoning about programs, the operational approach can drive the implementa-
tion. It is therefore of interest whether a denotational definition is equivalent to an
operational one.

In mathematical logic, one uses the concepts of soundness and completeness to
relate a logic’s proof system to its interpretation, and in semantics there are similar
notions of soundness and adequacy to relate one semantics to another.

We show how to relate different kinds of semantics and program equivalences,
reconciling whenever possible the operational, denotational and logic views by prov-
ing some relevant correspondence theorems. Moreover, we discuss the fundamental
ideas and methods behind these approaches.

The operational semantics fixes an abstract and concise operational model for the
execution of a program (in a given environment). We define the execution as a proof
in some logical system that justifies how the effect is achieved and once we are at
this formal level, it will be easier to prove properties of the program.

The denotational semantics describes an explicit interpretation function over a
mathematical domain. The interpretation function for a typical imperative language
is a mapping that, given a program, returns a function from any initial state to the
corresponding final state, if any (as programs may not terminate). We cover mostly
basic cases, without delving into the variety of options and features that are available
to the language designer.

The correspondence is well-exemplified over the the first two paradigms we
focus on: a simple IMPerative language called IMP, and a Higher-Order Functional
Language called HOFL. For both of them we define what are the programs and in
the case of HOFL we also define what are the infinitely many types we can handle.

7 Axiomatic semantics is mostly directed towards the programmer, but its wide application is
complicated by the fact that it is often difficult (more than denotational semantics) to give a clear
axiomatic semantics to languages that were not designed with this in mind.
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Then, we define their operational semantics, their denotational semantics and finally,
to some extent, we prove the correspondence between the two.

As explained later in more detail, in the case of the last two paradigms we consider
in the monograph, for concurrent and probabilistic systems, the denotational seman-
tics becomes more complex and we replace its role by suitable logics: two systems
are then considered equivalent if they satisfy exactly the same formulas in the logic.
Also the perspective of the operational semantics is shifted from the computation
of a result to the observable interactions with the environment and two systems are
considered as equivalent if they exhibit the same behaviour (the equivalence is called
abstract semantics). Nicely, the behavioural equivalence induced by the operational
semantics can be shown to coincide with the logical equivalence above.

1.4 Key Topics and Techniques

1.4.1 Induction and Recursion

Proving existential statements can be done by exhibiting a specific witness, but
proving universally quantified statements is more difficult, because all the elements
must be considered (for disproving it, we can again exhibit a single counterexample)
and there can be infinitely many elements to check.

The situation is improved when the elements are generated in some finitary way.
For example:

• any natural number n can be obtained by taking the successor of 0 for n times;
• any well-formed program is obtained by repeated applications of the productions

of some grammar;
• any theorem derived in some logic system is obtained by applying some axioms

and inference rules to form a (finite) derivation tree;
• any computation is obtained by composing single steps.

If we want to prove non-trivial properties of a program or of a class of programs,
we usually have to use induction principles. The most general notion of induction is
the so called well-founded induction (or Noether induction) and we derive from it all
the other inductions principles.

In the above cases (arbitrarily large but finitely generated elements) we can exploit
the induction principle to prove a universally quantified statement by showing that

base case: the statement holds in all possible elementary cases (e.g., 0, the sen-
tences of the grammar obtained by applying productions involving
non-terminal symbols only, the basic derivations of a proof system
obtained by applying the axioms, the initial step of a computation);

inductive case: and that the statement holds in the composite cases (e.g. succ(n),
the terms of the grammar obtained by applying productions in-
volving non-terminal symbols, the derivations of a proof system
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obtained by applying an inference rule to smaller derivations, a
computation of n+1 steps, etc.), under the assumption that it holds
in any simpler case (e.g., for any k  n, for any sub-terms, for any
smaller derivation, for any computation whose length is smaller or
equal than n).

Exercise 1.3. Induction can be deceptive. Let us consider the following argument for
proving that all cats are the same colour.

Let P(n) be the proposition that: In a group of n cats, all cats are the same colour
The statement is trivially true for n = 1 (base case).
For the inductive case, suppose that the statement is true for n  k. Take a group

of k +1 cats: we want to prove that they are the same colour.
Align the cats along a line. Form two groups of k cats each: the first k cats in the

line and the last k cats of the line. By inductive hypothesis, the cats in the two groups
are the same colours. Since the cat in the middle of the line belongs to both groups,
by transitivity all cats in the line are the same colour. Hence P(k +1) is true.

k k

k + 1

By induction, P(n) is true for all n 2 w .
Hence, all cats are the same colour.
We know that this cannot be the case: What’s wrong with the above reasoning?

The usual proof technique for proving properties of a natural semantics definition
is induction on the height of the derivation trees that are generated from the semantics,
or is the special case of rule induction.

base cases: P holds for each axiom, and
inductive cases: for each inference rule, if P holds for the premises, then it holds

for the conclusion.

For proving properties of a denotational semantics, induction on the structure of
the terms is often a convenient proof strategy.

Defining the denotational semantics of a program by structural recursion means
to specify its meaning in terms of the meanings of its components. We will see that
induction and recursion are very similar: for both induction and recursion we will
need well-founded models.
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1.4.2 Semantic Domains

The choice of a suitable semantic domain is not always as easy as in the example of
numerical expressions.

For example, the semantics of programs is often formulated in a functional space,
from the domain of states to itself (i.e., a program is seen as a state-transformation).
The functions we need to consider can be partial ones, if the programs can diverge.
Note that the domain of states can also be a complex structure, e.g., a state can be an
assignment of values to variables.

If we take a program which is cyclic or recursive, then we have to express these
notions at the level of the meanings, which presents some technical difficulties.

A recursive program p contains a call to itself, therefore to assign a meaning JpK
to the program p we need to solve a recursive equation like:

JpK = f (JpK). (1.1)

In general, it can happen than such equations have none, one or many solutions.
Solutions to recursive equations are called fixpoints.

Example 1.3. Let us consider the domain of natural numbers

n = 2⇥n has only one solution: n = 0
n = n+1 has no solution
n = 1⇥n has many solutions: any n

Example 1.4. Let us consider the domain of sets of integers

X = X \{1} has two solutions: X = ? or X = {1}
X = N\X has no solution
X = X [{1} has many solutions: any M ◆ {1}

In order to provide a general solution to this kind of problems, we resort to the
theory of complete partial orders with bottom and of continuous functions.

In the functional programming paradigm, a higher-order functional language can
use functions as arguments to other functions, i.e., spaces of functions must also be
considered as forming data types. This makes the language’s domains more complex.
Denotational semantics can be used to understand these complexities; an applied
branch of mathematics called domain theory is used to formalise the domains with
algebraic equations.

Let us consider a domain D where we interpret the elements of some data type.
The idea is that two elements x,y 2 D are not necessarily separated, but one, say y
can be a better version of what x is trying to approximate, written

x v y

with the intuition that y is consistent with x and is (possibly) more accurate than x.
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Concretely, a special interesting case is when one can take two partial functions
f ,g and say that g is a better approximation than f if whenever f (x) is defined then
also g(x) is defined and g(x) = f (x). But g can be defined on elements over which f
is not.

Note that if we see (partial) functions as relations (sets of pairs (x, f (x))), then
the above concept boils down to set inclusion.

For example, we can progressively approximate the factorial function by taking
the sequence of partial functions

? ✓ {(1,1)}{(1,1) , (2,2)} ✓ {(1,1) , (2,2) , (3,6)} ✓ {(1,1) , (2,2) , (3,6) , (4,24)} ✓ · · ·

Now, it is quite natural to require that our notion of approximation v is reflexive,
transitive and antisymmetric: this means that our domain D is a partial order.

Often there is an element, called bottom and denoted by ?, which is less defined
than any other element: in our example about partial function, the bottom element is
the partial function ?.

When we apply a function f (determined by some program) to elements of D it is
also quite natural to require that the more accurate the input, the more accurate the
result:

x v y ) f (x) v f (y)

this means that our functions of interest are monotonic.
Now suppose we are given an infinite sequence of approximations

x0 v x1 v x2 v ... v xn v ...

it seems reasonable to suppose that the sequence tends to some limit that we denote
as
F

n xn and moreover that mappings between data types are well-behaving w.r.t.
limits, i.e., that data transformations are continuous:

f

 
G

n
xn

!
=
G

n
f (xn)

Interestingly, one can prove that for a function to be continuous in several variables
jointly, it is sufficient that it be continuous in each of its variables separately.

Kleene’s fixpoint theorem ensures that when continuous functions are considered
over complete partial orders (with bottom), then a suitable least fixpoint exists and
tells us how to compute it. The fixpoint theory is first applied to the case of IMP
semantics and then extended to handle HOFL. The case of HOFL is more complex
because we are working on a more general situation where functions are first class
citizens.

When defining coarsest equivalences over concurrent processes, we also present a
weaker version of the fixpoint theorem by Knaster and Tarski that can be applied to
monotone functions (not necessarily continuous) over complete lattices.



DRAFT

24 1 Introduction

1.4.3 Bisimulation

The models we use for IMP and HOFL are not appropriate for concurrent and
interactive systems, like the very common network based applications: on the one
hand we want their behaviour not to depend as much as possible on the speed
of processes, on the other hand we want to permit infinite computations and to
differentiate among them on the basis of the interactions they can undertake. For
example, in the case of IMP and HOFL all diverging programs are considered as
equivalent. The typical models for nondeterminism and infinite computations are
(labelled) transition systems. We do not consider time explicitly, but we have to
introduce nondeterminism to account for races between concurrent processes.

In the case of interactive, concurrent systems, as represented by labelled transition
systems, the classic notion of language equivalence from finite automata theory is
not best suited as a criterion for program equivalence, because it does not account
properly for non-terminating computations and non-deterministic behaviour. To see
this, consider the two labelled transition systems below, which can be thought to
model the behaviour of two different coffee machines:

p0

coin
✏✏

p1

coffee

22

tea

ll q0

coin
pp

coin
..q1

coffee //

q2

teaoo

It is evident that any sequence of actions that is executable by the first machine
can be also executed on the second machine, and vice versa. However, from the point
of view of the interaction with the user, the two machines behave very differently:
after the introduction of the coin, the machine on the left still allows the user to
choose between a coffee and a tea; while the machine on right leaves no choice to
the user.

We show that a suitable notion of equivalence between concurrent, interactive
systems can be defined as a behavioural equivalence called bisimulation: it takes
into account the branching structure of labelled transition systems as well as infinite
computations. Equivalent programs are represented by (initial) states which have
correspondent observable transitions leading to equivalent states. Interestingly, there
is a nice connection between fixpoint theory and the definition of the coarsest
bisimulation equivalence, called bisimilarity. Moreover, bisimilarity finds a logical
counterparts in Hennessy-Milner logic, in the sense that two systems are bisimilar
if and only if they satisfy the same Hennessy-Milner logic formulas. Beside using
bisimilarity to compare different realisations of the same system, weaker forms of
bisimilarity can be used to study the compliance between an abstract specification
and a concrete implementation.

The language that we employ in this setting is a process algebra called CCS (Cal-
culus for Communicating Systems). Then, we study systems whose communication
structure can change during execution. These systems are called open-ended. As our
case study, we present the p-calculus, which extends CCS. The p-calculus is quite
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expressive, due to its ability to create and to transmit new names, which can represent
ports, links, and also session names, passwords and so on in security applications.

1.4.4 Temporal and Modal Logics

We investigate also temporal and modal logics designed to conveniently express
properties of concurrent, interactive systems.

Modal logics were conceived in philosophy to study different modes of truth, like
an assertion being false in the current world but possibly true in some alternate world,
or another to always hold true in all worlds. Temporal logics are an instance of modal
logics to reason about the truth of assertions over time. Typical temporal operators
includes the possibility to assert that a property is true sometimes in the future, or
that is always true, in all the future moments. The most popular temporal logics are
LTL (Linear Temporal Logic) and CTL (Computation Tree Logic). They have been
extensively studied and used for applying formal methods to industrial case studies
and for the specification and verification of program correctness.

We introduce the basics of LTL and CTL and then present a modal logic with
recursion, called the µ-calculus, that encompasses LTL and CTL. The definition
of the semantics of µ-calculus exploits again the principles of domain theory and
fixpoint computation.

1.4.5 Probabilistic Systems

Finally, in the last part of the book we focus on probabilistic models, where we trade
nondeterminism for probability distributions, which we associate to choice points.

Probability theory is playing a big role in modern computer science. It focuses on
the study of random events, which are central in areas such as artificial intelligence
and network theory, e.g., to model variability in the arrival of requests and predict load
distribution on servers. Probabilistic models of computation assign weight to choices
and refine non-deterministic choices with probability distributions. In interactive
systems, when many actions are enabled at the same time, the probability distribution
models the frequency with which each alternative can be executed. Probabilistic
models can also be used in conjunction with sources of non-determinism and we
present several ways in which this can be achieved. We also present stochastic
models, where actions take place in a continuous time setting, with an exponential
distribution.

A compelling case of probabilistic systems is given by Markov chains, which
represent random processes over time. We study two kinds of Markov chains, which
differ for the way in which time is represented (discrete vs continuous) and we focus
on homogeneous chains only, where the distribution depends on the current state of
the system, but not on the current time. For example, in some special cases, Markov
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chains can be used to estimate the probability to find the system in a given state on
the long run or the probability that the system will not its change state in some time.

By analogy with labelled transition systems we are also able to define suitable
notions of bisimulation and the analogous of Hennessy-Milner logic, called Larsen-
Skou logic. Finally, by analogy with CCS, we present a high-level language for the
description of continuous time Markov chains, called PEPA, which can be used
to define stochastic systems in a structured and compositional way as well as by
refinement from specifications. PEPA is tool-supported and has been successfully
applied in many fields, e.g., in performance evaluation, decision support systems and
system biology.

1.5 Chapters Contents and Reading Guide

After Chapter 2, where some notation is fixed and useful preliminaries about logi-
cal systems, goal-oriented derivations and proof strategies are explained, the book
comprises four main parts: the first two parts exemplify deterministic systems; the
other two models non-deterministic ones. The difference will emerge clear during
the reading.

• Computational models for imperative languages, exemplified over IMP:

– In Chapter 3 the simple imperative language IMP is introduced, its natural
semantics is defined and studied together with the induced notion of program
equivalence.

– In Chapter 4 the general principle of well-founded induction is stated and
declined to other widely used induction principles, like mathematical induction,
structural induction and rule induction. The chapter is concluded by illustrating
well-founded recursive definitions.

– In Chapter 5 the mathematical basis for denotational semantics are presented,
including the concepts and properties of complete partial orders, of least upper
bounds, and of monotone and continuous functions. In particular this chapter
contains Kleene’s fixpoint theorem that is used extensively in the rest of the
monograph and the definition of the immediate consequence operator associ-
ated with a logical system, which is exploited in Chapter 6. The presentation
of Knaster-Tarski’s fixpoint is instead postponed to Chapter 11.

– In Chapter 6 the foundations introduced in Chapter 5 are exploited to define the
denotational semantics of IMP and to derive a corresponding notion of program
equivalence. The induction principles studied in Chapter 4 are then exploited to
prove the correspondence between the operational and denotational semantics
of IMP and consequently of their two induced equivalences over processes. The
chapter is concluded by presenting Scott principle of computational induction
for proving inclusive properties.

• Computational models for functional languages, exemplified over HOFL
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– In Chapter 7 we shift from the imperative style of programming to the declara-
tive one. After presenting the l -notation, useful for representing anonymous
functions, the higher-order functional language HOFL is introduced, where
infinitely many data-types can be constructed by pairing and function type
constructors. Church type theory and Curry type theory are discussed and the
unification algorithm from Chapter 2 is used for type inference. Typed terms
are given a natural semantics called lazy, because it evaluates a parameter
of a function only if needed. The alternative eager semantics, where actual
argument are always evaluated is also discussed.

– In Chapter 8 we extend the theory presented in Chapter 5 to allow the construc-
tion of more complex domains, as needed by the type constructors available in
HOFL.

– In Chapter 9 the foundations introduced in Chapter 8 are exploited to define
the (lazy) denotational semantics of HOFL.

– In Chapter 10 the operational and denotational semantics of HOFL are com-
pared, by showing that notion of program equivalence induced by the former
is generally stricter than the one induced by the latter and that they coincide
only over terms of type integer. However, it is shown that the two semantics
are equivalent w.r.t. the notion of convergence.

• Computational models for concurrent / non-deterministic / interactive languages,
exemplified over CCS and pi-calculus

– In Chapter 11 we shift the focus from sequential systems to concurrent and
interactive ones. The process algebra CCS is introduced which allows to
describe concurrent communicating systems. Such systems communicate by
message passing over named channels. Their operational semantics is defined
in the small-step style, because infinite computations must be accounted for.
Communicating process are assigned labelled transition systems by inference
rules in the SOS-style and several equivalences over such transition systems are
discussed. In particular the notion of behavioural equivalence is put forward, in
the form of bisimulation equivalence. Notably, the coarsest bisimulation, called
bisimilarity, exists, it can be characterised as a fixpoint, it is a congruence w.r.t.
the operators of CCS and it can be axiomatised. Its logical counterpart, called
Hennessy-Milner logic, is also presented. Finally, coarser equivalences are
discussed, which can be exploited to relate system specifications with more
concrete implementations by abstracting away from internal moves.

– In Chapter 12 some logics are considered that increase the expressiveness of
Hennessy-Milner logic by defining properties about finite and infinite com-
putations. First the temporal logics LTL and CTL are presented, and then the
more expressive µ-calculus is studied. The notion of satisfaction for µ-calculus
formulas is defined by exploiting fixpoint theory.

– In Chapter 13 the theory of concurrent systems is extended with the possibility
to communicate channel names and create new channels. Correspondingly,
we move from CCS to the p-calculus, we define its small-step operational
semantics and we introduce several notions of bisimulation equivalence.
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• Computational models for probabilistic and stochastic process calculi

– In Chapter 14 we shift the focus from non-deterministic systems to probabilis-
tic ones. After introducing the basics of measure theory and the notions of
random process and Markow property, two classes of random processes are
studied, which differ for the way time is represented: DTMC (discrete time)
and CTMC (continuous time). In both cases, it is studied how to compute
stationary probability distribution over the possible states and suitable notion
of bisimulation equivalence.

– In Chapter 15, the various possibilities for defining probabilistic models of
computation with observable actions and sources of non-determinism are
overviewed, emphasising the difference between reactive models and genera-
tive ones. Finally a probabilistic version of Hennessy-Milner logic is presented,
called Larsen-Skou logic.

– In Chapter 16 a well-known high-level language for the specification and anal-
ysis of stochastic interactive systems, called PEPA (Performance Evaluation
Process Algebra), is presented. The small-step operational semantics of PEPA
is first defined and then it is shown how to associate a CTMC to each PEPA
process.

1.6 Further Reading

One leitmotif of this monograph is the use of logical systems of inference rules.
As derivation trees tend to grow large very fast, even for small examples, we will
introduce and rely on goal-oriented derivations inspired by logic programming, as
explained in Section 2.3. A nice introduction to the subject can be found in the lecture
notes8 by Frank Pfenning [26]. The first chapters cover, in a concise but clear manner,
most of the concepts we shall exploit.

The reader interested in knowing more about the theory of partial orders and
domains is referred to (the revised edition of) the book by Davey and Priestley [5] for
a gentle introduction to the basic concepts and to the chapter by Abramsky and Jung
in the Handbook of Logic in Computer Science for a full account of the subject [1]. A
freely available document on domain theory that accounts also for the case of parallel
and nondeterministic systems is the so-called “Pisa notes” by Plotkin [29]. The
reader interested in denotational semantics methods only can then consult [35] for an
introduction to the subject and [10] for a comprehensive treatment of programming
language constructs, including different procedure call mechanisms.

There are several books on the semantics of imperative and functional lan-
guages [12, 41, 23, 24, 32, 40, 7]. For many years, we have adopted the book
by Glynn Winskel [43] for the courses in Pisa, which is possibly the closest to our
approach. It covers most of the content of Parts II (IMP) and III (HOFL) and has a
chapter on CCS and modal logic (see Part IV), there discussed together with another

8 Freely available at the time of the publication.
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well-known process algebras for concurrent systems called CSP (for Communicating
Sequential Processes) and introduced by Tony Hoare. The main differences are that
we use goal-oriented derivations for logical systems (type systems and operational
semantics) and focus on the lazy semantics of HOFL, while Winskel’s book exploits
derivation trees and give a detailed treatment of the eager semantics of HOFL. We
briefly discuss CSP in Chapter 16 as it is the basis for PEPA. Chapter 13 and Part V
are not covered in [43]. We briefly overviews elementary type systems in connection
to HOFL. To deepen the study of the topic, including polymorphic and recursive
types, we recommend the books by Benjamin Pierce [27] and by John Mitchell [23].

Moving to Part IV, the main and most cited reference for CCS is Robin Milner’s
book [20]. However, for an up-to-date presentation of CCS theory, we refer to the
very recent book by Roberto Gorrieri and Christian Versari [11]. Both texts are
complementary to the book by Luca Aceto et al. [2], where the material is organised
so to pose the emphasis on verification aspects of concurrent systems and CCS is
presented as a useful formal tool. Mobility is not considered in the above texts. The
basic reference for the p-calculus is the seminal book by Robin Milner [21]. The
whole body of theory that have been subsequently developed is presented at a good
level of detail in the book by Davide Sangiorgi and David Walker [34]. Many free
tutorials on CCS and p-calculus can also be found on the web in various languages.

Bisimulation equivalences are presented and exploited in all the above books, but
their use, as well as that of the more general concept of coinduction, spans far beyond
CCS and interactive systems. The new book by Davide Sangiorgi [33] explores the
subject from many angles and provide good insights. The algorithmic-minded reader
is also referred to the recent survey [3].

The literature on temporal and modal logics and their applications to verification
and model-checking is quite vast and falls out of the scope of our book. We just point
the reader to the compact survey on the modal µ-calculus by Giacomo Lenzi [18], that
explains synthetically how LTL and CTL can be seen as sublogics of the µ-calculus,
and to the book by Christel Baier and Joost-Pieter Katoen on model checking
principles [4] where also verification of probabilistic systems is addressed.

This brings us to Part V. We think one peculiarity of this monograph is that it
groups under the same umbrella several paradigms that are often treated in separation.
This is certainly the case of Markov chains and probabilistic systems. Markov chains
are usually studied in first courses on probability for Computer Science. Their
combined use with transitions for interaction is a more advanced subject and we refer
the interested reader to the well-known book by Prakash Panangaden [25].

Finally, PEPA, where the process algebraic approach merges with the representa-
tion of stochastic systems, allowing to model and measure not just the expressiveness
of processes but also their performance, under many angles. The introductory text
for PEPA principles is the book by Jane Hillston [14] possibly accompanied by the
short presentation in [13]. For people interested in experimenting with PEPA we
refer instead to [9].
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Chapter 2
Preliminaries

A mathematician is a device for turning coffee into theorems.
(Paul Erdos)

Abstract In this chapter we fix some basic mathematical notation used in the rest
of the book and introduce the important concepts of signature, logical system and
goal-oriented derivation.

2.1 Notation

2.1.1 Basic Notation

As a general rule, we use capital letters, like D or X , to denote sets of elements
and small letters, like d or x, for their elements, with membership relation 2. The
set of natural numbers is denoted by N def

= {0,1,2, ...}, the set of integer numbers is
denoted by Z def

= {...,�2,�1,0,1,2, ...} and the set of boolean by B def
= {true, false}.

We write [m,n]
def
= {k | m  k  n} for the interval of numbers from m to n, extremes

included. If a set A is finite, we denote by |A| its cardinality, i.e., the number of its
elements. The emptyset is written ?, with |?| = 0. We use the standard notation for
set union, intersection, difference, cartesian product and disjoint union, which are
denoted respectively by [, \, \, ⇥ and ]. We write A ✓ B if all elements in A belong
to B. We denote by √(A) the powerset of A, i.e., the set of all subsets of A.

An indexed set of elements is written {ei}i2I and a family of sets is written {Si}i2I .
Set operations are extended to families of sets by writing, e.g.,

S
i2I Si and

T
i2I Si. If

I is the interval set [m,n], then we write also
Sn

i=m Si and
Tn

i=m Si.
Given a set A, and a natural number k we denote by Ak the set of sequences of k

(not necessarily distinct) elements in A. Such sequences are called strings and their
concatenation is represented by juxtaposition. We denote by A⇤ =

S
k2N Ak the set

of all finite (possibly empty) sequences over A. Given a string w 2 A⇤ we denote
by |w| its length, i.e., the number of its elements (including repetitions). The empty
string is denoted e , and we have |e| = 0 and A0 = {e} for any A. We denote by
A+ =

S
k>0 Ak = A⇤ \{e} the set of all finite non-empty sequences over A.

33
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A relation R between two sets A and B is a subset of A⇥B. For (a,b) 2 R we write
also aRb. A relation f ✓ A⇥B can be regarded as a function if both the following
properties are satisfied:

function: 8a 2 A,8b1,b2 2 B. (a,b1) 2 f ^ (a,b2) 2 f ) b1 = b2
total: 8a 2 A,9b 2 B. (a,b) 2 f

For such a function f , we write f : A ! B and say that the set A is the domain of
f , and B is its codomain. We write f (a) for the unique element b 2 B such that
(a,b) 2 f , i.e., f can be regarded as the relation {(a, f (a)) | a 2 A} ✓ A⇥B. The
composition of two functions f : A ! B and g : B ! C is written g� f : A ! C, it is
such that for any element a 2 A it holds (g� f )(a) = g( f (a)). A relation that satisfies
the “function” property, but not necessarily the “total” property, is called partial. A
partial function f from A to B is written f : A * B.

2.1.2 Signatures and Terms

A one-sorted (or unsorted) signature is a set of function symbols S = {c, f ,g, ...}
such that each symbol in S is assigned an arity, that is the number of arguments it
takes. A symbol with arity zero is called a constant; a symbol with arity one is called
unary; a symbol with arity two is called binary; a symbol with arity three is called
ternary. For n 2 N, we let Sn ✓ S be the set of function symbols whose arity is n.

Given an infinite set of variables X = {x,y,z, ...}, the set TS ,X is the set of terms
over S and X , i.e., the set of all and only terms generated according to the following
rules:

• each variable x 2 X is a term (i.e., x 2 TS ,X ),
• each constant c 2 S0 is a term (i.e., c 2 TS ,X ),
• if f 2 Sn, and t1, ..., tn are terms (i.e., t1, ..., tn 2 TS ,X ), then also f (t1, ..., tn) is a

term (i.e., f (t1, ..., tn) 2 TS ,X ).

For a term t 2 TS ,X , we denote by vars(t) the set of variables occurring in t, and let
TS ✓ TS ,X be the set of terms with no variables, i.e., TS

def
= {t 2 TS ,X | vars(t) = ?}.

Example 2.1. For example, take S = {0,succ,plus} with 0 a constant, succ unary
and plus binary. Then all of the following are terms:

• 0 2 TS
• x 2 TS ,X
• succ(0) 2 TS
• succ(x) 2 TS ,X
• plus(succ(x),0) 2 TS ,X
• plus(plus(x,succ(y)),plus(0,succ(x))) 2 TS ,X

The set of variables of the above terms are respectively:

• vars(0) = vars(succ(0)) = ?
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• vars(x) = vars(succ(x)) = vars(plus(succ(x),0)) = {x}
• vars(plus(plus(x,succ(y)),plus(0,succ(x)))) = {x,y}

Instead succ(plus(0),x) is not a term: can you see why?

2.1.3 Substitutions

A substitution r : X ! TS ,X is a function assigning terms to variables.
Since the set of variables is infinite while we are interested only in terms with a

finite number of variables, we consider only substitutions that are defined as identity
everywhere except on a finite number of variables. Such substitutions are written

r = [x1 = t1 , ... , xn = tn ]

meaning that

r(x) =

⇢
ti if x = xi
x otherwise

We denote by tr , or sometimes by r(t), the term obtained from t by simultane-
ously replacing each variable x with r(x) in t.

Example 2.2. For example, consider the signature from Example 2.1, the term t def
=

plus(succ(x),succ(y)) and the substitution r def
= [x = succ(y) , y = 0 ]. We get:

tr = plus(succ(x),succ(y))[x = succ(y) , y = 0 ] = plus(succ(succ(y)),succ(0))

We say that the term t is more general than the term t 0 if there exists a substitution
r such that tr = t 0. The “more general than” relation is reflexive and transitive, i.e.,
it defines a pre-order. Note that there are terms t and t 0, with t 6= t 0, such that t is
more general than t 0 and t 0 is more general than t.

We say that the substitution r is more general than the substitution r 0 if there
exists a substitution r 00 such that for any variable x we have that r 00(r(x)) = r 0(x)
(i.e., r(x) is more general than r 0(x) as witnessed by r 00).

2.1.4 Unification Problem

The unification problem, in its simplest formulation (syntactic, first-order unification),
consists of finding a substitution r that identifies some terms pairwise.

Formally, given a set of potential equalities

G = {l1
?
= r1, ..., ln

?
= rn}

where li,ri 2 TS ,X , we say that a substitution r is a solution of G if
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8i 2 [1,n]. lir = rir.

The unification problem, consists in finding a most general substitution r .
We say that two sets of potential equalities G and G0 are equivalent if they have

the same set of solutions.
We denote by vars(G) the set of variables occurring in G, i.e.:

vars({l1
?
= r1, ..., ln

?
= rn}) =

n[

i=1
(vars(li)[vars(ri))

Note that the solution does not necessarily exists, and when it exists it is not neces-
sarily unique.

The unification algorithm takes as input a set of potential equalities G as the one
above and applies some transformations until:

• either it terminates (no transformation can be applied any more) after having
transformed the set G to an equivalent set of equalities

G0 = {x1
?
= t1, ...,xk

?
= tk}

where x1, ...,xk are all distinct variables and t1, ..., tk are terms with no occurrences
of x1, ...,xk, i.e., such that {x1, ...,xk} \

Sk
i=1 vars(ti) = ?: the set G0 directly

defines a most general solution

[x1 = t1, ...,xk = tk ]

to the unification problem G;
• or it fails, meaning that the potential equalities cannot be unified.

In the following we denote by Gr the set of potential equalities obtained by
applying the substitution r to all terms in G. Formally:

{l1
?
= r1, ..., ln

?
= rn}r = {l1r ?

= r1r, ..., lnr ?
= rnr}

The unification algorithm tries to apply the following steps (the order is not
important for the result, but it may affect complexity), to transform an initial set of
potential equalities until no more steps can be applied or the algorithm fails:

delete: G[{t ?
= t} is transformed to G

decompose: G[{ f (t1, ..., tm)
?
= f (u1, ...,um)} is transformed to G[{t1

?
= u1, ..., tm

?
=

um}
swap: G[{ f (t1, ..., tm)

?
= x} is transformed to G[{x ?

= f (t1, ..., tm)}
eliminate: G[{x ?

= t} is transformed to G[x = t][{x ?
= t} if x 2 vars(G)^ x 62

vars(t)
conflict: G[{ f (t1, ..., tm)

?
= g(u1, ...,uh)} leads to failure if f 6= g_m 6= h

occur check: G[{x ?
= f (t1, ..., tm)} leads to failure if x 2 vars( f (t1, ..., tm))
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Example 2.3. For example, if we start from

G = {plus(succ(x),x) ?
= plus(y,0)}

by applying rule decompose we obtain

{succ(x) ?
= y , x ?

= 0}

by applying rule eliminate we obtain

{succ(0)
?
= y , x ?

= 0}

finally, by applying rule swap we obtain

{y ?
= succ(0) , x ?

= 0}

Since no further transformation is possible, we conclude that

r = [y = succ(0) , x = 0 ]

is the most general unifier for G.

2.2 Inference Rules and Logical Systems

Inference rules are a key tool for defining syntax (e.g., which programs respect the
syntax, which programs are well-typed) and semantics (e.g., to derive the operational
semantics by induction on the syntax structure of the programs).

Definition 2.1 (Inference rule). Let x1,x2, . . . ,xn,y be (well-formed) formulas. An
inference rule is written, using inline notation, as

r = {x1,x2, . . . ,xn| {z }
premises

} / y|{z}
conclusion

Letting X = {x1,x2, . . . ,xn}, equivalent notations are

r =
X
y

r =
x1 ... xn

y

The meaning of such a rule r is that if we can prove all the formulas x1,x2, . . . ,xn
in our logical system, then by exploiting the inference rule r we can also derive the
validity of the formula y.

Definition 2.2 (Axiom). An axiom is an inference rule with empty premise:

r = ?/y.
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Equivalent notations are:

r =
?
y

r =
y

In other words, there are no preconditions for applying an axiom r, hence there is
nothing to prove in order to apply the rule: in this case we can assume y to hold.

Definition 2.3 (Logical system). A logical system is a set of inference rules R =
{ri}i2I .

Given a logical system, we can start by deriving obvious facts using axioms and
then derive new valid formulas applying the inference rules to the formulas that we
know to hold (used as premises). In turn, the newly derived formulas can be used to
prove the validity of other formulas.

Example 2.4 (Some inference rules). The inference rule

x 2 E y 2 E x� y = z

z 2 E

means that, if x and y are two elements that belongs to the set E and the result of
applying the operator � to x and y gives z as a result, then z must also belong to the
set E.

The rule

2 2 E
is an axiom, so we know that 2 belongs to the set E.

By composing inference rules, we build derivations, which explain how a logical
deduction is achieved.

Definition 2.4 (Derivation). Given a logical system R, a derivation is written

d �R y

where

• either d = ?/y is an axiom of R, i.e., (?/y) 2 R;
• or there are some derivations d1 �R x1, . . . ,dn �R xn such that d = ({d1, . . . ,dn}/y)

and ({x1, . . . ,xn}/y) 2 R.

The notion of derivation is obtained putting together different steps of reasoning
according to the rules in R. We can see d �R y as a proof that, in the formal system
R, we can derive y.

Let us look more closely at the two cases in Definition 2.4. The first case tells us
that if we know that: ⇣?

y

⌘
2 R
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i.e., if we have an axiom for deriving y in our inference system R, then
⇣?

y

⌘
�R y

is a derivation of y in R.
The second case tells us that if we have already proved x1 with derivation d1, x2

with derivation d2 and so on, i.e.,

d1 �R x1, d2 �R x2, ..., dn �R xn

and, in the logical system R, we have a rule for deriving y using x1, ...,xn as premises,
i.e., ⇣x1, ...,xn

y

⌘
2 R

then we can build a derivation for y as follows:

⇣{d1, ...,dn}
y

⌘
�R y

Summarising all the above:

• (?/y) �R y if (?/y) 2 R (axiom)
• ({d1, . . . ,dn}/y) �R y if ({x1, . . . ,xn}/y) 2 R and d1 �R x1, . . . ,dn �R xn (infer-

ence)

A derivation can roughly be seen as a tree whose root is the formula y we derive
and whose leaves are the axioms we need. Correspondingly, we can define the height
of a derivation tree as follows:

height(d)
def
=

⇢
1 if d = (?/y)
1+max{height(d1), ...,height(dn)} if d = ({d1, . . . ,dn}/y)

Definition 2.5 (Theorem). A theorem in a logical system R is a well-formed formula
y for which there exists a proof, and we write �R y.

In other words, y is a theorem in R if 9d.d �R y.

Definition 2.6 (Set of theorems in R). We let IR = {y | �R y} be the set of all
theorems that can be proved in R.

We mention two main approaches to prove theorems:

• top-down or direct: we start from theorems descending from the axioms and then
prove more and more theorems by applying the inference rules to already proved
theorems;

• bottom-up or goal-oriented: we fix a goal, i.e., a theorem we want to prove, and
we try to deduce a derivation for it by applying the inference rules backward, until
each needed premise is also proved.
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In the following we will mostly follow the bottom-up approach, because we will
be given a specific goal to prove.

Example 2.5 (Grammars as sets of inference rules). Every grammar can be presented
equivalently as a set of inference rules. Let us consider the well-known grammar for
strings of balanced parentheses. Recalling that e denotes the empty string, we write:

S ::= S S | (S) | e

We let LS denote the set of strings generated by the grammar for the symbol S. The
translation from production to inference rules is straightforward. The first production

S ::= S S

says that given any two strings s1 and s2 of balanced parentheses, their juxtaposition
is also a string of balanced parentheses. In other words:

s1 2 LS s2 2 LS
(1)

s1s2 2 LS

Similarly, the second production

S ::= (S)

says that we can surround with brackets any string s of balanced parentheses and get
again a string of balanced parentheses. In other words:

s 2 LS
(2)

(s) 2 LS

Finally, the last production says that the empty string e is just a particular string
of balanced parentheses. In other words we have an axiom:

(3)
e 2 LS

Note the difference between the placeholders s,s1,s2 and the symbol e appearing
in the rules above: the former can be replaced by any string to obtain a specific
instance of rules (1) and (2), while the latter denotes a given string (i.e., rules (1) and
(2) define rule schemes with many instances, while there is a unique instance of rule
(3)).

For example, the rule

)( 2 LS (( 2 LS
(1)

)((( 2 LS

is an instance of rule (1): it is obtained by replacing s1 with )( and s2 with ((.
Of course the string )((( appearing in the conclusion does not belong to LS, but
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the rule instance is perfectly valid, because it says that “)((( 2 LS if )( 2 LS and
(( 2 LS”: since the premises are false, the implication is valid even if we cannot
draw the conclusion )((( 2 LS.

Let us see an example of valid derivation that uses some valid instances of rules
(1) and (2).

(3)
e 2 LS

(2)
(e)= () 2 LS

(2)
(()) 2 LS

(3)
e 2 LS

(2)
(e)= () 2 LS

(1)
(())() 2 LS

Reading the proof (from the leaves to the root): Since e 2 LS by axiom (3), then we
know that (e)= ()2 LS by (2); if we apply again rule (2) we derive also (())2 LS
and hence (())() 2 LS by (1). In other words (())() 2 LS is a theorem.

Let us introduce a second formalisation of the same language (balanced parenthe-
ses) without using inference rules. To get an intuition, suppose we want to write an
algorithm to check if the parentheses in a string are balanced. We can parse the string
from left to right and count the number of unmatched, open parentheses in the prefix
we have parsed. So, we sum 1 to the counter whenever we find an open parenthesis
and subtract 1 whenever we find a closed parenthesis. If the counter is never negative,
and it holds 0 when we have parsed the whole string, then the parentheses in the
string are balanced.

In the following we let ai denote the ith symbol of the string a. Let

f (ai) =

⇢
1 if ai =(

�1 if ai =)

A string of n parentheses a = a1a2...an is balanced if and only if both the following
properties hold:

Property 1: 8m 2 [0,n] we have Âm
i=1 f (ai) � 0

Property 2: Ân
i=1 f (ai) = 0

In fact, Âm
i=1 f (ai) counts the difference between the number of open parentheses

and closed parentheses that are present in the first m symbols of the string a. Therefore,
the first property requires that in any prefix of the string a the number of open
parentheses exceeds, or equals the number of closed ones; the second property
requires that the string a has as many open parentheses than closed ones.

An example is shown below for the string a = (())():

m = 1 2 3 4 5 6
am = ( ( ) ) ( )

f (am) = 1 1 �1 �1 1 �1
Âm

i=1 f (ai) = 1 2 1 0 1 0
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Properties 1 and 2 are easy to check for any string and therefore define an useful
procedure to decide if a string belongs to our language or not.

Next, we show that the two different characterisations of the language (by infer-
ence rules and by the counting procedure) of balanced parentheses are equivalent.

Theorem 2.1. For any string of parentheses a of length n

a 2 LS ()
⇢

Âm
i=1 f (ai) � 0 m = 0,1...n

Ân
i=1 f (ai) = 0

Proof. The proof is composed of two implications that we show separately:

)) all the strings produced by the grammar satisfy the two properties;
() any string that satisfy the two properties can be generated by the grammar.

Proof of )) To show the first implication, we proceed by induction over the rules:
we assume that the implication is valid for the premises and we show
that it holds for the conclusion. This proof technique is very powerful
and will be explained in detail in Chapter 4.
The two properties can be represented graphically over the cartesian
plane by taking m over the x-axis and the quantity Âm

i=1 f (ai) over the
y-axis. Intuitively, the graph start at the origin; it should never cross
below the x-axis and it should end in (n,0).
Let us check that by applying any inference rule the properties 1 and
2 still hold.

Rule (1): The first inference rule corresponds to the juxtaposition
of the two graphs and therefore the result still satisfies
both properties (when the original graphs do).

Rule (2): The second rule corresponds to translate the graph up-
ward (by 1 unit) and therefore the result still satisfies both
properties (when the original graph does).
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Rule (3): The third rule is just concerned with the empty string that
trivially satisfies the two properties.

Since we have inspected all the inference rules, the proof of the first
implication is concluded.

Proof of () We need to find a derivation for any string that satisfies the two prop-
erties. Let a be such a generic string. (We only sketch this direction
of the proof, that goes by induction over the length of the string a.)
We proceed by case analysis, considering three cases:

1. If n = 0, a = e . Then, by rule (3) we conclude that a 2 LS.
2. The second case is when the graph associated with a never

touches the x-axis (except for its start and end points). An exam-
ple is shown below:

In this case we can apply rule (2), because we know that the
parentheses opened at the beginning of a is only matched by the
parenthesis at the very end of a.

3. The third and last case is when the graph touches the x-axis (at
least) once in a point (k,0) different from its start and its end. An
example is shown below:

In this case the substrings a1...ak and ak+1...an are also balanced
and we can apply the rule (1) to their derivations to prove that
a 2 LS. ut

The last part of the proof outlines a goal-oriented strategy to build a derivation for
a given string: We start by looking for a rule whose conclusion can match the goal
we are after. If there are no alternatives, then we fail. If we have only one alternative
we need to build a derivation for its premises. If there are more alternatives than one
we can either explore all of them in parallel (breadth-first approach) or try one of
them and back-track in case we fail (depth-first).

Suppose we want to find a proof for (())() 2 LS. We use the notation

(())() 2 LS -
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1. (())() 2 LS - e 2 LS, (())() 2 LS
2. (())() 2 LS - ( 2 LS, ())() 2 LS
3. (())() 2 LS - (( 2 LS, ))() 2 LS
4. (())() 2 LS - (() 2 LS, )() 2 LS
5. (())() 2 LS - (()) 2 LS, () 2 LS
6. (())() 2 LS - (())( 2 LS, ) 2 LS
7. (())() 2 LS - (())() 2 LS, e 2 LS

Fig. 2.1: Tentative derivations for the goal (())() 2 LS

to mean that we look for a goal-oriented derivation.

• Rule (1) can be applied in many different ways, by splitting the string (())() in
all possible ways. We use the notation

(())() 2 LS - e 2 LS, (())() 2 LS

to mean that we reduce the proof of (())() 2 LS to those of e 2 LS and
(())() 2 LS. Then we have all the alternatives in Figure 2.1 to inspect. Note
that some alternatives are identical except for the order in which they list subgoals
(1 and 7) and may require to prove the same goal from which we started (1 and 7).
For example, if option 1 is selected applying depth-first strategy without any addi-
tional check, the derivation procedure might diverge. Moreover, some alternatives
lead to goals we won’t be able to prove (2, 3, 4, 6).

• Rule (2) can be applied in only one way:

(())() 2 LS - ())( 2 LS

• Rule (3) cannot be applied.

We show below a successful derivation, where the empty goal is written ⇤.

(())() 2 LS - (()) 2 LS, () 2 LS by applying (1)
- (()) 2 LS, e 2 LS by applying (2) to the second goal
- (()) 2 LS by applying (3) to the second goal
- () 2 LS by applying (2)
- e 2 LS by applying (2)
- ⇤ by applying (3)

We remark that in general the problem to check if a certain formula is a theorem is
only semidecidable (not necessarily decidable). In this case the breadth-first strategy
for goal-oriented derivation offers a semidecision procedure: if a derivation exists,
then it will be found; if no derivation exists, the strategy may not terminate.
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2.3 Logic Programming

We end this chapter by mentioning a particularly relevant paradigm based on goal-
oriented derivation: logic programming and its Prolog incarnation. Prolog exploits
depth-first goal-oriented derivations with backtracking.

Let X = {x,y, ...} be a set of variables, S = { f ,g, ...} a signature of function
symbols (with given arities), P = {p,q, ...} a signature of predicate symbols (with
given arities). As usual, we denote by Sn (respectively Pn) the subset of function
symbols (respectively predicate symbols) with arity n.

Definition 2.7 (Atomic formula). An atomic formula consists of a predicate symbol
p of arity n applied to n terms with variables.

For example, if p 2 P2, f 2 S2 and g 2 S1, then p( f (g(x),x) , g(y)) is an atomic
formula.

Definition 2.8 (Formula). A formula is a (possibly empty) conjunction of atomic
formulas.

Definition 2.9 (Horn clause). A Horn clause is written l: �r where l is an atomic
formula, called the head of the clause, and r is a formula called the body of the
clause.

Definition 2.10 (Logic program). A logic program is a set of Horn clauses.

The variables appearing in each clause can be instantiated with any term. A goal
g is a formula whose validity we want to prove. The goal g can contain variables,
which are implicitly existentially quantified.

Unification is used to “match” the head of a clause to an atomic formula of the
goal we want to prove in the most general way (i.e., by instantiating the variables
as little as possible). Before performing unification, the variables of the clause are
renamed with fresh identifiers to avoid any clash with the variables already present
in the goal.

Suppose we are given a logic program L and a goal g = a1, ...,an, where a1, ...,an
are atomic formulas. A derivation step g -s 0 g0 is obtained by selecting a sub-goal
ai, a clause l: �r 2 L and a renaming r such that:

• lr: �rr is a variant of the clause l: �r 2 L whose variables are fresh;
• the unification problem {ai

?
= lr} a most general solution s ;

• s 0 def
= s|vars(ai);

• g0 def
= a1, ...,ai�1,rrs ,ai+1, ...,an.

If we can find a sequence of derivation steps

g -s1 g1 -s2 g2 · · ·gn�1 -sn ⇤

then we can conclude that the goal g is satisfiable and that the substitution s def
=

s1 · · ·sn is a least substitutions for the variables in g such that gs is a valid theorem.
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Example 2.6 (Sum in Prolog). Let us consider the logic program:

sum(0 , y , y) : � .

sum(s(x) , y , s(z)) : � sum(x , y , z).

where sum 2 P3, s 2 S1, 0 2 S0 and x,y,z 2 X .
Let us consider the goal sum(s(s(0)) , s(s(0)) , v) with v 2 X .
There is no match against the head of the first clause, because 0 does not unify

with s(s(0)).
We rename x,y,z in the second clause to x0,y0,z0 and compute the unification

of sum(s(s(0)) , s(s(0)) , v) and sum(s(x0) , y0 , s(z0)). The result is the substitution
(i.e., the most general unifier)

[x0 = s(0), y0 = s(s(0)), v = s(z0) ]

We then apply the substitution to the body of the clause, which will be added to
the goal:

sum(x0 , y0 , z0 )[x0 = s(0), y0 = s(s(0)), v = s(z0) ] = sum(s(0) , s(s(0)) , z0 )

If other subgoals were initially present, which may share variables with sum(s(s(0)) , s(s(0)) , v)
then the substitution should have been applied to them too.

We write the derivation described above using the notation

sum(s(s(0)) , s(s(0)) , v) -v=s(z0) sum(s(0) , s(s(0)) , z0 )

where we have recorded (as a subscript of the derivation step) the substitution applied
to the variables originally present in the goal (just v in the example), to record the
least condition under which the derivation is possible.

The derivation can then be completed as follows:

sum(s(s(0)) , s(s(0)) , v) -v=s(z0) sum(s(0) , s(s(0)) , z0 )

-z0=s(z00) sum(0 , s(s(0)) , z00 )

-z00=s(s(0)) ⇤

By composing the computed substitutions we get

z0 = s(z00) = s(s(s(0)))

v = s(z0) = s(s(s(s(0))))

This gives us a proof of the theorem

sum(s(s(0)) , s(s(0)) , s(s(s(s(0)))))
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Problems

2.1. Consider the alphabet {a,b} and the grammar

A ::= a A | a B
B ::= b | b B

1. Describe the form of the strings in the languages LA and LB.
2. Define the languages LA and LB formally.
3. Write the inference rules that correspond to the productions of the grammar.
4. Write the derivation for the string a a a b b both as a proof-tree and as a goal-

oriented derivation.
5. Prove that the set of theorems associated with the inference rules coincide with

the formal definitions you gave.

2.2. Consider the alphabet {0,1}.

1. Give a context free grammar for the set of strings that contain an even number of
0 and 1.

2. Write the inference rules that correspond to the productions of the grammar.
3. Write the derivation for the string 0 1 1 0 0 0 both as a proof-tree and as a

goal-oriented derivation.
4. Prove that your logical systems characterises exactly the set of strings that contain

an even number of 0 and 1.

2.3. Consider the signature S such that S0 = {0}, S1 = {s} and Sn = ? for any
n � 2.

1. Let even 2 P1. What are the theorems of the logical system below?

(1)
even(0)

even(x)
(2)

even(s(s(x)))

2. Let odd 2 P1.What are the theorems of the logical system below?

odd(x)
(1)

odd(s(s(x)))

3. Let leq 2 P2. What are the theorems of the logical system below?

(1)
leq(0,x)

leq(x,y)
(2)

leq(s(x),s(y))

2.4. Consider the signature S such that S0 = N, S2 = {node} and Sn = ? otherwise.
Let sum,eq 2 P2. What are the theorems of the logical system below?

n 2 N (1)
sum(n,n)

sum(x,n) sum(y,m)
k = n+m (2)

sum(node(x,y),k)

sum(x,n) sum(y,n)
(3)

eq(x,y)
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2.5. Consider the signature S such that S0 = {0}, S1 = {s} and Sn = ? for any
n � 2. Give two terms t and t 0, with t 6= t 0, such that t is more general than t 0 and t 0 is
also more general than t.

2.6. Consider the signature S such that S0 = {a}, S1 = { f ,g}, S2 = {h, l} and
Sn = ? for any n � 3. Solve the unification problems below:

1. G0
def
= {x ?

= f (y),h(z,x) ?
= h(y,z),g(y) ?

= g(l(a,a))}
2. G1

def
= {x ?

= f (y),h(z,x) ?
= h(x,g(z))}

3. G2
def
= {x ?

= f (y),h(z,x) ?
= h(y, f (z)), l(y,a)

?
= l(a,z)}

4. G3
def
= {x ?

= f (y),h(y,x) ?
= h(g(a), f (g(z))), l(z,a)

?
= l(a,z)}

2.7. Extend the logic program for computing the sum with the definition of:

1. a predicate prod for computing the product of two numbers;
2. a predicate pow for computing the power of a base to an exponent;
3. a predicate div that tells if a number can be divided by another number.

2.8. Extend the logic program for computing the sum with the definition of a binary
predicate fib(N,F) that is true if F is the Nth Fibonacci number.

2.9. Suppose that a set of facts of the form parent(x,y) are given, meaning that x is a
parent of y.

1. Define a predicate brother(X ,Y ) which holds true iff X and Y have a parent in
common.

2. Define a predicate cousin(X ,Y ) which holds true iff X and Y are cousins.
3. Define a predicate ancestor(X ,Y ) which holds true iff X is an ancestor of Y .
4. If the set of basic facts is:

:- parent(alice,bob) .

:- parent(alice,carl) .

:- parent(bob,diana) .

:- parent(bob,ella) .

:- parent(carl,francisco) .

which of the following goals can be derived?

?- brother(ella,francisco).

?- brother(ella,diana).

?- cousin(ella,francisco).

?- cousin(ella,diana).

?- ancestor(alice,ella).

?- ancestor(carl,ella).

2.10. Suppose that a set of facts of the form arc(x,y) are given to represent a directed,
acyclic graph, meaning that there is an arc from x to y.

1. Define a predicate path(X ,Y ) which holds true iff there is a path from X to Y .
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2. Suppose the acyclic requirement is violated, like in the graph

a //

��

b //

✏✏

d //

✏✏

f

c

@@

eoo

defined by

:- arc(a,b) .

:- arc(a,c) .

:- arc(b,c) .

:- arc(b,d) .

:- arc(c,d) .

:- arc(d,e) .

:- arc(d,f) .

:- arc(e,c) .

Does a goal-oriented derivation for a query, like the one below, necessarily lead to
the empty goal? Why?

?- path(a,f).

2.11. Consider the Horn clauses that correspond to the following statements:

1. All jumping creatures are green.
2. All small jumping creatures are martians.
3. All green martians are intelligent.
4. Ngtrks is small and green.
5. Pgvdrk is a jumping martian.

Who is intelligent?1

1 Taken from http://www.slideshare.net/SergeiWinitzki/prolog-talk.

http://www.slideshare.net/SergeiWinitzki/prolog-talk
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Part II

IMP: a simple imperative language
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This part focuses on models for sequential computations that are associated to IMP, a
simple imperative language. The syntax and natural semantics of IMP are studied
in Chapter 3, while its denotational semantics is presented in Chapter 6, where it is
also reconciled with the operational semantics. Chapter 4 explains several induction
principles exploited to prove properties of programs and semantics. Chapter 5 fixes
the mathematical basis of denotational semantics. The concepts in Chapters 4 and 5
are extensively used in Chapter 6 and in the rest of the monograph.
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Chapter 3
Operational Semantics of IMP

Programs must be written for people to read, and only
incidentally for machines to execute. (H. Abelson and G.
Sussman)

Abstract This chapter introduces the formal syntax and operational semantics of a
simple, structured imperative language called IMP, with static variable allocation and
no sophisticated declaration constructs for data types, functions, classes, methods
and the like. The operational semantics is defined in the natural style and it assumes
an abstract machine with a vary basic form of memory to associate integer values to
variables. The operational semantics is used to derive a notion of program equivalence
and several examples of (in)equivalence proofs are shown.

3.1 Syntax of IMP

The IMP programming language is a simple imperative language (e.g., it can be seen
as a bare bone version of the C language) with only three data types:

int: the set of integer numbers, ranged over by metavariables m,n, ...

Z = {...,�2,�1,0,1,2, ...}

bool: the set of boolean values, ranged over by metavariables u,v, ...

B = {true, false}

locations: the (denumerable) set of memory locations (we consider programs
that use a finite number of locations and we assume there are enough
locations available for any program), ranged over by metavariables
x,y, ...

Loc locations

The grammar for IMP comprises three syntactic categories:

Aexp: Arithmetic expressions, ranged over by a,a0, ...
Bexp: Boolean expressions, ranged over by b,b0, ...

53



DRAFT

54 3 Operational Semantics of IMP

Com : Commands, ranged over by c,c0, ...

Definition 3.1 (IMP: syntax). The following productions define the syntax of IMP:

a 2 Aexp ::= n | x | a0 +a1 | a0 �a1 | a0 ⇥a1

b 2 Bexp ::= v | a0 = a1 | a0  a1 | ¬b | b0 _b1 | b0 ^b1

c 2 Com ::= skip | x := a | c0;c1 | if b then c0 else c1 | while b do c

where we recall that n is an integer number, v a boolean value and x a location.

IMP is a very simple imperative language and there are several constructs we
deliberately omit. For example we omit other common conditional statements, like
switch, and other cyclic constructs like repeat. Moreover IMP commands imposes
a structured flow of control, i.e., IMP has no labels, no goto statements, no break
statements, no continue statements. Other things which are missing and are difficult
to model are those concerned with modular programming. In particular, we have no
procedures, no modules, no classes, no types. Since IMP does not include variable
declarations, ambients, procedures and blocks, memory allocation is essentially static
and finite, except for the possibility of handling integers of any size. Of course, IMP
has no concurrent programming construct.

3.1.1 Arithmetic Expressions

An arithmetic expression can be an integer number, or a location, a sum, a difference
or a product. We notice that we do not have division, because it can be undefined (e.g.,
7/0) or give different values (e.g., 0/0) so that its use would introduce unnecessary
complexity.

3.1.2 Boolean Expressions

A boolean expression can be a logical value v, or the equality of an arithmetic
expression with another, an arithmetic expression less or equal than another one, a
negation, a logical conjunction or disjunction.

To keep the notation compact, in the following we will take the liberty of writing
boolean expressions such as x 6= 0, in place of ¬(x = 0) and x > 0 in place of 1  x
or (0  x)^¬(x = 0).
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3.1.3 Commands

A command can be skip, i.e. a command which is not doing anything, or an as-
signment where we have that an arithmetic expression is evaluated and the value is
assigned to a location; we can also have the sequential execution of two commands
(one after the other); an if-then-else with the obvious meaning: we evaluate a boolean
expression b, if it is true we execute c0 and if it is false we execute c1. Finally we
have a while statement, which is a command that keeps executing c until b becomes
false.

3.1.4 Abstract Syntax

The notation above gives the so-called abstract syntax in that it simply says how to
build up new expressions and commands but it is ambiguous for parsing a string. It
is the job of the concrete syntax to provide enough information through parentheses
or orders of precedence between operation symbols for a string to parse uniquely.
It is helpful to think of a term in the abstract syntax as a specific parse tree of the
language.

Example 3.1 (Valid expressions).

(while b do c1) ; c2 is a valid command;
while b do (c1 ; c2) is a valid command;
while b do c1 ; c2 is not a valid command, because it is ambiguous.

In the following we will assume that enough parentheses have been added to
resolve any ambiguity in the syntax. Then, given any formula of the form a 2
Aexp, b 2 Bexp, or c 2 Com, the process to check if such formula is a “theorem” is
deterministic (no backtracking is needed).

Example 3.2 (Validity check). Let us consider the formula:

if (x = 0) then (skip) else (x := (x�1)) 2 Com

We can prove its validity by the following (deterministic) derivation, where we write
-⇤ to mean that several derivation steps are grouped into one for brevity:
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if(x = 0) then(skip) else(x := (x�1)) 2 Com - x = 0 2 Bexp, skip 2 Com,

x := (x�1) 2 Com
- x 2 Aexp, 0 2 Aexp, skip 2 Com,

x := (x�1) 2 Com
-⇤ x�1 2 Aexp
- x 2 Aexp,1 2 Aexp
-⇤ ⇤

3.2 Operational Semantics of IMP

3.2.1 Memory State

In order to define the evaluation of an expression or the execution of a command, we
need to handle the state of the machine which is going to execute the IMP statements.
Beside expressions to be evaluated and commands to be executed, we also need to
record in the state some additional elements like values and stores. To this aim, we
introduce the notion of memory:

s 2 S = (Loc ! Z)

A memory s is an element of the set S which contains all the functions from locations
to integer numbers. A particular s is just a function from locations to integer numbers
so it is a function which associates to each location x the value s(x) that x stores.

Since Loc is an infinite set, things can be complicated: handling functions from
an infinite set is not a good idea for a model of computation. Although Loc is large
enough to store all the values that are manipulated by expressions and commands, the
functions we are interested in are functions which are almost everywhere 0, except
for a finite subset of memory locations.

If, for instance, we want to represent a memory such that the location x contains
the value 5 and the location y the value 10 and elsewhere is stored 0, we write:

s = (5�x, 10�y)

In this way we can represent any interesting memory by a finite set of pairs.
We let () denote the memory such that all locations are assigned the value 0.

Definition 3.2 (Memory update). Given a memory s , we denote by s [n/x] the
memory where the value of x is updated to n, i.e. such that

s [n/x](y) =

⇢
n if y = x
s(y) if y 6= x

Note that s [n/x][m/x] = s [m/x]. In fact:
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s [n/x][
m/x](y) =

⇢
m if y = x
s [n/x](y) = s(y) if y 6= x

Moreover, when x 6= y, then the order of updates is not important, i.e., s [n/x][m/y] =
s [m/y][n/x]. For this reason, we often use the more compact notation s [n/x,m /y].

3.2.2 Inference Rules

Now we are going to give the operational semantics to IMP using a logical system.
It is called “big-step” semantics (see Section 1.2) because it leads to the result in one
single proof.

We are interested in three kinds of well formed formulas:

Arithmetic expressions: The evaluation of an element a 2 Aexp in a given memory
s results in an integer number.

ha,si ! n

Boolean expressions: The evaluation of an element b 2 Bexp in a given memory
s results in either true or false.

hb,si ! v

Commands: The evaluation of an element c 2 Com in a given memory
s leads to an updated final state s 0.

hc,si ! s 0

Next we show each inference rule and comment on it.

3.2.2.1 Inference Rules for Arithmetic Expressions

We start with the rules about arithmetic expressions.

(num)
hn,si ! n

(3.1)

The axiom 3.1 (num) is trivial: the evaluation of any numerical constant n (seen
as syntax) results in the corresponding integer value n (read as an element of the
semantic domain) no matter which s .
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(ide)
hx,si ! s(x)

(3.2)

The axiom 3.2 (ide) is also quite intuitive: the evaluation of an identifier x in the
memory s results in the value stored in x.

ha0,si ! n0 ha1,si ! n1
n = n0 +n1 (sum)

ha0 +a1,si ! n
(3.3)

The rule 3.3 (sum) has several premises: the evaluation of the syntactic expression
a0 +a1 in s returns a value n that corresponds to the arithmetic sum of the values n0
and n1 obtained after evaluating, respectively, a0 and a1 in s . Note that we exploit
the side condition n = n0 + n1 to indicate the relation between the target n of the
conclusion and the targets of the premises. We present an equivalent, but more
compact, version of the rule (sum), where the target of the conclusion is obtained as
the sum of the targets of the premises. In the following we shall adopt the second
format (3.4).

ha0,si ! n0 ha1,si ! n1
(sum)

ha0 +a1,si ! n0 +n1
(3.4)

We remark the difference between the two occurrences of the symbol + in the
rule: in the source of the conclusion (i.e., a0 + a1) it denotes a piece of syntax, in
the target of the conclusion (i.e., n0 +n1) it denotes a semantic operation. To avoid
any ambiguity we could have introduced different symbols in the two cases, but we
have preferred to overload the symbol and keep the notation simpler. We hope the
reader is expert enough to assign the right meaning to each occurrence of overloaded
symbols by looking at the context in which they appear.

The way we read this rule is very interesting because, in general, if we want
to evaluate the lower part we have to go up, evaluate the uppermost part and then
compose the results and finally go down again to draw the conclusion:

In this case we suppose we want to evaluate, in the memory s , the arithmetic
expression a0 +a1. We have to evaluate a0 in the same memory s and get n0, then
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we have to evaluate a1 within the same memory s to get n1 and then the final result
will be n0 + n1. Note that the same memory s is duplicated and distributed to the
two evaluations of a0 and a1, which may occur independently in any order.

This kind of mechanism is very powerful because we deal with more proofs at
once. First, we evaluate a0. Second, we evaluate a1. Then, we put all together. If we
need to evaluate several expressions on a sequential machine we have to deal with
the issue of fixing the order in which to proceed. On the other hand, in this case,
using a logical language we just model the fact that we want to evaluate a tree (an
expression) which is a tree of proofs in a very simple way and make explicit that the
order is not important.

The rules for the remaining arithmetic expressions are similar to the one for the
sum. We report them for completeness, but do not comment on them.

ha0,si ! n0 ha1,si ! n1
(dif)

ha0 �a1,si ! n0 �n1
(3.5)

ha0,si ! n0 ha1,si ! n1
(prod)

ha0 ⇥a1,si ! n0 ⇥n1
(3.6)

3.2.2.2 Inference Rules for Boolean Expressions

The rules for boolean expressions are also similar to the previous ones and need no
particular comment, except for noting that the premises of rules (equ) and (leq) refer
the judgements of arithmetic expressions.

(bool)
hv,si ! v

(3.7)

ha0,si ! n0 ha1,si ! n1
(equ)

ha0 = a1,si ! (n0 = n1)
(3.8)

ha0,si ! n0 ha1,si ! n1
(leq)

ha0  a1,si ! (n0  n1)
(3.9)

hb,si ! v
(not)

h¬b,si ! ¬v
(3.10)
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hb0,si ! v0 hb1,si ! v1
(or)

hb0 _b1,si ! (v0 _ v1)
(3.11)

hb0,si ! v0 hb1,si ! v1
(and)

hb0 ^b1,si ! (v0 ^ v1)
(3.12)

3.2.2.3 Inference Rules for Commands

Next, we move to the inference rules for commands.

(skip)
hskip,si ! s

(3.13)

The rule 3.13 (skip) is very simple: it leaves the memory s unchanged.

ha,si ! m
(assign)

hx := a,si ! s [m/x]
(3.14)

The rule 3.14 (assign) exploits the assignment operation to update s : we remind
that s [m/x] is the same memory as s except for the value assigned to x (m instead of
s(x)). Note that the premise refers to the judgements of arithmetic expressions.

hc0,si ! s 00 hc1,s 00i ! s 0

(seq)
hc0;c1,si ! s 0 (3.15)

The rule 3.15 (seq) for the sequential composition (concatenation) of commands
is quite interesting. We start by evaluating the first command c0 in the memory s .
As a result we get an updated memory s 00 which we use for evaluating the second
command c1. In fact the order of evaluation of the two command is important and it
would not make sense to evaluate c1 in the original memory s , because the effects of
executing c0 would be lost. Finally, the memory s 0 obtained by evaluating c1 in s 00

is returned as the result of evaluating c0;c1 in s .
The conditional statement requires two different rules, that depend on the evalua-

tion of the condition b (they are mutually exclusive).

hb,si ! true hc0,si ! s 0

(iftt)
hif b then c0 else c1,si ! s 0 (3.16)
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hb,si ! false hc1,si ! s 0

(ifff)
hif b then c0 else c1,si ! s 0 (3.17)

The rule 3.16 (iftt) checks that b evaluated to true and then returns as result
the memory s 0 obtained by evaluating the command c0 in s . On the contrary, the
rule 3.17 (ifff) checks that b evaluated to false and then returns as result the memory
s 0 obtained by evaluating the command c1 in s .

Also the while statement requires two different rules, that depends on the evalua-
tion of the guard b; they are mutually exclusive.

hb,si ! true hc,si ! s 00 hwhile b do c,s 00i ! s 0

(whtt)
hwhile b do c,si ! s 0 (3.18)

hb,si ! false
(whff)

hwhile b do c,si ! s
(3.19)

The rule 3.18 (whtt) applies to the case where the guard evaluates to true: we need
to compute the memory s 00 obtained by the evaluation of the body c in s and then to
iterate the evaluation of the cycle over s 00.

The rule 3.19 (whff) applies to the case where the guard evaluates to false: then
the cycle terminates and the memory s is returned unchanged.

Remark 3.1. There is an important difference between the rule 3.18 and all the other
inference rules we have encountered so far. All the other rules take as premises
formulas that are “smaller in size” than their conclusions. This fact allows to decrease
the complexity of the atomic goals to be proved as the derivation proceeds further,
until having basic formulas to which axioms can be applied. The rule 3.18 is different
because it recursively uses as a premise a formula as complex as its conclusion. This
justifies the fact that a while command can cycle indefinitely, without terminating.

The set of all inference rules above defines the operational semantics of IMP.
Formally, they induce a relation that contains all the pairs input-result, where the
input is the expression / command together with the initial memory and the result is
the corresponding evaluation:

!✓ (Aexp⇥S ⇥Z)[ (Bexp⇥S ⇥B)[ (Com⇥S ⇥S)

We will see later that the computation is deterministic, in the sense that given any
expression / commands and any memory as input there is at most one result (exactly
one in case of arithmetic and boolean expressions).
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3.2.3 Examples

Example 3.3 (Semantic evaluation of a command). Let us consider the (extra-
bracketed) command

c def
= (x := 0) ; ( while (0  y) do ( (x := ((x+(2⇥ y))+1)) ; (y := (y�1)) ) )

To improve readability and without introducing too much ambiguity, we can write
it as follows:

c def
= x := 0 ; while 0  y do ( x := x+(2⇥ y)+1 ; y := y�1 )

or exploiting the usual convention for indented code, as:

c def
= x := 0 ;

while 0  y do (
x := x+(2⇥ y)+1 ;
y := y�1

)

Without too much difficulties, the experienced reader can guess the relation
between the value of y at the beginning of the execution and that of x at the end
of the execution: The program computes the square of (the value initially stored
in) y plus 1 (when y � 0) and stores it in x. In fact, by exploiting the well-known
equalities 02 = 0 and (n + 1)2 = n2 + 2n + 1, the value of (y + 1)2 is computed as
the sum of the first y+1 odd numbers Ây

i=0(2i+1). For example, for y = 3 we have
42 = 1+3+5+7 = 16.

We report below the proof of well-formedness of the command, as a witness that
c respects the syntax of IMP. (Of course the inference rules used in the derivation are
those associated to the productions of the grammar of IMP.)

x 0

x := 0

0 y

0  y

x

x

2 y

2⇥ y

a1
def
= (x+(2⇥ y)) 1

a def
= ((x+(2⇥ y))+1)

c3
def
= (x := ((x+(2⇥ y))+1))

y

y 1

y�1

c4
def
= (y := (y�1))

c2
def
= ((x := ((x+(2⇥ y))+1));(y := (y�1)))

c1
def
= (while(0  y)do((x := ((x+(2⇥ y))+1));(y := (y�1)))

c def
= ((x := 0);(while(0  y)do((x := ((x+(2⇥ y))+1));(y := (y�1)))))
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We can summarize the above proof as follows, introducing several shorthands for
referring to some subterms of c that will be useful later.

x := 0;while0  ydo(x :=

a
a1

x+(2⇥ y)+1
c3

;y := y�1
c4

)

c2

c1

c

To find the semantics of c in a given memory we proceed in the goal-oriented
fashion. For instance, we take the well-formed formula

⌦
c,
�27/x,2 /y

�↵
! s , with

s unknown, and check if there exists a memory s such that the formula becomes
a theorem. This is equivalent to find an answer to the following question: “given
the initial memory (27/x,2 /y) and the command c to be executed, can we find a
derivation that leads to some memory s?” By answering in the affirmative, we would
have a proof of termination for c and would establish the content of the memory at
the end of the computation.

To convince the reader that the notation for goal-oriented derivations introduced
in Section 2.3 is more effective than the tree-like notation, we first show the proof
in the tree-like notation: the goal to prove is the root (situated at the bottom) and
the “pieces” of derivation are added on top. As the tree grows rapidly large, we split
the derivation in smaller pieces that are proved separately. We use “?” to mark the
missing parts of the derivations.

num
h0,
�27/x,

2 /y
�
i ! 0

assign
hx := 0,

�27/x,
2 /y
�
i !

�27/x,
2 /y
�⇥0/x

⇤
= s1

?

hc1,s1i ! s
seq

hc,
�27/x,

2 /y
�
i ! s

Note that c1 is a cycle, therefore we have two possible rules that can be applied,
depending on the evaluation of the guard. We only show the successful derivation,
recalling that s1 =

�27/x,2 /y
�⇥0/x

⇤
=
�0/x,2 /y

�
.

num
h0,s1i ! 0

ide
hy,s1i ! s1(y) = 2

leq
h0  y,s1i ! (0  2) = true

?

hc2,s1i ! s2

?

hc1,s2i ! s
whtt

hc1,s1i ! s

Next we need to prove the goals hc2,
�0/x,2 /y

�
i ! s2 and hc1,s2i ! s . Let us

focus on hc2,s1i ! s2 first:
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?

ha1,
�0/x,

2 /y
�
i ! m0

num
h1,
�0/x,

2 /y
�
i ! 1

sum
ha,
�0/x,

2 /y
�
i ! m = m0 +1

assign
hc3,

�0/x,
2 /y
�
i !

�0/x,
2 /y
�
[m/x] = s3

?

hy�1,s3i ! m00

assign
hc4,s3i ! s3

h
m00

/y

i
= s2

seq
hc2,

�0/x,
2 /y
�
i ! s2

We show separately the details for the pending derivations of ha1,
�0/x,2 /y

�
i ! m0

and hy�1,s3i ! m00:

ide
hx,
�0/x,

2 /y
�
i ! 0

num
h2,
�0/x,

2 /y
�
i ! 2

ide
hy,
�0/x,

2 /y
�
i ! 2

prod
h2⇥ y,

�0/x,
2 /y
�
i ! m000 = 2⇥2 = 4

sum
ha1,

�0/x,
2 /y
�
i ! m0 = 0+4 = 4

Since m0 = 4, then it means that m = m0 +1 = 5 and hence s3 =
�0/x,2 /y

�⇥5/x
⇤
=�5/x,2 /y

�
.

ide
hy,
⇣

5/x,
2 /y

⌘
i ! 2

num
h1,
⇣

5/x,
2 /y

⌘
i ! 1

dif
hy�1,

⇣
5/x,

2 /y

⌘
i ! m00 = 2�1 = 1

Since m00 = 1 we know that s2 =
�5/x,2 /y

�hm00
/y

i
=
�5/x,2 /y

�⇥1/y
⇤
=
�5/x,1 /y

�
.

Next we prove hc1,
�5/x,1 /y

�
i ! s , this time omitting some details (the derivation

is analogous to the one just seen).

...
leq

h0  y,
⇣

5/x,
1 /y

⌘
i ! true

...
seq

hc2,
⇣

5/x,
1 /y

⌘
i !

�8/x,
0 /y
�

= s4

?

hc1,s4i ! s
whtt

hc1,
⇣

5/x,
1 /y

⌘
i ! s

Hence s4 =
�8/x,0 /y

�
and next we prove hc1,

�8/x,0 /y
�
i ! s .

...
leq

h0  y,
�8/x,

0 /y
�
i ! true

...
seq

hc2,
�8/x,

0 /y
�
i !

�9/x,
�1 /y

�
= s5

?

hc1,s5i ! s
whtt

hc1,
�8/x,

0 /y
�
i ! s

Hence s5 =
�9/x,�1 /y

�
. Finally:
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...
leq

h0  y,
�9/x,

�1 /y
�
i ! false

whff
hc1,

�9/x,
�1 /y

�
i !

�9/x,
�1 /y

�
= s

Summing up all the above, we have proved the theorem:

hc,
�27/x,

2 /y
�
i !

�9/x,
�1 /y

�
.

It is evident that as the proof tree grows larger it gets harder to paste the different
pieces of the proof together. We now show the same proof as a goal-oriented deriva-
tion, which should be easier to follow. To this aim, we group several derivation steps
into a single one (written -⇤) omitting trivial steps.

hc,
�27/x,

2 /y
�
i ! s - hx := 0,

�27/x,
2 /y
�
i ! s1, hc1,s1i ! s

-s1=(27/x,2/y)[n/x]
h0,
�27/x,

2 /y
�
i ! n, hc1,

�27/x,
2 /y
�
[n/x]i ! s

-n=0, s1=(0/x,2/y) hc1,
�0/x,

2 /y
�
i ! s

- h0  y,
�0/x,

2 /y
�
i ! true,

hc2,
�0/x,

2 /y
�
i ! s2, hc1,s2i ! s

- h0,
�0/x,

2 /y
�
i ! n1, hy,

�0/x,
2 /y
�
i ! n2,

n1  n2, hc2,
�0/x,

2 /y
�
i ! s2, hc1,s2i ! s

-⇤
n1=0, n2=2 hc3,

�0/x,
2 /y
�
i ! s3, hc4,s3i ! s2,

hc1,s2i ! s
-s3=(0/x,2/y)[m/x]

hx+(2⇥ y)+1,
�0/x,

2 /y
�
i ! m,

hc4,
�0/x,

2 /y
�
[m/x]i ! s2, hc1,s2i ! s

-⇤
m=0+(2⇥2)+1=5, s3=(5/x,2/y)

hc4,
⇣

5/x,
2 /y

⌘
i ! s2, hc1,s2i ! s

-⇤
s2=(5/x,2/y)[1/y]=(5/x,1/y)

hc1,
⇣

5/x,
1 /y

⌘
i ! s

-⇤
s4=(5/x,1/y)[8/x][0/y]=(8/x,0/y)

hc1,
�8/x,

0 /y
�
i ! s

-⇤
s5=(8/x,0/y)[9/x][�1/y]=(9/x,�1/y)

hc1,
�9/x,

�1 /y
�
i ! s

-s=(9/x,�1/y) h0  y,
�9/x,

�1 /y
�
i ! false

-⇤ ⇤

There are commands c and memories s such that there is no s 0 for which we can
find a proof of hc,si ! s 0. We use the notation below to denote such cases:
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hc,si 6! iff ¬9s 0.hc,si ! s 0

The condition ¬9s 0.hc,si ! s 0 can be written equivalently as 8s 0.hc,si 6! s 0.

Example 3.4 (Non termination). Let us consider the command

c def
= while true do skip

Given s , the only possible derivation goes as follows:

hc,si ! s 0 - htrue,si ! true, hskip,si ! s1, hc,s1i ! s 0

- hskip,si ! s1, hc,s1i ! s 0

-s1=s hc,si ! s 0

After a few steps of derivation we reach the same goal from which we started and
there are no alternatives to try!

In this case, we can prove that hc,si 6!. We proceed by contradiction, assuming
there exists s 0 for which we can find a (finite) derivation d for hc,si ! s 0. Let d be
the derivation sketched below:

hc,si ! s 0 - htrue,si ! true, hskip,si ! s1, hc,s1i ! s 0

...

(⇤) - hc,si ! s 0

...

- ⇤

We have marked by (⇤) the last occurrence of the goal hc,si ! s 0. But this leads
to a contradiction, because the next step of the derivation can only be obtained by
applying rule (whtt) and therefore it must lead to another instance of the original
goal.

3.3 Abstract Semantics: Equivalence of Expressions and
Commands

The same way as we can write different expressions denoting the same value, we
can write different programs for solving the same problem. For example we are used
not to distinguish between say 2+2 and 2⇥2 because both evaluate to 4. Similarly,
would you distinguish between, say, x := 1;y := 0 and y := 0;x := y+1? So a natural
question arise: when are two programs “equivalent”? The equivalence between two
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commands is an important issue because it allows, e.g., to replace a program with an
equivalent but more efficient one. Informally, two programs are equivalent if they
behave in the same way. But can we make this idea more precise?

Since the evaluation of a command depends on the memory, two equivalent
programs must behave the same w.r.t. any initial memory. For example the two
commands x := 1 and x := y+1 assign the same value to x only when evaluated in
a memory s such that s(y) = 0, so that it wouldn’t be safe to replace one for the
other in any program. Moreover, we must take into account that commands may
diverge when evaluated with a certain memory, like while x 6= 0 do x := x�1 when
evaluated in a store s such that s(x) < 0. We will call abstract semantics the notion
of behaviour w.r.t. we will compare programs for equivalence.

The operational semantics offers a straightforward abstract semantics: two pro-
grams are equivalent if they result in the same memory when evaluated over the same
initial memory.

Definition 3.3 (Equivalence of expressions and commands). We say that the arith-
metic expressions a1 and a2 are equivalent, written a1 ⇠ a2 if and only if for any
memory s they evaluate in the same way. Formally:

a1 ⇠ a2 iff 8s ,n.( ha1,si ! n , ha2,si ! n )

We say that the boolean expressions b1 and b2 are equivalent, written b1 ⇠ b2 if
and only if for any memory s they evaluate in the same way. Formally:

b1 ⇠ b2 iff 8s ,v.( hb1,si ! v , hb2,si ! v )

We say that the commands c1 and c2 are equivalent, written c1 ⇠ c2 if and only if
for any memory s they evaluate in the same way. Formally:

c1 ⇠ c2 iff 8s ,s 0.( hc1,si ! s 0 , hc2,si ! s 0 )

Note that if the evaluation of hc1,si diverges there is no s 0 such that hc1,si ! s 0.
Then, when c1 ⇠ c2, the double implication prevents hc2,si to converge. As an easy
consequence, any two programs that diverge for any s are equivalent.

3.3.1 Examples: Simple Equivalence Proofs

The first example we show is concerned with fully specified programs that operate
on unspecified memories.

Example 3.5 (Equivalent commands). Let us try to prove that the following two
commands are equivalent:

c1
def
= while x 6= 0 do x := 0

c2
def
= x := 0
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It is immediate to prove that

8s .hc2,si ! s 0 = s [0/x]

Hence s and s 0 can differ only for the value stored in x. In particular, if s(x) = 0
then s 0 = s .

The evaluation of c1 in s depends on s(x): if s(x) = 0 we must apply the rule 3.19
(whff), otherwise the rule 3.18 (whtt) must be applied. Since we do not know the
value of s(x), we consider the two cases separately. The corresponding hypotheses
are called path conditions and outline a very important technique for the symbolic
analysis of programs.

Case s(x) 6= 0) Let us inspect a possible derivation for hc1,si ! s 0. Since s(x) 6=
0 we select the rule (whtt) at the first step:

hc1,si ! s 0 - hx 6= 0,si ! true, hx := 0,si ! s1,

hc1,s1i ! s 0

-⇤
s1=s[0/x]

hc1,s
⇥0/x

⇤
i ! s 0

-s 0=s[0/x] hx 6= 0,s
⇥0/x

⇤
i ! false

-⇤ s
⇥0/x

⇤
(x) = 0

- ⇤

Case s(x) = 0) Let us inspect a derivation for hc1,si ! s 0. Since s(x) = 0 we
select the rule (whff) at the first step:

hc1,si ! s 0 -s 0=s hx 6= 0,si ! false
-⇤ s(x) = 0
- ⇤

Finally, we observe the following:

• If s(x) = 0, then
⇢

hc1,si ! s
hc2,si ! s [0/x] = s

• Otherwise, if s(x) 6= 0, then
⇢

hc1,si ! s [0/x]
hc2,si ! s [0/x]

Therefore c1 ⇠ c2 because for any s they result in the same memory.

The general methodology should be clear by now: in case the computation termi-
nates we need just to develop the derivation and compare the results.
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3.3.2 Examples: Parametric Equivalence Proofs

The programs considered so far were entirely spelled out: all the commands and
expressions were given and the only unknown parameter was the initial memory s .
In this section we address equivalence proofs for programs that contain symbolic
expressions a and b and symbolic commands c: we will need to prove that the equality
holds for any such a, b and c.

This is not necessarily more complicated than what we have done already: the
idea is that we can just carry the derivation with symbolic parameters.

Example 3.6 (Parametric proofs (1)). Let us consider the commands:

c1
def
= while b do c

c2
def
= if b then (c;while b do c) else skip = if b then (c;c1) else skip

Is it true that 8b 2 Bexp,c 2 Com. (c1 ⇠ c2)?
We start by considering the derivation for c1 in a generic initial memory s . The

command c1 is a cycle and there are two rules we can apply: either the rule 3.19
(whff), or the rule 3.18 (whtt). Which rule to use depends on the evaluation of b.
Since we do not know what b is, we must take into account both possibilities and
consider the two cases separately.

hb,si ! false) For c1 we have:

hwhile b do c,si ! s 0 -s 0=s hb,si ! false
- ⇤

For c2 we have:

hif b then (c;c1) else skip,si ! s 0 - hb,si ! false,
hskip,si ! s 0

-⇤
s 0=s ⇤

It is evident that if hb,si ! false then the two derivations for c1
and c2 lead to the same result.

hb,si ! true) For c1 we have:

hwhile b do c,si ! s 0 - hb,si ! true, hc,si ! s1,

hc1,s1i ! s 0

- hc,si ! s1, hc1,s1i ! s 0
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We find it convenient to stop here the derivation, because other-
wise we should add further hypotheses on the evaluation of c and
of the guard b after the execution of c. Instead, let us look at the
derivation of c2:

hif b then (c;c1) else skip,si ! s 0 - hb,si ! true,
hc;c1,si ! s 0

- hc;c1,si ! s 0

- hc,si ! s1,

hc1,s1i ! s 0

Now we can stop again, because we have reached exactly the
same subgoals that we have obtained by evaluating c1! It is then
obvious that if hb,si ! true then the two derivations for c1
and c2 will necessarily lead to the same result whenever they
terminate, and if one diverges the other diverges too.

Summing up the two cases, and since there are no more alternatives to try, we can
conclude that c1 ⇠ c2.

Note that the equivalence proof technique that exploits reduction to the same
subgoals is one of the most convenient methods for proving the equivalence of while
commands, whose evaluation may diverge.

Example 3.7 (Parametric proofs (2)). Let us consider the commands:

c1
def
= while b do c

c2
def
= if b then c1 else skip

Is it true that 8b 2 Bexp,c 2 Com. c1 ⇠ c2?
We have already examined the different derivations for c1 in the previous example.

Moreover, the evaluation of c2 when hb,si ! false is also analogous to that of the
command c2 in Example 3.6. Therefore we focus on the analysis of c2 for the case
hb,si ! true. Trivially:

hif b then c1 else skip,si ! s 0 - hb,si ! true, hwhile b do c,si ! s 0

- hwhile b do c,si ! s 0

So we reduce to the subgoal identical to the evaluation of c1, and we can conclude
that c1 ⇠ c2.
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3.3.3 Examples: Inequality Proofs

The next example deals with programs that can behave the same or exhibit different
behaviours depending on the initial memory.

Example 3.8 (Inequality proof). Let us consider the commands:

c1
def
= (while x > 0 do x := 1);x := 0

c2
def
= x := 0

Let us prove that c1 6⇠ c2.
For c2 we have

hx := 0,si ! s 0 -s 0=s [n/x] h0,si ! n
-n=0 ⇤

That is: 8s . hx := 0,si ! s [0/x].
Next, we focus on the first part of c1

w def
= while x > 0 do x := 1

If s(x)  0 it is immediate to check that

hwhile x > 0 do x := 1,si ! s

The derivation is sketched below:

hw,si ! s 0 -s 0=s hx > 0,si ! false
- hx,si ! n, h0,si ! m, n  m

-n=s(x) h0,si ! m, s(x)  m
-m=0 s(x)  0

- ⇤

Instead, if we assume s(x) > 0, then:

hw,si ! s 0 - hx > 0,si ! true, hx := 1,si ! s 00, hw,s 00i ! s 0

-⇤ hx := 1,si ! s 00, hw,s 00i ! s 0

-⇤
s 00=s [1/x]

hw,s [1/x]i ! s 0

Let us continue the derivation for hw,s [1/x]i ! s 0:
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hw,s [1/x]i ! s 0 - hx > 0,s [1/x]i ! true, hx := 1,s [1/x]i ! s 000, hw,s 000i ! s 0

-⇤ hx := 1,s [1/x]i ! s 000, hw,s 000i ! s 0

-s 000=s [1/x] hw,s [1/x]i ! s 0

Now, note that we got the same subgoal hw,s [1/x]i ! s 0 already inspected: hence
it is not possible to conclude the derivation, which will loop.

Summing up all the above we conclude that:

8s ,s 0. hwhile x > 0 do x := 1,si ! s 0 ) s(x)  0^s 0 = s

We can now complete the reduction for the whole c1 when s(x)  0 (the case
s(x) > 0 is discharged, because we know that there is no derivation).

hw;x := 0,si ! s 0 - hw,si ! s 00, hx := 0,s 00i ! s 0

-⇤
s 00=s hx := 0,si ! s 0

-⇤
s 0=s [0/x]

⇤

Therefore the evaluation ends with s 0 = s [0/x].
By comparing c1 and c2 we have that:

• there are memories for which the two commands behave the same (i.e., when
s(x)  0)

9s ,s 0.

⇢
h(while x > 0 do x := 1);x := 0,si ! s 0

hx := 0,si ! s 0

• there are also cases for which the two commands exhibit different behaviours:

9s ,s 0.

⇢
h(while x > 0 do x := 1);x := 0,si 6!
hx := 0,si ! s 0

As an example, take any s with s(x) = 1 and s 0 = s [0/x].

Since we can find pairs (s ,s 0) such that c1 loops and c2 terminates we have that
c1 6⇠ c2.

Note that in disproving the equivalence we have exploited a standard technique in
logic: to show that a universally quantified formula is not valid we can exhibit one
counterexample. Formally:

¬8x.(P(x) , Q(x)) = 9x.(P(x)^¬Q(x))_ (¬P(x)^Q(x))
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3.3.4 Examples: Diverging Computations

What does it happen if the program has infinitely many different looping situations?
How should we handle the memories for which this happens?

Let us rephrase the definition of equivalence between commands:

8s ,s 0
⇢

hc1,si ! s 0 , hc2,si ! s 0

hc1,si 6! , hc2,si 6!

Next we see an example where this situation emerges.

Example 3.9 (Proofs of non-termination). Let us consider the commands:

c1
def
= while x > 0 do x := 1

c2
def
= while x > 0 do x := x+1

Is it true that c1 ⇠ c2? On the one hand, note that c1 can only store 1 in x, whereas
c2 can keep incrementing the value stored in x, so one may be lead to suspect that
the two commands are not equivalent. On the other hand, we know that when the
commands diverge, the values stored in the memory locations are inessential.

As already done in previous examples, let us focus on the possible derivation of c1
by considering two separate cases that depends of the evaluation of the guard x > 0:

Case s(x)  0) If s(x)  0, we know already from Example 3.8 that hc1,si ! s :

hc1,si ! s 0 -s 0=s hx > 0,si ! false
-⇤ ⇤

In this case, the body of the while is not executed and the resulting
memory is left unchanged. We leave to the reader to fill the details
for the analogous derivation of c2, which behaves the same.

Case s(x) > 0) If s(x) > 0, we know already from Example 3.8 that hc1,si 6!
Now we must check if c2 diverges too when s(x) > 0:
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hc2,si ! s 0 - hx > 0,si ! true,
hx := x+1,si ! s1, hc2,s1i ! s 0

-⇤ hx := x+1,si ! s1, hc2,s1i ! s 0

-⇤
s1=s[s(x)+1/x]

hc2,s
h

s(x)+1/x

i
i ! s 0

- hx > 0,s
h

s(x)+1/x

i
i ! true,

hx := x+1,s
h

s(x)+1/x

i
i ! s2,

hc2,s2i ! s 0

-⇤ hx := x+1,s
h

s(x)+1/x

i
i ! s2,

hc2,s2i ! s 0

-⇤
s2=s1[s1(x)+1/x]=s[s(x)+2/x]

hc2,s
h

s(x)+2/x

i
i ! s 0

· · ·

Now the situation is more subtle: we keep looping, but without
crossing the same subgoal twice, because the memory is updated
with different values for x at each iteration. However, using induc-
tion, that will be the subject of Section 4.1.3, we can prove that the
derivation will not terminate. Roughly, the idea is the following:

• at step 0, i.e., at the first iteration, the cycle does not terminate;
• if at the ith step the cycle has not terminated yet, then it will

not terminate at the (i+1)th step, because x > 0 ) x+1 > 0.

The formal proof would require to show that at the ith iteration
the values stored in the memory at location x will be s(x) + i,
from which we can conclude that the expression x > 0 will hold
true (since by assumption s(x) > 0 and thus s(x)+ i > 0). Once
the proof is completed, we can conclude that c2 diverges and
therefore c1 ⇠ c2. Below we outline a simpler technique to prove
non-termination, that can be used under some circumstances.

Let us consider the command w def
= while b do c. As we have seen in the last

example, to prove the non-termination of w we can exploit the induction hypotheses
over memory states to define the inference rule below: the idea is that if we can find
a set S of memories such that, for any s 0 2 S, the guard b is evaluated to true and
the execution of c leads to a memory s 00 which is also in S, then we can conclude
that w diverges when evaluated in any of the memories s 2 S.

s 2 S 8s 0 2 S.hb,s 0i ! true 8s 0 2 S,8s 00.(hc,s 0i ! s 00 ) s 00 2 S)

hw,si 6!
(3.20)

Note that the property
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8s 00.(hc,s 0i ! s 00 ) s 00 2 S)

is satisfied even when hc,s 0i 6!, because there is no s 00 such that the left-hand side
of the implication holds.

Example 3.10. Let us consider again the command c2 from Example 3.9:

c2
def
= while x > 0 do x := x+1.

We set S = {s | s(x) > 0}, take s 2 S and prove the premises of the rule for
divergence to conclude that hw,si 6!.

1. We must show that 8s 0 2 S.hx > 0,s 0i ! true, which follows by definition of S.
2. We need to prove that 8s 0 2 S,8s 00.(hx := x + 1,s 0i ! s 00 ) s 00 2 S). Take

s 0 2 S, i.e., such that s 0(x) > 0, and assume hx := x+1,s 0i ! s 00. Then it must
be s 00 = s 0[s

0(x)+1/x] and we have s 00(x) = s 0[s
0(x)+1/x](x) = s 0(x) + 1 > 0

because s 0(x) > 0 by hypothesis. Hence s 00 2 S.

Remind that, in general, program termination is semi-decidable (and non-
termination possibly non semi-decidable), so we cannot have a proof technique
for demonstrating the convergence or divergence of any program.

Example 3.11 (Collatz’s algorithm). Consider the algorithm below, which is known
as Collatz’s algorithm, or also as Half Or Triple Plus One

d def
= x := y ; k := 0 ; while x > 0 do (x := x�2 ; k := k +1)

c def
= while y 6= 1 do (d ; if x = 0 then y := k else y := (3⇥ y)+1)

The command d, when executed in a memory s with s(y) > 0, terminates by
producing either a memory s 0 with s 0(x) = 0 and s(y) = 2 ⇥ s 0(k) (when s(y)
is even), or a memory s 00 with s 00(x) = �1 (when s(y) is odd). The command c
exploits d to update at each iteration the value of y to either the half of y (when s(y)
is even) or three times y plus one (when s(y) is odd). It is an open mathematical
conjecture to prove that the command c terminates when executed in any memory s
with s(y) > 0. The conjecture has been checked by computers and proved true1 for
all starting values of y up to 5⇥260.

Problems

3.1. Consider the IMP command

w def
= while y > 0 do (r := r ⇥ x ; y := y�1)

1 Source http://en.wikipedia.org/wiki/Collatz_conjecture, last visited July
2015.

http://en.wikipedia.org/wiki/Collatz_conjecture
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Let c def
= (r := 1 ; w) and s def

= [9/x,2 /y]. Use goal-oriented derivation, according to
the operational semantics of IMP, to find the memory s 0 such that hc,si ! s 0, if it
exists.

3.2. Consider the IMP command

w def
= while y � 0 do if y = 0 then y := y+1 else skip

For which memories s ,s 0 do we have hw,si ! s 0?

3.3. Prove that for any b 2 Bexp,c 2 Com we have c ⇠ if b then c else c.

3.4. Prove that for any b 2 Bexp,c 2 Com we have c1 ⇠ c2, where:

c1
def
= while b do c

c2
def
= while b do if b then c else skip

3.5. Prove that for any b 2 Bexp,c 2 Com we have c1 ⇠ c2, where:

c1
def
= c ; while b do c

c2
def
= (while b do c) ; c

3.6. Prove that c1 6⇠ c2, where:

c1
def
= while x > 0 do x := 0

c2
def
= while x � 0 do x := 0

3.7. Consider the IMP command

w def
= while x  y do (x := x+1 ; y := y+2)

Find the largest set S of memories such that the command w diverges. Use the
inference rule for divergence to prove non-termination.

3.8. Prove that c1 6⇠ c2, where:

c1
def
= while x > 0 do x := x+1

c2
def
= while x � 0 do x := x+2

3.9. Suppose we extend IMP with the arithmetic expression a0/a1 for integer division,
whose operational semantics is:

ha0,si ! n0 ha1,si ! n1
n0 = n1 ⇥n (div)

ha0/a1,si ! n
(3.21)

1. Prove that the semantics of extended arithmetic expressions is not deterministic.
In other words, give a counterexample to the property below:
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8a 2 Aexp,8s 2 S ,8n,m 2 Z. (ha,si ! n ^ ha,si ! m ) n = m)

2. Prove that the semantics of extended arithmetic expressions is not always defined.
In other words, give a counterexample to the property below:

8a 2 Aexp,8s 2 S ,9n 2 Z. ha,si ! n

3.10. Define a small-step operational semantics for IMP. To this aim, introduce a
special symbol ? as a termination marker and consider judgements of either the form
hc,si ! hc0,s 0i or hc,si ! h?,s 0i. Define the semantics in such a way that the
evaluation is deterministic and that hc,si !⇤ h?,s 0i if and only if hc,si ! s 0 in
the usual big-step semantics seen for IMP.
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Chapter 4
Induction and Recursion

To understand recursion, you must first understand recursion.
(traditional joke)

Abstract In this chapter we presents some induction techniques that will turn out
useful for proving formal properties of the languages and models presented in the
book. We start by introducing Noether principle of well-founded induction, from
which we then derive induction principles over natural numbers, terms of a signature
and derivations in a logical system. The chapter ends by presenting well-founded
recursion.

4.1 Noether Principle of Well-founded Induction

In the literature several different kinds of induction are defined, but they all rely on
the so-called Noether principle of well-founded induction. We start by defining this
important principle and will then derive several induction methods.

4.1.1 Well-founded Relations

We recall some key mathematical notions and definitions.

Definition 4.1 (Binary relation). A binary relation (relation for short) � over a set
A is a subset of the cartesian product A⇥A.

� ✓ A⇥A

For (a,b) 2 � we use the infix notation a � b and also write equivalently b � a.
Moreover, we write a 6� b in place of (a,b) 62 �.

A relation � ✓ A⇥A can be conveniently represented as an oriented graph whose
nodes are the elements of A and whose arcs n ! m represent the pairs (n,m) 2 � in
the relation.

79
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Fig. 4.1: Graph of a relation

Example 4.1. The graph in Figure 4.1 represents the relation � over the set {a,b,c,d,e, f }
with a � b, b � c, c � d, c � e, e � f , e � b.

Definition 4.2 (Infinite descending chain). Given a relation � over the set A, an
infinite descending chain is an infinite sequence {ai}i2N of elements in A such that

8i 2 N. ai+1 � ai

An infinite descending chain can be represented as a function a from N to A such
that a(i) decreases (according to �) as i grows:

a(0) � a(1) � a(2) � · · ·

Definition 4.3 (Well-founded relation). A relation is well-founded if it has no infi-
nite descending chains.

Definition 4.4 (Transitive closure). Let � be a relation over A. The transitive clo-
sure of �, written �+, is defined by the following inference rules

a � b
a �+ b

a �+ b b �+ c
a �+ c

By the first rule, � is always included in �+. It can be proved that (�+)+ always
coincides with �+.

Definition 4.5 (Transitive and reflexive closure). Let � be a relation over A. The
transitive and reflexive closure of �, written �⇤, is defined by the following inference
rules

a �⇤ a
a � b
a �⇤ b

a �⇤ b b �⇤ c
a �⇤ c

It can be proved that both � and �+ are included in �⇤ and that (�⇤)⇤ always
coincides with �⇤.

Example 4.2. Consider the usual “less than” < relation over integers. Since we have,
e.g., the infinite descending chain

4 > 2 > 0 > �2 > �4 > ...

it is not well-founded. Note that its transitive closure <+ is the same as <.
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Example 4.3. Consider the usual “less than” < relation over natural numbers. We
cannot have an infinite descending chain {ai}i2N because there are only a finite
number of elements less than a0. Hence the relation < over N is well-founded. Note
that its transitive closure <+ is the same as <.

Example 4.4. Consider the usual “less than or equal to”  relation over natural
numbers. Since we have, e.g., the infinite descending chain

4 � 2 � 0 � 0 � 0 � ...

it is not well-founded. Note also, than any infinite descending chain must include only
a finite number of elements, because there are only a finite number of elements less
than or equal to a0, and therefore there exists some k 2 N such that 8i � k. ai = ak.
Note that  is the reflexive and transitive closure of <, i.e., <⇤=.

Theorem 4.1. Let � be a relation over A. For any x,y 2 A, x �+ y if and only if there
exist a finite number of elements z0,z1, ...,zk 2 A such that

x = z0 � z1 � · · · � zk = y.

The proof of the above theorem is left as an exercise (see Problem 4.4).
With respect to the oriented graph associated with the relation �, we note that

a �+ b means that there is a non-empty finite path from a to b, while a �⇤ b means
that there is a (possibly empty) finite path from a to b.

Theorem 4.2 (Well-foundedness of �+). A relation � is well-founded if and only
if its transitive closure �+ is well-founded.

Proof. One implication is trivial: if �+ is well-founded then � is obviously well-
founded, because any descending chain for � is also a descending chain for �+ (and
all such chains are finite by hypothesis).

For the other direction, let us assume �+ is non well-founded and take any infinite
descending chain

a0 �+ a1 �+ a2 · · ·

But whenever ai �+ ai+1 there must be a finite descending �-chain of elements
between ai and ai+1 and therefore we can build an infinite descending chain

a0 � · · · � a1 � · · · � a2 � · · ·

leading to a contradiction. ut

Example 4.5. Consider the “immediate precedence” relation � over natural numbers,
such that n � n+1 for all n 2N. Note that the transitive closure of � is the usual “less
than” < relation over natural numbers, i.e., �+=<. By Theorem 4.2 and Example 4.3
the relation � over N is well-founded.

Definition 4.6 (Acyclic relation). We say that � has a cycle if 9a 2 A. a �+ a. We
say that � is acyclic if it has no cycle (i.e., 8a 2 A. a 6�+ a).
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Theorem 4.3 (Well-founded relations are acyclic). If the relation � is well-founded,
then it is acyclic.

Proof. We need to prove that:

¬9a 2 A. a �+ a

By contradiction, we assume there is a 2 A such that a �+ a. This means that �+

is not well-founded, because we have an infinite descending chain

a �+ a �+ a �+ a . . .

By Theorem 4.2, � is not well-founded, leading to a contradiction, because � is
well-founded by hypothesis. ut

For example, the relation in Figure 4.1 is not acyclic and thus it is not well-
founded.

Theorem 4.4 (Well-founded relations over finite sets). Let A be a finite set and let
� be acyclic, then � is well-founded.

Proof. Since A is finite, any descending chain strictly longer than |A| must contain (at
least) two occurrences of a same element (by the so-called “pigeon hole principle”)
that form a cycle, but this is not possible because � is acyclic by hypothesis. ut

Definition 4.7 (Minimal element). Let � be a relation over the set A. Given a set
Q ✓ A, we say that m 2 Q is minimal if there is no element x 2 Q such that x � m,
i.e., 8x 2 Q. x 6� m.

It follows that Q has no minimal element if 8m 2 Q. 9x 2 Q. x � m.

Lemma 4.1 (Well-founded relation). Let � be a relation over the set A. The relation
� is well-founded if and only if every nonempty subset Q ✓ A contains a minimal
element m.

Proof. Since any double implication P , Q is equivalent to ¬P , ¬Q, the state-
ment of this lemma can be rephrased by saying that: the relation � has an infinite
descending chain if and only if there exists a nonempty subset Q ✓ A with no minimal
element.

We prove each implication (of the transformed statement) separately.

)) We assume that � has an infinite descending chain a1 � a2 � a3 � · · · and we
let Q = {a1,a2,a3, . . .} be the set of all the elements in the infinite descending
chain. The set Q has no minimal element, because for any candidate ai 2 Q
we know there is one element ai+1 2 Q with ai � ai+1.

() Let Q be a nonempty subset of A with no minimal element. Since Q is
nonempty, it must contain at least an element. We randomly pick an ele-
ment a0 2 Q. Since a0 is not minimal there must exists an element a1 2 Q
such that a0 � a1, and we can iterate the reasoning (i.e. a1 is not minimal and
there is a2 2 Q with a0 � a1 � a2, etc.). So we can build an infinite descending
chain. ut
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Example 4.6 (Natural numbers). Both n � n+1 (the immediate precedence relation)
and n < n+1+ k (the usual “less than” relation), with n,k 2 N, are simple examples
of well-founded relations. In fact, from every element n 2N we can start a descending
chain of length at most n.

Definition 4.8 (Terms over one-sorted signatures). Let S = {Sn}n2N a one-sorted
signature, i.e., a set of ranked operators f such that f 2 Sn if f takes n arguments.
We define the set of S -terms as the set TS that is defined inductively by the following
inference rule:

ti 2 TS i = 1, . . . ,n f 2 Sn

f (t1, . . . , tn) 2 TS
(4.1)

Definition 4.9 (Terms over many sorted signatures). Let

• S be a set of sorts (i.e. the set of the different data types we want to consider);
• S = {Ss1...sn,s}s1,...,sn,s2S be a signature over S, i.e. a set of typed operators ( f 2

Ss1...sn,s is an operator that takes n arguments, the ith argument being of type si,
and gives a result of type s).

We define the set of S -terms as the set

TS = {TS ,s}s2S

where, for s 2 S, the set TS ,s is the set of terms of sort s over the signature S , defined
inductively by the following inference rule:

ti 2 TS ,si i = 1, . . . ,n f 2 Ss1...sn,s

f (t1, . . . , tn) 2 TS ,s

(When S is a singleton, we are in the same situation as in Definition 4.8 and write
just Sn instead of Sw,s with w = s ... s| {z }

n

.)

Since the operators of the signature are known, we can specialise the above rule 4.1
for each operator, i.e. we can consider the set of inference rules:

(
ti 2 TS ,si i = 1, . . . ,n

f (t1, . . . , tn) 2 TS ,s

)

f 2Ss1 ...sn ,s

(4.2)

Note that, as special case of the above inference rule, for constants a 2 Se,s we
have:

a 2 TS ,s
(4.3)

Example 4.7 (IMP Signature). In the case of IMP, we have S = {Aexp,Bexp,Com}
and then we have an operation for each production in the grammar.
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For example, the sequential composition of commands “;” corresponds to the
binary infix operator (�;�) 2 SComCom,Com.

Similarly the equality expression is built using the operator (� = �) 2 SAexpAexp,Bexp.
By abusing the notation, we often write Com for TS ,Com (respectively, Aexp for

TS ,Aexp and Bexp for TS ,Bexp).
Then, we have inference rules instances such as:

skip 2 Com

skip 2 Com x := a 2 Com

skip ; x := a 2 Com

The programs we consider are (well-formed) terms over a suitable signature S
(possibly many-sorted). Therefore it is useful to define a well-founded containment
relation between a term and its subterms. For example, we will exploit this relation
when dealing with structural induction in Section 4.1.5.

Example 4.8 (Terms and subterms). For any n-ary function symbol f 2 Sn and terms
t1, . . . , tn, we let:

ti � f (t1, . . . , tn) i = 1, . . . ,n

The idea is that a term ti precedes (according to �, i.e. it is less than) any term
that contains it as a subterm (e.g. as an argument).

As a concrete example, let us consider the signature S with S0 = {c} and S2 = { f }.
Then, we have, e.g.:

c � f (c,c) � f ( f (c,c),c) � f ( f ( f (c,c),c), f (c,c))

If we look at terms as trees (function symbols as nodes with one children for each
argument and constants as leaves), then we can observe that whenever s � t the depth
of s is strictly less than the depth of t. Therefore any descending chain is finite (the
length is at most the depth of the first term of the chain). Moreover, in the particular
case above, c is the only constant and therefore the only minimal element.

Example 4.9 (Lexicographic order). A quite common (well-founded) relation is the
so-called lexicographic order. The idea is to have elements that are strings over a
given ordered alphabet and to compare them symbol-by-symbol, from the leftmost to
the rightmost: as soon as we find a symbol in one string that precedes the symbol in
the same position of the other string, then we assume that the former string precedes
the latter (independently from the remaining symbols of the two strings).

As a concrete example, let us consider the set of all pairs hn,mi of natural numbers
ordered by immediate precedence. The lexicographic order relation is defined as (see
Figure 4.2):

• 8n,m,k. (hn,mi � hn+1,ki)
• 8n,m. (hn,mi � hn,m+1i)
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h2,0i //

...

h2,1i //

...

h2,2i

...

···

h1,0i //

OO << 55

h1,1i //

OO <<bb

h1,2i

OObbii

···

h0,0i //

OO << 55

h0,1i //

OO <<bb

h0,2i

OObbii

···

Fig. 4.2: Graph of the lexicographic order relation over pairs of natural numbers.

By Theorem 4.2, the relation � is well-founded if and only if its transitive closure
is such. Note that the relation �+ has no cycle and any descending chain is bound by
the only minimal element h0,0i. For example, we have:

h5,1i �+ h4,25i �+ h3,100i �+ h3,14i �+ h2,1i �+ h1,1000i �+ h0,0i

It is worth to note that any element hn,mi with n � 1 is preceded by infinitely
many elements (e.g., 8k. h0,ki � h1,0i) and it can be the first element of infinitely
many (finite) descending chains (of unbounded length).

Still, given any nonempty set Q ✓ N⇥N, it is easy to find a minimal element m 2
Q, namely such that 8b �+ m. b 62 Q. In fact, we can just take m = hm1,m2i, where
m1 is the minimum (w.r.t. the usual less-than relation over natural numbers) of the set
Q1 = {n1 | hn1,n2i 2 Q} and m2 is the minimum of the set Q2 = {n2 | hm1,n2i 2 Q}.
Note that Q1 is nonempty because Q is such by hypothesis, and Q2 is nonempty
because m1 2 Q1 and therefore there must exists at least one pair hm1,n2i 2 Q for
some n2. Thus

hm1 = min{n1 | hn1,n2i 2 Q},min{n2 | hm1,n2i 2 Q}i

is a (the only) minimal element of Q. By Lemma 4.1 the relation �+ is well-founded
and so is � (by Theorem 4.2).

4.1.2 Noether Induction

Theorem 4.5. Let � be a well-founded relation over the set A and let P be a unary
predicate over A. Then:

(8a 2 A. (8b � a. P(b)) ) P(a)) , 8a 2 A. P(a)
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Proof. We prove the two implications separately:

)) We proceed by contradiction by assuming ¬(8a 2 A. P(a)), i.e., that 9a 2
A. ¬P(a). Let us consider the nonempty set Q = {a 2 A | ¬P(a)} of all
those elements a in A for which P(a) is false. Since � is well-founded, we
know by Lemma 4.1 that there is a minimal element m 2 Q. Obviously ¬P(m)
(otherwise m cannot be in Q). Since m is minimal in Q, then 8b � m. b 62 Q, i.e.,
8b � m. P(b). But this leads to a contradiction, because by hypothesis we have
8a 2 A. (8b � a. P(b)) ! P(a) and instead the predicate (8b � m. P(b)) !
P(m) is false. Therefore Q must be empty and 8a 2 A. P(a) must hold.

() We observe that if 8a. P(a) then (8b � a. P(b)) ! P(a) is true for any a
because the premise (8b � a. P(b)) is not relevant (the conclusion of the
implication is true). ut

From the first implication, it follows the validity of the following induction
principle.

Definition 4.10 (Noether induction). Let � be a well-founded relation over the set
A and let P be a unary predicate over A. Then the following inference rule is called
Noether induction.

8a 2 A. (8b � a. P(b)) ) P(a)

8a 2 A. P(a)
(4.4)

We call a base case any element a 2 A such that the set of its predecessors
{b 2 A | b � a} is empty.

4.1.3 Weak Mathematical Induction

The principle of weak mathematical induction is a special case of Noether induction
that is frequently used to prove formulas over the set on natural numbers: we take

A = N n � m , m = n+1

In this case:

• if we take a = 0 then (8b � a. P(b)) ) P(a) amounts to P(0), because there is
no b 2 N such that b � 0;

• if we take a = n + 1 for some n 2 N, then (8b � a. P(b)) ) P(a) amounts to
P(n) ) P(n+1).

In other words, to prove that P(n) holds for any n 2 N we can just prove that:

• P(0) holds (base case), and
• that, given a generic n 2 N, P(n+1) holds whenever P(n) holds (inductive case).
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Definition 4.11 (Weak mathematical induction).

P(0) 8n 2 N. (P(n) ) P(n+1))

8n 2 N. P(n)
(4.5)

The weak mathematical induction principle is helpful, because it allows us to
exploit the hypothesis P(n) when proving P(n+1).

4.1.4 Strong Mathematical Induction

The principle of strong mathematical induction extends the weak one by strengthen-
ing the hypotheses under which P(n+1) is proved to hold. We take:

A = N n � m , 9k 2 N. m = n+ k +1

In this case:

• if we take a = 0 then (8b � a. P(b)) ) P(a) amounts to P(0), as for the case of
weak mathematical induction;

• if we take a = n + 1 for some n 2 N, then (8b � a. P(b)) ) P(a) amounts to
(P(0) ^ P(1) ^ · · · ^ P(n)) ) P(n + 1), i.e., using a more concise notation to
(8i  n. P(i)) ) P(n+1).

In other words, to prove that P(n) holds for any n 2 N we can just prove that:

• P(0) holds, and
• that, given a generic n 2 N, P(n+1) holds whenever P(i) holds for all i = 0, ...,n.

Definition 4.12 (Strong mathematical induction).

P(0) 8n 2 N. (8i  n. P(i)) ) P(n+1)

8n 2 N. P(n)
(4.6)

The adjective “strong” comes from the fact that for proving P(n+1) we can now
exploit the stronger hypothesis P(0)^P(1)^ ...^P(n) instead of just P(n).

4.1.5 Structural Induction

The principle of structural induction is a special instance of Noether induction for
proving properties over the set of terms generated by a given signature. Here, the
order relation binds a term to its subterms.

Structural induction takes TS as set of elements and subterm-term relation as
well-founded relation:

A = TS ti < f (t1, . . . , tn) i = 1, . . . ,n
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Definition 4.13 (Structural induction).

8t 2 TS . (8t 0 < t. P(t 0)) ) P(t)

8t 2 TS . P(t)
(4.7)

By exploiting the definition of the well-founded subterm relation, we can expand
the above principle as the rule

8 f 2 Ss1...sn,s. 8t1 2 TS ,s1 ...8tn 2 TS ,sn . (P(t1)^ . . .^P(tn)) ) P( f (t1, . . . , tn))

8t 2 TS . P(t)

An easy link can be established w.r.t. mathematical induction by taking a unique
sort, a constant 0 and a unary operation succ (i.e., S = S0 [S1 with S0 = {0} and
S1 = {succ}). Then, the structural induction rule would become:

P(0) 8t. (P(t) ) P(succ(t)))

8t. P(t)

Example 4.10. Let us consider the grammar of IMP arithmetic expressions:

a ::= n | x | a0 +a1 | a0 �a1 | a0 ⇥a1

How do we exploit structural induction to prove that a property P(·) holds for
all arithmetic expressions a? (Namely, we want to prove that 8a 2 Aexp. P(a).) The
structural induction rule is:

8n. P(n) 8x. P(x) 8a0,a1. (P(a0)^P(a1) ) P(a0 +a1))
8a0,a1. (P(a0)^P(a1) ) P(a0 �a1)) 8a0,a1. (P(a0)^P(a1) ) P(a0 ⇥a1))

8a. P(a)

Essentially, to prove that 8a 2 Aexp. P(a), we just need to show that the property
holds for any production, i.e., we need to prove that all of the following hold:

• P(n) holds for any integer n;
• P(x) holds for any identifier x;
• P(a0 +a1) holds whenever both P(a0) and P(a1) hold;
• P(a0 �a1) holds whenever both P(a0) and P(a1) hold;
• P(a0 ⇥a1) holds whenever both P(a0) and P(a1) hold.

Example 4.11 (Termination of arithmetic expressions). Let us consider the case of
arithmetic expressions seen above and prove that the evaluation of expressions always
terminates (a property that is also called normalisation):1

8a 2 Aexp. 8s 2 S . 9m 2 N. ha,si ! m

1 We recall that the (overloaded) symbol S stands here for the set of memories and not for a generic
signature.
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In this case we let

P(a)
def
= 8s 2 S . 9m 2 N. ha,si ! m.

We prove that 8a 2 Aexp. P(a) by structural induction. This amounts to prove that

• P(n)
def
= 8s 2 S . 9m 2 N. hn,si ! m holds for any integer n. Trivially, by apply-

ing rule (num) we take m = n and we are done.
• P(x) def

= 8s 2 S . 9m 2 N. hx,si ! m holds for any location x. Trivially, by
applying rule (ide) we take m = s(x) and we are done.

• P(a0)^P(a1) ) P(a0 +a1) for any arithmetic expressions a0 and a1. We assume

P(a0)
def
= 8s 2 S . 9m0 2 N. ha0,si ! m0

P(a1)
def
= 8s 2 S . 9m1 2 N. ha1,si ! m1.

We want to prove that

P(a0 +a1)
def
= 8s 2 S . 9m 2 N. ha0 +a1,si ! m.

Take a generic s 2 S . We want to find m 2 N such that ha0 + a1,si ! m. By
applying rule (sum) we can take m = m0 +m1 if we prove that ha0,si ! m0 and
ha1,si ! m1. But by inductive hypothesis we know that such m0 and m1 exist
and we are done.

• P(a0)^P(a1) ) P(a0 �a1) for any arithmetic expressions a0 and a1. The proof
is analogous to the previous case and thus omitted.

• P(a0)^P(a1) ) P(a0 ⇥a1) for any arithmetic expressions a0 and a1. The proof
is analogous to the previous case and thus omitted.

Example 4.12 (Determinism of arithmetic expressions). Let us consider again the
case of IMP arithmetic expressions and prove that their evaluation is deterministic:

8a 2 Aexp. 8s 2 S . 8m,m0 2 N. (ha,si ! m^ha,si ! m0) ) m = m0

In other words, we want to show that given any arithmetic expression a and any
memory s the evaluation of a in s will always return exactly one value. We let

P(a)
def
= 8s 2 S . 8m,m0 2 N. (ha,si ! m^ha,si ! m0) ) m = m0

We proceed by structural induction.

a = n) We want to prove that

P(n)
def
= 8s ,m,m0. (hn,si ! m^hn,si ! m0) ) m = m0

holds. Let us take generic s ,m,m0. We assume the premises hn,si !
m and hn,si ! m0 and prove that m = m0. In fact, there is only one
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rule that can be used to evaluate an integer number, and it always
returns the same value. Therefore m = n = m0.

a = x) We want to prove that

P(x) def
= 8s ,m,m0. (hx,si ! m^hx,si ! m0) ) m = m0

holds. We assume the premises hx,si ! m and hx,si ! m0 and
prove that m = m0. Again, there is only one rule that can be applied,
whose outcome depends on s . Since s is the same in both cases,
m = s(x) = m0.

a = a0 +a1) We assume the inductive hypotheses

P(a0)
def
= 8s ,m0,m0

0. (ha0,si ! m0 ^ha0,si ! m0
0) ) m0 = m0

0

P(a1)
def
= 8s ,m1,m0

1. (ha1,si ! m1 ^ha1,si ! m0
1) ) m1 = m0

1

and we want to prove that P(a0 +a1), i.e., that:

8s ,m,m0. (ha0 +a1,si ! m^ha0 +a1,si ! m0) ) m = m0

We assume the premises ha0 + a1,si ! m and ha0 + a1,si ! m0

and prove that m = m0. By the first premise, it must be m = m0 +m1
for some m0,m1 such that ha0,si ! m0 and ha1,si ! m1, because
there is only one rule applicable to a0 + a1; analogously, by the
second premise, we must have m0 = m0

0 +m0
1 for some m0

0,m
0
1 such

that ha0,si ! m0
0 and ha1,si ! m0

1. By inductive hypothesis P(a0)
we know that m0 = m0

0 and by P(a1) we have m1 = m0
1. Thus, m =

m0 +m1 = m0
0 +m0

1 = m0 and thus P(a0 +a1) holds.

The remaining cases for a = a0 �a1 and a = a0 ⇥a1 follow exactly the same pattern
as that of a = a0 +a1.

4.1.6 Induction on Derivations

We can define an induction principle over the set of derivations of a logical system.
See Definitions 2.1 and 2.4 for the notion of inference rule and of derivation.

Definition 4.14 (Immediate sub-derivation). We say that d0 is an immediate sub-
derivation of d, or simply a sub derivation of d, written d0 � d, if and only if d has
the form ({d1, ...,dn} / y) with d1 �R x1, ...,dn �R xn and ({x1, ...,xn} / y) 2 R (i.e.,
d �R y) and d0 = di for some 1  i  n.

Example 4.13 (Immediate sub-derivation). Let us consider the derivation
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num
h1,si ! 1

num
h2,si ! 2

sum
h1+2,si ! 1+2 = 3

the two derivations

num
h1,si ! 1

num
h2,si ! 2

are immediate sub-derivations of the derivation that exploits rule (sum).

We can derive the notion of proper sub-derivations out of immediate ones.

Definition 4.15 (Proper sub-derivation). We say that d0 is a proper sub-derivation
of d if and only if d0 �+ d.

Note that both � and �+ are well-founded, so they can be used in proofs by
induction.

For example, the induction principle based on immediate sub-derivation can be
phrased as follows.

Definition 4.16 (Induction on derivations). Let R be a set of inference rules and D
the set of derivations defined on R, then:

8{x1, . . . ,xn}/y 2 R. (8di �R xi. P(d1)^ . . .^P(dn)) ) P({d1, . . . ,dn}/y)

8d 2 D. P(d)
(4.8)

(Note that d1, . . . ,dn are derivation for x1, . . . ,xn).

Induction on derivations shares similarities with structural induction. The analogy
comes from viewing the (instances of) inference rules as symbolic operators to
construct derivations, with axioms playing the role of constants.

4.1.7 Rule Induction

The last kind of induction principle we shall consider applies to sets of elements
that are defined by means of inference rules: we have a set of inference rules that
establish which elements belong to the set (i.e. the theorems of the logical system)
and we need to prove that the application of any such rule will not compromise the
validity of a given predicate.

Remind that a rule has the form (?/y) if it is an axiom, or ({x1, . . . ,xn}/y)
otherwise. Given a set R of such rules, the set of theorems of R is defined as

IR = {y |�R y}

The rule induction principle states that to show the property P holds for all
elements of IR, we can prove the following:
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• P(y) holds for any axiom ?/y 2 R;
• for any other rule {x1, . . . ,xn}/y 2 R we have (81  i  n. xi 2 IR ^P(xi)) ) P(y).

Definition 4.17 (Rule induction). Let R be a logical system. The principle of rule
induction is:

8(X/y) 2 R. (X ✓ IR ^ 8x 2 X . P(x)) ) P(y)

8x 2 IR. P(x)
(4.9)

The principle of rule induction is a useful variant of the induction on derivation. In
fact by assuming that X ✓ IR it follows that there is a derivation di for each theorem
xi 2 X , so that a longer derivation for y is built by applying the rule (X/y) 2 R to
d1, ...,dn.

Note that in many cases we will use the simpler but less powerful rule

8(X/y) 2 R. (8x 2 X . P(x)) ) P(y)

8x 2 IR. P(x)
(4.10)

In fact, if the latter applies, also the former does, since the implication in the
premise must be proved in fewer cases: only for rules X/y such that all the formulas
in X are theorems. However, usually it is difficult to take advantage of the restriction.

Example 4.14 (Determinism of IMP commands). We have seen in Example 4.12
that structural induction can be conveniently used to prove that the evaluation of
arithmetic expressions is deterministic. Formally, we were proving the predicate P(·)
over arithmetic expressions defined as

P(a)
def
= 8s .8m,m0. ha,si ! m^ha,si ! m0 ) m = m0

While the case of boolean expressions is completely analogous, for commands
we cannot use the same proof strategy, because structural induction cannot deal with
the rule (whtt). In this example, we show that rule induction provides a convenient
strategy to solve the problem.

Let us consider the following predicate over theorems, i.e., statements of the form
hc,si ! s 0:

Q(hc,si ! s 0)
def
= 8s1 2 S . hc,si ! s1 ) s 0 = s1

We proceed by rule induction:

rule skip): we want to show that

Q(hskip,si ! s)
def
= 8s1. hskip,si ! s1 ) s1 = s

which is obvious because there is only one rule applicable to skip:

hskip,si ! s1 -s1=s ⇤
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rule assign): assuming
ha,si ! m

we want to show that

Q(hx := a,si ! s [m/x])
def
= 8s1. hx := a,si ! s1 ) s1 = s [m/x]

Let us take a generic memory s1 and assume the premise hx :=
a,si ! s1 of the implication holds. We proceed goal oriented. We
have:

hx := a,si ! s1 -s1=s [m0/x]
ha,si ! m0

But we know that the evaluation of arithmetic expressions is deter-
ministic and therefore m0 = m and s1 = s [m/x].

rule seq): assuming

Q(hc0,si ! s 00)
def
= 8s 00

1 . hc0,si ! s 00
1 ) s 00 = s 00

1

Q(hc1,s 00i ! s 0)
def
= 8s1. hc1,s 00i ! s1 ) s 0 = s1

we want to show that

Q(hc0;c1,si ! s 0)
def
= 8s1. hc0;c1,si ! s1 ) s1 = s 0

We assume the premise hc0;c1,si ! s1 and prove that s1 = s 0. We
have:

hc0;c1,si ! s1 - hc0,si ! s 00
1 , hc1,s 00

1 i ! s1

But now we can apply the first inductive hypotheses:

Q(hc0,si ! s 00)
def
= 8s 00

1 . hc0,si ! s 00
1 ) s 00

1 = s 00

to conclude that s 00
1 = s 00, which together with the second inductive

hypothesis

Q(hc1,s 00i ! s 0)
def
= 8s1. hc1,s 00i ! s1 ) s1 = s 0

allow us to conclude that s1 = s 0.
rule iftt): assuming

hb,si ! true

Q(hc0,si ! s 0)
def
= 8s1. hc0,si ! s1 ) s1 = s 0

we want to show that
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Q(hif b then c0 else c1,si ! s 0)
def
=

8s1. hif b then c0 else c1,si ! s1 ) s1 = s 0

Since hb,si ! true and the evaluation of boolean expressions is
deterministic, we have:

hif b then c0 else c1,si ! s1 -⇤ hc0,si ! s1

But then, exploiting the inductive hypothesis

Q(hc0,si ! s 0)
def
= 8s1. hc0,si ! s1 ) s1 = s 0

we can conclude that s1 = s 0.
rule ifff): omitted (it is analogous to the previous case).
rule whff): assuming

hb,si ! false

we want to show that

Q(hwhile b do c,si ! s)
def
= 8s1. hwhile b do c,si ! s1 ) s1 = s

Since hb,si ! false and the evaluation of boolean expressions is
deterministic, we have:

hwhile b do c,si ! s1 -⇤
s1=s ⇤

rule whtt): assuming

hb,si ! true

Q(hc,si ! s 00)
def
= 8s 00

1 . hc,si ! s 00
1 ) s 00

1 = s 00

Q(hwhile b do c,s 00i ! s 0)
def
= 8s1. hwhile b do c,s 00i ! s1 ) s1 = s 0

we want to show that

Q(hwhile b do c,si ! s 0)
def
= 8s1. hwhile b do c,si ! s1 ) s1 = s 0

Since hb,si ! true and the evaluation of boolean expressions is
deterministic, we have:

hwhile b do c,si ! s1 -⇤ hc,si ! s 00
1 , hwhile b do c,s 00

1 i ! s1

But now we can apply the first inductive hypotheses:

Q(hc,si ! s 00)
def
= 8s 00

1 . hc,si ! s 00
1 ) s 00

1 = s 00

to conclude that s 00
1 = s 00, which together with the second inductive

hypothesis
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Q(hwhile b do c,s 00i ! s 0)
def
= 8s1. hwhile b do c,s 00i ! s1 ) s1 = s 0

allow us to conclude that s1 = s 0.

4.2 Well-founded Recursion

We conclude this chapter by presenting the concept of well-founded recursion. A
recursive definition of a function f is well-founded when the recursive calls to f take
as arguments values that are smaller w.r.t. the ones taken by the defined function
(according to a suitable well-founded relation). A special class of functions defined
on natural numbers according to the principle of well-founded recursion is that of
primitive recursive functions.

Definition 4.18 (Primitive recursive functions). The primitive recursive functions
are those (n-ary) functions over natural numbers obtained according to (any finite
application of) the following rules:

zero: The constant 0 is primitive recursive.
succ.: The successor function s : N ! N with s(n) = n+1 is primitive recursive.
proj.: For any i,k 2 N,1  i  k, the projection functions pk

i : Nk ! N with

pk
i (n1, ...,nk) = ni

are primitive recursive.
comp.: Given a k-ary primitive recursive function f : Nk ! N, and k primitive

recursive functions g1, ...,gk : Nm ! N of arity m, the m-ary function
h obtained by composing f with g1, ...,gk as shown below is primitive
recursive:

h(n1, ...,nm)
def
= f (g1(n1, ...,nm), ...,gk(n1, ...,nm))

pr.rec.: Given a k-ary primitive recursive function f : Nk ! N and a (k + 2)-ary
primitive recursive function g : Nk+2 ! N, the (k + 1)-ary function h :
Nk+1 ! N defined as the primitive recursion of f and g below is primitive
recursive:

h(0,n1, ...,nk) = f (x1, ...,xk)

h(s(n),n1, ...,nk) = g(n,h(n,n1, . . . ,nk),n1, . . . ,nk)

Note that p1
1 : N ! N is the usual identity function. It can be proved that every

primitive recursive function is total and computable.

Example 4.15. Addition can be recursively defined with the rules:
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add(0,m)
def
= m

add(n+1,m)
def
= add(n,m)+1.

This does not fit immediately into the above scheme of primitive recursive func-
tions, but we can rephrase the definition as:

add(0,n1)
def
= p1

1 (n1)

add(s(n),n1)
def
= s(p3

2 (n,add(n,n1),n1))

In the primitive recursive style, add plays the role of h, the identity function p1
1 plays

the role of f and the composition of s with p3
2 plays the role of g (so that it receives

the unnecessary arguments n and n1).

Let us make the well-founded recursion more precise.

Definition 4.19 (Set of predecessors). Given a well founded relation � ✓ A ⇥ A,
the set of predecessors of a set I ✓ A is the set

��1 I = {b 2 A | 9a 2 I. b � a}

We recall that for I ✓ A and f : A ! B, we denote by f � I the restriction of f to
values in I, i.e., f � I : I ! B and ( f � I)(a) = f (a) for any a 2 I.

Theorem 4.6 (Well-founded recursion). Let � ✓ A⇥A be a well-founded relation
over A. Let us consider a function F with F(a,h) 2 B for any

• a 2 A
• h :<�1 {a} ! B (i.e., h is any function whose domain is the set of predecessors of

a and whose codomain is B)

Then, there exists one and only one function f : A ! B which satisfies the equation

8a 2 A. f (a) = F(a, f ���1 {a})

Proof. The proof is divided in two parts: 1) we first demonstrate that if such a
function f exists, then it is unique; and 2) we prove its existence.

1. Uniqueness follows if we can prove the predicate 8a. P(a), where

P(a)
def
= ( 8y �⇤ a. ( f (y) = F(y, f ���1 {y}) ^ g(y) = F(y,g ���1 {y}) ) )

) f (a) = g(a)

In fact, suppose there are two functions f ,g : A ! B such that:

8a 2 A. f (a) = F(a, f ���1 {a})

8a 2 A. g(a) = F(a,g ���1 {a})

Clearly, for any a 2 A the premise
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( 8y �⇤ a. ( f (y) = F(y, f ���1 {y}) ^ g(y) = F(y,g ���1 {y}) ) )

is true and thus we can conclude f (a) = g(a).
The proof that 8a. P(a) goes by well-founded induction on �. For a 2 A, we
assume that 8b � a. P(b) and we want to prove P(a). Suppose that

( 8y �⇤ a. ( f (y) = F(y, f ���1 {y}) ^ g(y) = F(y,g ���1 {y}) ) )

We need to prove that f (a) = g(a). For b � a we must have f (b) = g(b), because
P(b) holds by inductive hypothesis. Thus

f ���1 {a} = g ���1 {a}

and therefore

f (a) = F(y, f ���1 {a}) = F(y,g ���1 {a}) = g(a)

2. For the existence, we build a family of functions

{ fa : �⇤�1 {a} ! B}a2A

and then take f def
=
S

a2A fa. The existence of the functions fa is guaranteed by
proving that the following property holds for all x 2 A:

Q(x) def
= 9 fx : �⇤�1 {x} ! B. 8y �⇤ x. fx(y) = F(y, fx ���1 {y})

The proof goes by well-founded recursion. We assume 8b � a. Q(b) and prove
that Q(a) holds. Let b � a and fb : �⇤�1 {b} ! B be the function such that

8y �⇤ b. fb(y) = F(y, fb ���1 {y}).

We build a relation h ✓ A⇥B defined by

h def
=
[

b�a
fb

Now for any b � a there is at least one pair of the form (b,c) 2 h for some c 2 B,
because b �⇤ b. By the uniqueness property proved before, we have that such a
pair is unique. Hence h satisfies the function property. Finally, we let

fa
def
= h[{(a,F(a,h)}

to get a function fa : �⇤�1 {a} ! B such that

8y �⇤ a. fa(y) = F(y, fa ���1 {y})

proving that Q(a) holds. ut
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Theorem 4.6 guarantees that, if we (recursively) define f over any a 2 A only in
terms of the predecessors of a, then f is uniquely determined on all a. Notice that F
has a dependent type, since the type of its second argument depends on the value of
its first argument.

In the following chapters we will exploit fixpoint theory to define the semantics of
recursively defined functions. Well-founded recursion gives a simpler method, which
however works only in the well-founded case.

Example 4.16 (Product as primitive recursion). Let us consider the Peano formula
that defines the product of natural numbers

p(0,y) def
= 0

p(x+1,y) def
= y+ p(x,y)

Let us write the definition in a slightly different way

py(0)
def
= 0

py(x+1)
def
= y+ py(x)

Let us recast the Peano formula seen above to the formal scheme of well-founded
recursion.

py(0)
def
= Fy(0, py �?) = 0

py(x+1)
def
= Fy(x+1, py ���1 {x+1}) = y+ py(x)

Example 4.17 (Structural recursion). Let us consider the signature S for binary trees
A = TS , where S0 = {0,1, ...} and S2 = cons (where cons(x,y) is the constructor
for building a tree out of its left and right subtree). Take the well-founded relation
xi � cons(x1,x2), i = 1,2. Let B = N.

We want to compute the sum of the elements in the leaves of a binary tree. In
Lisp-like notation:

sum(x) def
= if atom(x) then x else sum(car(x))+ sum(cdr(x))

where atom(x) returns true if x is a leaf; car(x) denotes the left subtree of x; cdr(x)
the right subtree of x. The same function defined in the structural recursion style is

sum(n)
def
= n

sum(cons(x,y)) def
= sum(x)+ sum(y)

or, according to the well-founded recursive scheme,
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F(n,sum �?)
def
= n

F(cons(x,y),sum � {x,y})
def
= sum(x)+ sum(y)

For example, for q def
= cons(3,cons(cons(2,3),4)) we have:

sum(q) = sum(3)+ sum(cons(cons(2,3),4))

= 3+(sum(cons(2,3))+ sum(4))

= 3+((sum(2)+ sum(3))+4)

= 3+(2+3)+4)

= 12

Example 4.18 (Ackermann function). The Ackermann function is one of the earliest
examples of a computable, total recursive function that is not primitive recursive: it
grows faster than any such function. The Ackermann function ack(z,x,y) = acky(z,x)
is defined by well-founded recursion (exploiting the lexicographic order over pairs
of natural numbers) by letting

8
>>>><

>>>>:

ack( 0 , 0 , y ) = y
ack( 0 , x+1 , y ) = ack(0,x,y)+1
ack( 1 , 0 , y ) = 0
ack( z+2 , 0 , y ) = 1
ack( z+1 , x+1 , y ) = ack(z,ack(z+1,x,y),y)

We have
⇢

ack(0,0,y) = y
ack(0,x+1,y) = ack(0,x,y)+1 ) ack(0,x,y) = y+ x

⇢
ack(1,0,y) = 0

ack(1,x+1,y) = ack(0,ack(1,x,y),y) = ack(1,x,y)+ y ) ack(1,x,y) = y⇥x

Intuitively, ack(1,x,y) applies addition of y for x times.

⇢
ack(2,0,y) = 1

ack(2,x+1,y) = ack(1,ack(2,x,y),y) = ack(2,x,y)⇥ y ) ack(2,x,y) = yx

In other words, ack(2,x,y) applies multiplication for y for x times. Likewise,
ack(3,x,y) applies exponentiation to the yth power for x times, and so on.

For example, we have:
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ack(0,0,0) = 0+0 = 0
ack(1,1,1) = 1⇥1 = 1
ack(2,2,2) = 22 = 4

ack(3,3,3) = 333
= 327 ' 7.6⇥1012

Problems

4.1. Consider the logical system R corresponding to the rules of the grammar:

S ::= aB | bA A ::= a | aS | bAA B ::= b | bS | aBB

where the well formed formulas are of the form x 2 LX , where X is either S or A or B
and where x is a string on the alphabet {a,b}.

1. Write down explicitly the rules in R.
2. Prove by rule induction—in one direction—and by mathematical induction on

the length of the strings—in the other direction—that the strings generated by
S are all the nonempty strings with the same number of a’s and b’s (i.e., prove
the formal predicate P(x 2 LS)

def
= x|a = x|b 6= 0, where x|s denotes the number of

occurrences of the symbol s in the string x), while A generates all the strings with
an additional a (formally P(x 2 LA)

def
= x|a = 1+ x|b) and B with an additional b.

3. Finally prove by induction on derivations that

P(d/(x 2 LX ))
def
= |d|  |x|

i.e., the depth of any derivation d is smaller or equal that the length of the string x
generated by it.

4.2. Define by well-founded recursion the function

locs : Com �!√(Loc)

that, given a command, returns the set of locations that appear on the left-hand side
of some assignment.

Then, prove that 8c 2 Com, 8s ,s 0 2 S

hc,si ! s 0 implies 8y 62 locs(c). s(y) = s 0(y).

4.3. Let w denote the IMP command

w def
= while x 6= 0 do (x := x�1 ; y := y+1).

Prove by rule induction that 8s ,s 0 2 S
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hw,si ! s 0 implies s(x) � 0 ^ s 0 = s
h

s(x)+s(y)/y,
0 /x

i
.

4.4. Let R be a binary relation over the set A, i.e., R ✓ A ⇥ A. Let R+, called the
transitive closure of R, be the relation defined by the following two rules:

x R y
x R+ y

x R+ y y R+ z
x R+ z

1. Prove that for any x and y

x R+ y , 9k > 0. 9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = y

(Hint: Prove the implication ) by rule induction and the implication ( by
induction on the length k of the R-chain).

2. Give the rules that define instead a relation R0 such that

x R0 y , 9k � 0. 9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = y.

4.5. Let IMP� be the language obtained from IMP by removing the while construct.
Exploit the operational semantics to prove that in IMP�, for every command c it
holds the termination property

8s 2 S . 9s 0 2 S . hc,si ! s 0

4.6. Let us consider the following rules, where m, n and k are positive natural
numbers.

(m,m) ! m
(n,m) ! k
(m,n) ! k

m < n
(m�n,n) ! k

(m,n) ! k
m > n

Prove by rule induction that, for any n,m,k > 0,

(m,n) ! k implies k = gcd(m,n).

(Hint: Prove that any common divisor of m and n with m > n is also a common
divisor of m�n and n and vice versa). Note: gcd(m,n) denotes the greatest common
divisor of m and n, i.e., if we write d| j to mean that d divides j (in other words, that
there exists h such that j = d ⇥h), then gcd(n,m) is the natural number d such that
d|m^d|n and for any d0 such that d0|m^d0|n we have d0  d.

4.7. Prove that, according to the operational semantics of IMP, for any boolean
expression b, command c and stores s , s 0

hwhile b do c,si ! s 0 implies hb,s 0i ! false

Explain which induction principle you exploit in the proof.

4.8. Exploit the property from Problem 4.7 to prove that for any b 2 Bexp and
c 2 Com we have c1 ⇠ c2 ⇠ c3 where:
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c1
def
= while b do c

c2
def
= while b do (c ;while b do c)

c3
def
= (while b do c) ; while b do c

4.9. Define by well-founded recursion the function

locs : Aexp �!√(Loc)

that, given an arithmetic expression a, returns the set of locations that occur in a. Use
structural induction to show that 8a 2 Aexp. 8s ,s 0 2 S . 8n,m 2 Z

ha,si ! n ^ ha,s 0i ! m ^ 8x 2 locs(a). s(x) = s 0(x) implies n = m.

4.10. Consider the IMP program

w def
= while ¬(x = y) do (x := x+1 ; y := y�1)

Define the set of stores T = {s | ...} for which the program w terminates and:

1. Prove formally that for any store s 2 T there exists s 0 such that hw,si ! s 0.
(Hint: use well-founded induction on T )

2. Prove (by using the rule for divergence) that 8s 62 T. hw,si 6! .

4.11. Let us consider the IMP command

w def
= while x 6= 0 do x := x� y.

1. Prove that, for any s ,s 0, if hw,si ! s 0 then there exists an integer k such that
s(x) = k ⇥s(y).

2. Give a store s such that s(x) = k⇥s(y) for some integer k but such that hw,si 6!.
Explain why the program diverges for the given s .

3. Define a command c such that, for any s ,s 0, hc,si ! s 0 iff s(x) = k ⇥s(y) for
some integer k. Sketch the proof of the double implication.

4.12. Recall that the height or depth of a derivation d is recursively defined as follows:

depth(?/y) def
= 1

depth({d1, ...,dn}/y) def
= 1+max{depth(d1), ...,depth(dn)}

Given the IMP command

w def
= while x > 0 do x := x�1

prove by induction on n that for any s 2 S with s(x) = n � 0 the derivation of
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hw,si ! s 0

has depth n+3.

4.13. The binomial coefficients
✓

n
k

◆
, with n,k 2 N and 0  k  n, are defined by:

✓
n
0

◆
def
= 1

✓
n
n

◆
def
= 1

✓
n+1
k +1

◆
def
=

✓
n
k

◆
+

✓
n

k +1

◆
.

Prove that the above definition is given by well-founded recursion, specifying the
well-founded relation and the corresponding function F(b,h).

4.14. Consider the well-known sequence of Fibonacci numbers, defined as:

F(0)
def
= 1 F(1)

def
= 1 F(n+2)

def
= F(n+1)+F(n).

where n 2 N. Explain why the above definition is given by well-founded recursion
and make explicit the well-founded relation to be used.



DRAFT



DRAFT
Chapter 5
Partial Orders and Fixpoints

Good old Watson! You are the one fixed point in a changing age.
(Sherlock Holmes)

Abstract This chapter is devoted to the introduction of the foundations of the denota-
tional semantics of computer languages. The concepts of complete partial orders with
bottom and of monotone and continuous functions are introduced and then the main
fixpoint theorem is presented. The chapter is concluded by studying the immediate
consequence operator that is used to relate logical systems and fixpoint theory.

5.1 Orders and Continuous Functions

As we have seen, the operational semantics gives us a very concrete semantics, since
the inference rules describe step by step the bare essential operations on the state
required to reach the final state of computation. Unlike the operational semantics, the
denotational one provides a more abstract view. Indeed, the denotational semantics
gives us directly the meaning of the constructs of the language as particular functions
over domains. Domains are sets whose structure will ensure the correctness of the
constructions of the semantics.

As we will see, one of the most attractive features of the denotational semantics is
that it is compositional, namely, the meaning of a composite program is given by com-
bining the meanings of its constituents. The compositional property of denotational
semantics is obtained by defining the semantics by structural recursion. Obviously
there are particular issues in defining the interpretation of the “while” construct of
IMP, since the semantics of this construct, as we saw in the previous chapters, is
inherently recursive. General recursion is forbidden in structural recursion, which
allows only the use of sub-terms. The solution to this problem is given by solving
equations of the type x = f (x), namely by finding the fixpoint(s) of suitable functions
f . On the one hand we would like to ensure that each recursive definition that we
introduce has a fixpoint. Therefore we will restrict our study to a particular class of
functions: continuous functions. On the other hand, the aim of the theory we will
develop, called domain theory, will be to identify one solution when more than one

105
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are available, and to provide an approximation method for computing it, which is
given by the fixpoint theorem (Theorem 5.6).

5.1.1 Orders

We introduce the general theory of partial orders which will bring us to the concept
of domain.

Definition 5.1 (Partial order). A partial order is a pair (P,vP) where P is a set and
vP ✓ P⇥P is a binary relation (i.e., it is a set of pairs of elements of P) which is:

reflexive: 8p 2 P. p vP p
antisymmetric: 8p,q 2 P. p vP q^q vP p =) p = q
transitive: 8p,q,r 2 P. p vP q^q vP r =) p vP r

We call (P,vP) a poset (for partially ordered set).

We will conveniently omit the subscript P from vP when no confusion can arise.
We write p @ q when p v q and p 6= q.

Example 5.1 (Powerset). Let (√(S),✓) be the powerset of a set S together with the
inclusion relation. It is easy to see that (√(S),✓) is a poset.

reflexive: 8s ✓ S. s ✓ s
antisymmetric: 8s1,s2 ✓ S. s1 ✓ s2 ^ s2 ✓ s1 ) s1 = s2
transitive: 8s1,s2,s3 ✓ S. s1 ✓ s2 ✓ s3 ) s1 ✓ s3

Actually, partial orders are a generalization of the concept of powerset ordered by
inclusion. Thus we should not be surprised by this result.

Remark 5.1 (Partial orders vs well-founded relations). Partial order relations should
not be confused with the well-founded relations studied in the previous chapter. In
fact:

• Any well-founded relation (on a non-empty set) is not reflexive (otherwise an
infinite descending chain could be constructed by iterating over the same element).

• Any well-founded relation is antisymmetric (the premise p v q^q v p must be
always false, otherwise an infinite descending chain could be constructed).

• A well-founded relation can be transitive, but it is not necessarily so (e.g., the
immediate precedence relation over natural numbers is well-founded but not
transitive, instead the ‘less than’ relation is well-founded and transitive).

• Any (non-empty) partial order has an infinite descending chain (take any element
p and the chain p w p w p . . .) and is thus non well-founded.

• If we take the relation @ induced by a partial order v, then it can be well-founded,
but it is not necessarily so (e.g., the strict inclusion relation over √(N) has an
infinite descending chain whose ith element is the set {n | n 2 N^n � i}).
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• If we take the reflexive and transitive closure �⇤ of a well-founded relation �, then
it is a partial order (reflexivity and transitivity are obvious, for the antisymmetric
property, suppose that there are two elements p 6= q such that p �⇤ q ^ q �⇤ p
then there would be a cycle over p using �, contradicting the assumption that �
is well-founded).

Two elements p,q 2 P are called comparable if p v q or q v p. When any two
elements of a partial order are comparable, then it is called a total order.

Definition 5.2 (Total order). Let (P,v) be a partial order such that:

8p,q 2 P. p v q _ q v p

we call (P,v) a total order.

Example 5.2. Given a set S, its powerset (√(S),✓) ordered by inclusion is a total
order if and only if |S|  1. In fact, in one direction suppose that (√(S),✓) is a total
order and take p,q 2 S; clearly {p} ✓ {q}_{q} ✓ {p} holds only when p = q, i.e.,
S must have at most one element. Vice versa, if S = ? then √(S) = {?} and ? ✓ ?;
if S = {p} for some p, then √(S) = {?,{p}} and ? ✓ ? ✓ {p} ✓ {p}.

Theorem 5.1 (Subsets of an order). Let (P,vP) be a partial order and let Q ✓ P.
Then (Q,vQ) is a partial order, with vQ

def
= vP \(Q⇥Q). Similarly, if (P,vP) is a

total order then (Q,vQ) is a total order.

The proof is left as an easy exercise to the reader (see Problem 5.1).
Let us see some examples that will be very useful to understand the concepts of

partial and total orders.

Example 5.3 (Natural Numbers). Let (N,) be the set of natural numbers with the
usual order; (N,) is a total order.

reflexive: 8n 2 N. n  n
antisymmetric: 8n,m 2 N. n  m^m  n =) m = n
transitive: 8n,m,z 2 N. n  m^m  z =) n  z
total: 8n,m 2 N. n  m_m  n

Example 5.4 (Discrete order). Let (P,v) be a partial order defined as follows:

8p 2 P. p v p

Obviously (P,v) is a partial order. We call (P,v) a discrete order.

Example 5.5 (Flat order). A flat order is a partial order (P,v) for which there exists
an element ? 2 P such that

8p,q 2 P. p v q , p = ?_ p = q

The element ? is called bottom and it is unique. In fact, suppose that two such ele-
ments ?1,?2 exist. Then, we have ?1 v ?2 and also ?2 v ?1; thus by antisymmetry
we have ?1 = ?2.
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5.1.2 Hasse Diagrams

The aim of this section is to provide a tool that allows us to represent orders in a
comfortable way.

First of all we could think to use graphs to represent an order. In this framework
each element of the order is represented by a node of the graph and the order relation
by the arrows (i.e., we would have an arrow from a to b if and only if a v b).

This notation is not very manageable, indeed we repeat many times redundant
information. For example in the usual natural numbers order we would have n+1
incoming arrows and infinite outgoing arrows, for a node labelled by n. We need a
more compact notation, which leaves implicit some information that can be inferred
by exploiting the property of partial orders. This notation is represented by the Hasse
diagrams. The idea is to omit: 1) every reflexive arc (from a node to itself), because
we know by reflexivity that such an arc is present for every node; and 2) every arc
from a to c when there is a node b with an arc from a to b and one from b to c,
because the presence of the arc from a to c can be inferred by transitivity.

Definition 5.3 (Hasse Diagram). Given a poset (P,v), let R be the binary relation
defined by:

x v y y v z x 6= y 6= z

xRz

?
xRx

We call Hasse diagram the relation H defined as:

H def
= v \R

Note that the first rule can be written more concisely as

x @ y y @ z

xRz

The Hasse diagram omits the information deducible by transitivity and reflexivity.
A simple example of Hasse diagram is in Figure 5.1.

To ensure that all the needed information is contained in the Hasse diagram we
rely on the following theorem.

Theorem 5.2 (Order relation, Hasse diagram Equivalence). Let (P,v) a partial
order with P a finite set, and let H be its Hasse diagram. Then, the transitive and
reflexive closure H⇤ of H is equal to v.

Proof. Formally, we want to prove the two inclusions H⇤ ✓ v and v ✓ H⇤

separately, where the relation H⇤ is defined by the inference rules below:

xH⇤ x
xH y
xH⇤ y

xH⇤ y^ yH⇤ z
xH⇤ z

H⇤ ✓ v: Suppose x H⇤ y. Then, there exists (see Problem 4.4) k 2N and z0, . . . ,zk
such that
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{a,b,c}
$$

{a,b}
$$

::

{a,c}
zz

OO

{b,c}
zz

dd

{a}
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OO ::

DD

{b} ll

dd ::

WW

{c}
zz

dd OO

ZZ

? qq

dd OO 55

ZZ HH DD

FF

(a) √({a,b,c}) ordered by inclusion

{a,b,c}

{a,b}

::

{a,c}

OO

{b,c}

dd

{a}

OO ::

{b}

dd ::

{c}

dd OO

?

dd OO ::

(b) Hasse diagram for √({a,b,c})

Fig. 5.1: Hasse diagram for the powerset over {a,b,c} ordered by inclusion

x = z0 ^ z0 H z1 ^ . . .^ zk�1 H zk ^ zk = y

Since H ✓ v by definition, we have

x = z0 ^ z0 v z1 ^ . . .^ zk�1 v zk ^ zk = y

Hence, by transitivity of v it follows that x v y.
v ✓ H⇤: Given x v y, let us denote by ]x,y[ the set of elements strictly contained

between x and y, i.e.,

]x,y[ def
= {z | x @ z ^ z @ y}.

Clearly ]x,y[ is finite because P is finite. We prove that xH⇤ y by mathe-
matical induction on the number of elements in ]x,y[.

Base case: When ]x,y[ is empty, it means that (x,y) 62 R. Hence
xH y and thus xH⇤ y.

Inductive case: Suppose ]x,y[ has n + 1 elements. Take z 2]x,y[.
Clearly the sizes of ]x,z[ and ]z,y[ are strictly smaller
than that of ]x,y[, and since x @ z and z @ y, by induc-
tive hypothesis it follows that xH⇤ z and zH⇤ y. Hence
xH⇤ y. ut

The above theorem only allows to represent finite orders.

Example 5.6 (Infinite order). Let us see that the Hasse diagrams does not work well
with infinite orders. Let W = (N[ {•},) be the usual order on natural numbers
extended with a top element • such that n  • and •  •, i.e.,

0  1  2  · · ·  n  · · ·  •.
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(b) H induced by (N[{•},)
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OO
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UU

VV

(c) H⇤ induced by (N[{•},)

Fig. 5.2: Infinite orders and Hasse diagrams

From Definition 5.3 it follows that for any n 2N we have nR• (because n < n+1 <
•) and that for any n,k 2 N it holds nRn + 2 + k (because n < n + 1 < n + 2 + k).
Moreover, for any x 2 N[ {•} we have xRx. In particular, the Hasse diagram
eliminates all the arcs between each natural number and •. Now using the transitive
and reflexive closure we would like to get back the original order. Using the inference
rules we obtain the usual order on natural numbers without any relation between •
and the natural numbers (recall that we only allow finite proofs). The situation is
illustrated in Figure 5.2

Definition 5.4 (Least element). Let (P,vP) be a partial order and take Q ✓ P. An
element ` 2 Q is a least element of (Q,vQ) if:

8q 2 Q. ` vQ q

Example 5.7 (No least element). Let us consider the order associated with the Hasse
diagram:

d e

a

@@

b

^^ @@

c

^^

The sets {a,b,d} and {a,b,c,d,e} have no least element. As we will see the elements
a,b and c are minimal since they have no smaller elements in the order.

Theorem 5.3 (Uniqueness of the least element). Let (P,v) be a partial order. P
has at most one least element.
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Proof. Let `1,`2 2 P be both least elements of P, then `1 v `2 and `2 v `1. Now by
using the antisymmetric property we get `1 = `2. ut

The counterpart of the least element is the concept of greatest element. We can
define the greatest element as the least element of the reverse order v�1 (defined by
letting x v�1 y , y v x).

Definition 5.5 (Minimal element). Let (P,vP) be a partial order and take Q ✓ P.
An element m 2 Q is a minimal element of (Q,vQ) if:

8q 2 Q. q vQ m ) q = m

As for the least element we have the dual of minimal elements, called maximal
elements: They are the minimal elements of the reverse order v�1.

Remark 5.2 (Least vs minimal elements). Note that the definition of minimal and
least element (maximal and greatest) are quite different.

• The least element ` is the (unique) smallest element of a set.
• A minimal element m is just such that no smaller element can be found in the

set, i.e., 8q 2 Q.q 6@ m (but there is no guarantee that all the elements q 2 Q are
comparable with m).

• The least element of an order is obviously minimal, but a minimal element is not
necessarily the least.

Definition 5.6 (Upper bound). Let (P,v) be a partial order and Q ✓ P be a subset
of P, then u 2 P is an upper bound of Q if:

8q 2 Q. q v u

Note that unlike a maximal element and the greatest element an upper bound does
not necessarily belong to the subset Q of elements we are considering.

Definition 5.7 (Least upper bound). Let (P,v) be a partial order and Q ✓ P be a
subset of P. Then, p 2 P is the least upper bound of Q if and only if p is the least
element of the upper bounds of Q. Formally, we require that:

1. p is an upper bound of Q (8q 2 Q. q v p);
2. for any upper bound u of Q, then p v u (8u 2 P. (8q 2 Q. q v u) ) p v u);

and we write lub(Q) = p.

It follows immediately from Theorem 5.3 that the least upper bound, when it
exists, is unique.

Example 5.8 (lub). Now we will clarify the concept of lub with two examples. Let
us consider the order represented by the Hasse diagram in Figure 5.3 (a). The set of
upper bounds of the subset {b,c} is the set {h, i,>}. This set has no least element
(i.e., h and i are not comparable) so the set {b,c} has no lub. In Figure 5.3 (b) we see
that the set of upper bounds of the set {a,b} is the set { f ,h, i,>}. The least element
of the latter set is f , which is thus the lub of {a,b}.
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>
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(a) The subset {b,c} has no lub
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^^ @@
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a

OO 77

{a,b} b

OO

c

kk
OO

?

gg OO 77

(b) The subset {a,b} has lub f

Fig. 5.3: Two subsets of a poset, and their upper bounds

5.1.3 Chains

One of the main concept in the study of partial orders is that of a chain, which is
formed by taking a subset of totally ordered elements.

Definition 5.8 (Chain). Let (P,v) be a partial order, we call chain a function C :
N ! P such that:

8n 2 N. C(n) v C(n+1)

We will often write C = {di}i2N, where 8i 2 N. di = C(i), i.e.,

d0 v d1 v d2 . . .

Definition 5.9 (Finite chain). Let C : N ! P be a chain such that the image of C is
a finite set, then we say that C is a finite chain. Otherwise we say that C is infinite.

Note that a finite chain has still infinitely many elements {di}i2N, but only finitely
many different ones. In particular, it has one index k and one element d such that
8i 2 N. dk+i = d.

Example 5.9 (Finite and infinite chains). Take the partial order (N,). The chain of
even numbers

0  2  4  · · ·

is an infinite chain. Instead, the constant chain

1  1  1  · · ·

is a finite chain.
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Definition 5.10 (Limit of a chain). Let C be a chain. The lub of the image of C, if
it exists, is called the limit of C. If d is the limit of the chain C = {di}i2N, we write
d =

F
i2N di.

Remark 5.3. Each finite chain has a limit. Indeed each finite chain has a finite totally
ordered image: obviously this set has a lub (the greatest element of the set).

Lemma 5.1 (Prefix independence of the limit). Let n 2 N and let C and C0 be two
chains such that C = {di}i2N and C0 = {dn+i}i2N. Then C and C0 have the same limit,
if any.

Proof. Let us prove a stronger property, namely that the chains C and C0 have the
same set of upper bounds.

Obviously if c is an upper bound of C, then c is an upper bound of C0, since each
element of C0 is contained in C.

Vice versa if c is an upper bound of C0, we need to show that 8 j 2 N. j  n )
d j v c. Since dn v c and 8 j 2 N. j  n ) d j v dn by transitivity of v it follows that
c is an upper bound of C.

Now since C and C0 have the same set of upper bound elements, they have the
same lub, if it exists at all. ut

The main consequence of Lemma 5.1 is that we can always eliminate from or add
a finite prefix to a chain preserving the limit.

A stronger result guarantees that any infinite subsequence of a chain C has the
same set of upper bounds as C and thus the same limit, if any (see Problem 5.13).

5.1.4 Complete Partial Orders

The aim of partial orders and continuous functions is to provide a framework that
allows the definition of the denotational semantics when recursive equations are
needed. Complete partial orders extend the concept of partial orders to support the
limit operation on chains, which is a generalization of the countable union operation
on a powerset. Limits will have a key role in finding fixpoint solutions to recursive
equations.

Definition 5.11 (Complete partial orders). Let (P,v) be a partial order. We say
that (P,v) is complete (CPO) if each chain has a limit (i.e., each chain has a lub).

From Remark 5.3, it follows immediately that if a partial order has only finite
chains then it is complete.

Definition 5.12 (CPO with bottom). Let (D,v) be a CPO, we say that (D,v) is a
CPO with bottom (CPO?) if it has a least element ? (called bottom).

Let us see some examples, that will clarify the concept of CPO. To avoid ambigui-
ties, sometimes we will denote the bottom element of the CPO D by ?D.
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Example 5.10 (Powerset completeness). Let us consider again the previous example
of powerset (Example 5.1). We show that the partial order (√(S),✓) is complete.
Take any chain {Si}i2N of subsets of S. Then:

lub(S0 ✓ S1 ✓ S2 . . .) = {d | 9k 2 N. d 2 Sk} =
[

i2N
Si 2√(S)

Example 5.11 (Partial order without upper bounds). Now let us take the usual order
on natural numbers (N,). Obviously all its finite chains have a limit (i.e., the
greatest element of the chain). Vice versa infinite chains have no limits (i.e., there
is no natural number greater than infinitely many natural numbers). To make the
order a CPO all we have to do is to add an element greater than all the natural
numbers. So we add the element • and extend the order relation by letting x  • for
all x 2 N[{•}. The new poset (N[{•},) is a CPO, because • is the limit of any
infinite chain.

Remark 5.4 (A subset of a CPO is not necessarily a CPO). We have seen that when
we restrict an order relation to a subset of elements we still get a PO (see Theorem 5.1).
The previous example shows that, in general, the same property does not hold at the
level of CPOs. The problem is due to the fact that, taken a chain whose elements are
all in the subset, the lub of the chain is not necessarily in the subset.

Example 5.12 (Partial order without least upper bound). Let us define the partial
order (N[{•1,•2},v) as follows:

(v� N) =, 8x 2 N[{•1}. x v •1, 8x 2 N[{•2}. x v •2

Where v� N is the restriction of v to natural numbers. This partial order is not
complete, indeed each infinite chain has two upper bounds (i.e., •1 and •2) which
are not comparable, hence there is no least upper bound.

The next example illustrates a fundamental CPO, that will be exploited in the next
chapters: the set of partial functions on natural numbers:

Example 5.13 (Partial functions). Let Pf def
= (N * N) be the set of partial functions

from natural numbers to natural numbers. Recall that a partial function is a relation
f ✓ N⇥N with the functional property:

8n,m,k 2 N. n f m^n f k ) m = k

So the set Pf can be viewed as:

Pf def
= { f ✓ N⇥N | 8n,m,k 2 N. n f m^n f k ) m = k}

Let us denote by f (n) # the predicate 9m 2N. (n,m) 2 f (i.e., f (n) # holds when the
function f is defined on n). Now it is easy to define a partial order v on Pf. We let:

f v g , (8n 2 N. f (n) # ) (g(n) # ^ f (n) = g(n)))
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Thus f precedes g if whenever f is defined on n also g is defined on n and f (n) = g(n).
When f (n) is not defined, then g(n) can be defined and take any value. When both f
and g are seen as (functional) relations, then the above definition boils down to check
that f is included in g. Of course, the poset (√(N⇥N),✓) has the empty relation as
bottom element (i.e., the function undefined everywhere), and each infinite chain has
as limit the countable union of the relations in the chain.

To show that Pf is complete, we need to show that the limits of chains whose
elements are in Pf satisfy also the functional property, i.e., they are elements of Pf.

Theorem 5.4. Let f0 ✓ f1 ✓ f2 ✓ . . . be a chain in Pf, i.e., each relation fi satisfies
the functional property, i.e.,

8i 2 N. 8n,m,k 2 N. n fi m^n fi k ) m = k.

Then, the relation f def
= [i2N fi satisfies the functional property, namely:

8n,m,k 2 N. n f m^n f k ) m = k.

Proof. Let us take generic n,m,k 2 N such that the premise n f m ^ n f k of the
implication holds. We need to prove the consequence m = k. By n f m, it exists j 2 N
with n f j m and, by n f k it exists h 2 N with n fh k. We take o = max{ j,h} then it
holds n fo m^n fo k. Since fo 2 Pf, it satisfies the functional property and thus from
n fo m^n fo k we can conclude that m = k. ut

Example 5.14 (Partial functions as total functions). Let us show a second way to
define a CPO on the partial functions on natural numbers. Let N?

def
= N[{?} and

(N?,vN?) be the flat order obtained by adding ? to the discrete order of the natural
numbers. In other words we have x vN? y iff x = y or x = ?. Then take the set of
total functions Tf = (N ! N?). Equivalently:

Tf def
= { f ✓ N⇥N? | (8n,m,k 2 N. n f m^n f k ) m = k) ^

(8n 2 N. 9x 2 N?. n f x) }

We define the following order on Tf

f v g , 8n 2 N. f (n) vN? g(n).

That is, if f (n) = ? then g(n) can assume any value, including ?; otherwise it
must be g(n) = f (n). The bottom element of the order is the function that returns
? for every argument. Note that the above order is complete, In fact, the limit of a
chain obviously exists as a relation, and it is easy to show, analogously to the partial
function case, that it is in addition a total function. The proof is left as an exercise to
the reader (see Problem 5.11).

Example 5.15 (Limit of a chain of partial functions). Let { fi : N ! N?}i2N be a
chain in Tf such that for any i 2 N we have:
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fi(n)
def
=

⇢
3 if n  i ^ 2 | n
? otherwise

where the predicate k | n is true when k divides n (i.e., 2 | n is true when n is even and
false otherwise). Let us consider some evaluations of the functions fi with i 2 [0,4]:

f0(0) = 3 f0(1) = ? f0(2) = ? f0(3) = ? f0(4) = ? · · ·
f1(0) = 3 f1(1) = ? f1(2) = ? f1(3) = ? f1(4) = ? · · ·
f2(0) = 3 f2(1) = ? f2(2) = 3 f2(3) = ? f2(4) = ? · · ·
f3(0) = 3 f3(1) = ? f3(2) = 3 f3(3) = ? f3(4) = ? · · ·
f4(0) = 3 f4(1) = ? f4(2) = 3 f4(3) = ? f4(4) = 3 · · ·

Thus the limit of the chain is the function f that returns 3 when applied to even
numbers and ? otherwise:

f (n)
def
=

⇢
3 if 2 | n
? otherwise

In general, the limit f def
=
F

i2N fi of a chain in Tf is a function f :N!N? such that
f (n) = m for some m 6= ? if and only if there exists an index k 2 N with fk(n) = m.
Note also that when i  j and fi(n) 6= ? it must be the case that f j(n) = fi(n). On
the contrary, when i  j and f j(n) = ? it means that fi(n) = ?.

5.2 Continuity and Fixpoints

5.2.1 Monotone and Continuous Functions

In order to define a class of functions over CPOs which ensures the existence of
their fixpoints we introduce two general properties of functions: monotonicity and
continuity.

Definition 5.13 (monotonicity). Let f : D ! E be a function over two CPOs (D,vD)
and (E,vE), we say that f is monotone if

8d,d0 2 D. d vD d0 ) f (d) vE f (d0)

We say that a monotone function preserves the order. So if {di}i2N is a chain
on (D,vD) and f : D ! E is a monotone function, then { f (di)}i2N is a chain on
(E,vE). Often we will consider functions whose domain and codomain coincide
(i.e., E = D), in which case we just say that f is a function on (D,vD).

Example 5.16 (Non monotone function). Let us define a CPO ({?,0,1},v) such
that ? v 0, ? v 1 and x v x for any x 2 {?,0,1}. Now define a function f over
({?,0,1},v) as follows:
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0

f
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?

__ ??

f

==

?

__ ??

Fig. 5.4: A non monotone function

f (?) = 0 f (0) = 0 f (1) = 1

This function is not monotone, indeed ? v 1 but f (?) = 0 and f (1) = 1 are not
comparable (see Figure 5.4), so the function f does not preserve the order.

Continuity guarantees that taking the image of the limit of a chain is the same as
taking the limit of the images of the elements in the chain.

Definition 5.14 (Continuity). Let (D,vD) and (E vE) be two CPOs and let f : D !
E be a monotone function. We say that f is a continuous function if for each chain in
(D,v) we have:

f (
G

i2N
di) =

G

i2N
f (di)

As it is the case for most definitions of continuity, the operations of applying
function and taking the limit can be exchanged. For this reason, we say that a
continuous function preserves limits. Moreover, note that the limit

F
i2N di is taken in

D, while the limit
F

i2N f (di) is taken in E.

Remark 5.5. Let (D,v) be a CPO that has only finite chains. Then any chain {di}i2N
in D is such that there are d 2 D and k 2 N such that 8i 2 N. di+k = d and it has a
limit (d) that is also an element of the chain. Thus any monotone function f : D ! E
is continuous, because 8i 2 N. f (di+k) = f (d) (i.e., the chain { f (di)}i2N is finite
and its limit is f (d)).

Interestingly, continuous functions are closed under composition.

Theorem 5.5 (Continuity of composition). Let (D,vD), (E vE), and (F vF) be
three CPOs, and f : D ! E, g : E ! F be two continuous functions. Their composi-
tion

h def
= g� f : D ! F

defined by letting h(d) = g( f (d)) for all d 2 D is continuous.

Proof. Let {di}i2N be a chain in D. We want to prove that h(
F

i2N di) =
F

i2N h(di).
We have:
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h(
F

i2N di) = g( f (
F

i2N di)) by definition of h = g� f
= g(

F
i2N f (di)) by continuity of f

=
F

i2N g( f (di)) by continuity of g
=
F

i2N h(di) by definition of h = g� f
ut

Remark 5.6. The composition g� f is sometimes denoted also by f ;g.

Example 5.17 (A monotone function which is not continuous). Let (N[{•},) be
the CPO from Example 5.11. Define a function f : N[{•} ! N[{•} such that:

f (x) def
=

⇢
0 if x 2 N
1 if x = •

It is immediate to check that f is monotone:

• for n,m 2 N, if n  m we have f (n) = 0  0 = f (m);
• for n 2 N, we have n  • and f (n) = 0  1 = f (•);
• for •  • we have of course f (•)  f (•).

Let us consider the chain {di}i2N of even numbers:

0  2  4  6  . . .

whose limit is •. The chain { f (di)}i2N is instead the constant chain

0  0  0  0  . . .

whose limit is 0. So we have

f (
G

i2N
di) = f (•) = 1 6= 0 =

G

i2N
f (di)

The monotone function f does not preserve the limits and thus it is not continuous.

5.2.2 Fixpoints

Now we are ready to study fixpoints of continuous functions.

Definition 5.15 (Pre-fixpoint and fixpoint). Let f be a continuous function over a
CPO? (D,v). An element p is a pre-fixpoint if

f (p) v p.

An element d 2 D is a fixpoint of f if

f (d) = d.
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Of course any fixpoint of f is also a pre-fixpoint of f , i.e., the set of fixpoints of f
is included in the set of its pre-fixpoints.

We will denote by gfp( f ) the greatest fixpoint of f and by lfp( f ) the least fixpoint
of f , when they exist.

Let f : D ! D and d 2 D. We denote by f n(d) the repeated application of f to d
for n times, i.e.,

f 0(d)
def
= d

f n+1(d)
def
= f ( f n(d))

Lemma 5.2. Let (D,v) be a partial order and f : D ! D be a monotone function.
The elements { f n(?)}n2N form a chain in D.

Proof. The property 8n 2 N. f n(?) v f n+1(?) can be readily proved by mathemat-
ical induction on n.

Base case: For n = 0 we have f 0(?) = ? v f 1(?) = f (?), as ? is the least
element of D.

Inductive case: Let us assume that the property holds for n, i.e., that

f n(?) v f n+1(?).

We want to prove that the property holds for n+1, i.e., that

f n+1(?) v f n+2(?).

In fact by definition we have f n+1(?) = f ( f n(?)) and f n+2(?) =
f ( f n+1(?)). Since f is monotone and by the inductive hypothesis
we have:

f n+1(?) = f ( f n(?)) v f ( f n+1(?)) = f n+2(?).
ut

When (D,v) is complete then the chain { f n(?)}n2N must have a limit
F

n2N f n(?).
Next theorem ensures that the least fixpoint of a continuous function always exists

and that it is computed by the above limit.

Theorem 5.6 (Kleene’s Fixpoint theorem). Let f : D ! D be a continuous function
on a CPO? D. Then, let

fix( f ) =
G

n2N
f n(?).

The element fix( f ) 2 D has the following properties:

1. fix( f ) is a fixpoint of f , namely

f (fix( f )) = fix( f )
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2. fix( f ) is the least pre-fixpoint of f , namely

f (d) v d ) fix( f ) v d

Since any fixpoint is a pre-fixpoint, fix( f ) is also the least fixpoint of f .

Proof. We prove the two items separately.

1. By continuity we will show that fix( f ) is a fixpoint of f :

f (fix( f )) = f (
G

n2N
f n(?)) (by definition of fix)

=
G

n2N
f ( f n(?)) (by continuity of f )

=
G

n2N
f n+1(?) (by definition of f n+1)

So we need to compute the limit of the chain:

f (?) v f 2(?) v f 3(?) v . . .

Since the limit is independent from any finite prefix of the chain, it coincides with
the limit of the chain

f 0(?) = ? v f (?) v f 2(?) v f 3(?) v . . .

G

n2N
f n+1(?) =

G

n2N
f n(?) (by Lemma 5.1)

= fix( f ) (by definition of fix)

2. We want to prove that fix( f ) is the least pre-fixpoint. We prove that any pre-
fixpoint of f is an upper bound of the chain { f n(?)}n2N. Let d be a pre-fixpoint
of f , i.e.,

f (d) v d (5.1)

By mathematical induction we show that

8n 2 N. f n(?) v d

i.e., that d is an upper bound for the chain { f n(?)}n2N:

base case: obviously f 0(?) = ? v d
inductive case: let us assume f n(?) v d, we want to prove that f n+1(?) v d:

f n+1(?) = f ( f n(?)) (by definition of f n+1)
v f (d) (by monotonicity of f

and inductive hypothesis)
v d (because d is a pre-fixpoint)
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Since d is an upper bound for { f n(?)}n2N and fix( f ) is the limit (i.e., the least
upper bound) of the same chain, it must be fix( f ) v d.

ut

Now let us make two examples which show that bottom element and the continuity
property are required to compute the least fixpoint.

Example 5.18 (Bottom is necessary). Let ({true, false},v) be the discrete order of
boolean values. Obviously it is complete (because only finite chains of the form
x v x v x v . . . exist) and it has no bottom element, as true and false are not
comparable. All functions over such domain are continuous. The identity function
has two fixpoints, but there is no least fixpoint. On the contrary, the negation function
has no fixpoint.

Example 5.19 (Continuity is necessary). Let us consider the CPO? (N[{•1,•2},v)
where:

v� N =, 8d 2 N[{•1}. d v •1, 8d 2 N[{•1,•2}. d v •2.

The bottom element is 0. We define a monotone function f as follows (see Figure 5.5):

f (n)
def
=

⇢
n+1 if n 2 N
•2 otherwise

Note that f is not continuous. Let us consider the chain of even numbers {di}i2N. It
follows that { f (di)}i2N is the chain of odd numbers. We have:

G

i2N
di = •1

G

i2N
f (di) = •1

Therefore:

f

 
G

i2N
di

!
= f (•1) = •2 6= •1 =

G

i2N
f (di)

Note that f has only one fixpoint, indeed:

f (•2) = •2

But such fixpoint is not reachable by taking
F

n2N f n(0) = •1.

5.3 Immediate Consequence Operator

In this section we reconcile two different approaches for defining semantics: inference
rules, like those used for defining the operational semantics of IMP, and fixpoint
theory, that will be applied to define the denotational semantics of IMP. We show
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•2
f // •2

•1
f

33

•1

...
...

2
f

44

2

1 f

33

1

0 f

33

0

Fig. 5.5: Continuity is necessary

that the set of theorems of a logical system R can be defined as the least fixpoint of a
suitable operator, called immediate consequence operator and denoted bR.

5.3.1 The Operator bR

Let us consider a set F of well-formed formulas and a set R of inference rules over
them. We define an operator bR over (√(F),✓), the CPO? of sets of well-formed
formulas ordered by inclusion.

Definition 5.16 (Immediate consequence operator bR). Let R be a logical system.
We define a function bR :√(F) !√(F) as follows (for any S ✓ F):

bR(S)
def
= {y | 9(X/y) 2 R. X ✓ S}

The function bR is called immediate consequence operator.

The operator bR, when applied to a set of well-formed formulas S, calculates a new
set of formulas by applying the inference rules of R to the facts in S in all possible
ways, i.e., bR(S) is the set of conclusions we can derive in one step from the hypothesis
in S using rules in R. We will show that the set of theorems of R is equal to the least
fixpoint of the immediate consequence operator bR.

To apply the fixpoint theorem, we need to prove that bR is monotone and continu-
ous.

Theorem 5.7 (Monotonicity of bR). bR is a monotone function.

Proof. Let S1 ✓ S2. We want to show that bR(S1) ✓ bR(S2). Let us assume y 2 bR(S1),
then there exists a rule (X/y) 2 R with X ✓ S1. So we have X ✓ S2 and y 2 bR(S2). ut

Theorem 5.8 (Continuity of bR ). Let R be a logical system such that for any (X/y) 2
R the set of premises X is finite. Then bR is continuous.
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Proof. Let {Si}i2N be a chain in √(F). We want to prove that
[

i2N

bR(Si) = bR(
[

i2N
Si).

As usual we prove the two inclusions separately:

✓) Let y 2
S

i2N bR(Si) so there exists a natural number k such that y 2 bR(Sk). Since

Sk ✓
[

i2N
Si

by monotonicity

bR(Sk) ✓ bR
 
[

i2N
Si

!

hence y 2 bR(
S

i2N Si).
◆) Let y 2 bR(

S
i2N Si) so there exists a rule X/y 2 R with X ✓

S
i2N Si. Since X is

finite, there exists a natural number k such that X ✓ Sk. In fact, for every x 2 X
there will be a natural number kx with x 2 Skx and letting k = max{kx}x2X we
have X ✓ Sk. Since X ✓ Sk we have y 2 bR(Sk) ✓

S
i2N bR(Si) as required. ut

5.3.2 Fixpoint of bR

Now we are ready to present the fixpoint of bR. For this purpose let us define IR as the
set of theorems provable in R:

IR
def
=
[

i2N
Ii
R

where

I0
R

def
= ?

In+1
R

def
= bR(In

R) [ In
R

Note that the generic In
R contains all theorems provable with derivations of depth1

at most n, and IR contains all theorems provable by using the rule system R.

Theorem 5.9. Let R a rule system, it holds:

8n 2 N. In
R = bRn(?)

Proof. By induction on n

1 See Problem 4.12.
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base case: I0
R = bR0(?) = ?.

inductive case: We assume In
R = bRn(?) and want to prove In+1

R = bRn+1(?). Then:

In+1
R = bR(In

R) [ In
R (by definition of In+1

R )
= bR(bRn(?)) [ bRn(?) (by inductive hypothesis)
= bRn+1(?) [ bRn(?) (by definition of bRn+1)
= bRn+1(?) (because bRn+1(?) ◆ bRn(?))

In the last step of the proof we have exploited the property bRn+1(?) ◆ bRn(?), which
is an instance of Lemma 5.2 (by taking D =√(F), v = ✓, ? = ? and f = bR). ut

Theorem 5.10 (Fixpoint of bR). Let R a logical system, it holds:

fix(bR) = IR

Proof. By continuity of bR (Theorem 5.8) and the fixpoint theorem (Theorem 5.6),
we know that the least fixpoint of bR exists and that

fix(bR)
def
=
[

n2N

bRn(?)

Then, by Theorem 5.9:

IR
def
=
[

n2N
In
R =

[

n2N

bRn(?)
def
= fix(bR)

as required. ut

Example 5.20 (Rule system with discontinuous bR). Let us consider the logical system
R below:

?
P(1)

P(x)

P(x+1)

8n 2 N. P(1+2⇥n)

P(0)

To ensure the continuity of bR, Theorem 5.8 requires that the system has only rules
with finitely many premises. The third rule of our system instead has infinitely many
premises; it corresponds to

P(1) P(3) P(5) · · ·

P(0)

The continuity of bR, namely the fact that for all chains {Si}i2N we have
S

i2N bR(Si) =
bR(
S

i2N Si), does not hold in this case. Indeed if we take the chain

{P(1)} ✓ {P(1),P(3)} ✓ {P(1),P(3),P(5)} . . .

We have:
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i 0 1 2 · · ·
Si {P(1)} ✓ {P(1),P(3)} ✓ {P(1),P(3),P(5)} · · ·

bR(Si) {P(1),P(2)} ✓ {P(1),P(2),P(4)} ✓ {P(1),P(2),P(4),P(6)} · · ·

From which we get:
[

i2N
Si = {P(1),P(3),P(5), . . .}

bR(
[

i2N
Si) = {P(1),P(2),P(4), . . . P(0)|{z}

3rd rule

}

[

i2N

bR(Si) = {P(1),P(2),P(4),P(6), . . .}

because the third rule applies only when the predicate P holds for all the odd numbers,
as in

S
i2N Si. Let us now compute the limit of bR

fix(bR) =
[

n2N

bRn(?) = {P(1),P(2),P(3),P(4), . . .}

In fact, we have:

bR0(?) = ?
bR1(?) = {P(1)}
bR2(?) = {P(1),P(2)}
bR3(?) = {P(1),P(2),P(3)}

· · ·

But fix(bR) is not a fixpoint of bR, because P(0) 62 fix(bR) but P(0) 2 bR(fix(bR))!

bR(fix(bR)) = {P(0),P(1),P(2),P(3),P(4), . . .} 6= fix(bR)

Example 5.21 (Balanced parentheses). Let us consider the grammar for balanced
parentheses, from Example 2.5

S ::= e | (S) | SS

The corresponding logical system is:

?
e 2 LS

s 2 LS

(s) 2 LS

s1 2 LS s2 2 LS

s1s2 2 LS

So we can use the bR operator and the fixpoint theorem to find all the strings generated
by the grammar by letting LS = fix(bR):
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LS0 = bR0(?) = ?
LS1 = bR(S0) = {e}
LS2 = bR(S1) = {e, ( )}
LS3 = bR(S2) = {e, ( ), (( )), ( )( )}
. . .

Problems

5.1. Prove Theorem 5.1. Hint: The proof is easy, because the axioms of partial and
total orders are all universally quantified.

5.2. Let (√(N),✓) be the CPO? of sets of natural numbers, ordered by inclusion.
Assume a set X ✓ N is fixed. Let f ,g :√(N) �!√(N) be the functions:

f (S)
def
= S \X

g(S)
def
= (N\S)\X

1. Are f and g monotone?
2. Are they continuous?
3. Do the answers to the above questions depend on the given set X?

5.3. Define three functions fi : Di ! Di over three suitable CPO Di for i 2 [1,3] (not
necessarily with bottom) such that

1. f1 is continuous, has fixpoints but not a least fixpoint;
2. f2 is continuous and it has no fixpoint;
3. f3 is monotone but not continuous.

5.4. Define a partial order D = (D,v) that is not complete.

1. Let x � y be irreflexive relation obtained by reversing the order, i.e.

x � y if and only if y v x^ x 6= y.

Is D 0 = (D,�) a well-founded relation?
2. In general, is it possible that D 0 is well-founded for some D?

5.5. Let V ⇤ [V • be the set of finite (V ⇤) and infinite (V •) strings over the alphabet
V = {a,b,c}, and let a v ab , where juxtaposition in ab denotes string concatena-
tion and ab = a if a is infinite.

1. Is the structure (V ⇤ [V •,v) a partial order?
2. If yes, is it a complete partial order?
3. Does there exist a bottom element?
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4. Which are the maximal elements?

5.6. Let (D1,v1) and (D2,v2) be two CPOs such that D1,D2 ✓ D. Consider the
structures:

• (D1 [D2 , v), where x v y iff x v1 y_ x v2 y
• (D1 \D2 , �), where x � y iff x v1 y^ x v2 y

1. Are they always partial orders?
2. If so, are they complete?

In case of negative answers, exhibit some counterexample.

5.7. Let X and Y be sets and X? and Y? be the corresponding flat domains. Show
that a function f : X? ! Y? is continuous if and only if one, or both, of the following
conditions holds:

1. f is strict, i.e., f (?) = ?.
2. f is constant.

5.8. Let {>} be a one-element set and {>}? the corresponding flat domain. Let W
be the domain of vertical natural numbers (see Examples 5.6 and 5.11)

0  1  2  3  ...  •.

Show that the set of continuous functions from W to {>}? is in bijection with W .
Hint: Define what the possible continuous functions from W to {>}? are.

5.9. Let D = {n 2 N | n > 0}[{•0} and v be the relation over D such that:

• for any pair of natural numbers n,m 2 D, we let n v m iff n divides m;
• for any x 2 D, we let x v •0.

Is (D,v) a CPO?? Explain.

5.10. Consider the set N⇥N of pairs of natural numbers with the lexicographic order
relation v defined by letting:

(n,m) v (n0,m0) if n < n0 _ (n = n0 ^m < m0)

1. Prove that v is a partial order with bottom.
2. Show that the chain {(0,k)}k2N has a lub.
3. Exhibit a chain without lub.
4. Consider the subset [0,n]⇥N, with the same order, and then show, also in this

case, a chain without lub .
5. Finally, prove that [0,n] ⇥ (N[ •) with the same order (where x  • for any

x 2 N), is complete with bottom, and show a monotone, non continuous function
on it.

5.11. Prove that the set Tf of total functions from N to N? defined in Example 5.14
forms a complete partial order.
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5.12. Consider the set PI of partial injective functions from N to N. A partial injective
function f can be seen as a relation {(x,y) | x,y 2 N^ y = f (x)} ✓ N⇥N such that

• (x,y),(x,y0) 2 f implies y = y0, (i.e., f is a partial function), and
• (x,y),(x0,y) 2 f implies x = x0, (i.e., f is injective).

Accordingly, the elements of PI can be ordered by inclusion.

1. Prove that (PI,✓) is a complete partial order.
2. Prove that the function F : PI ! PI with F( f ) = {(2 ⇥ x,y) | (x,y) 2 f } is

monotone and continuous.
(Hint: Consider F as computed by the immediate consequences operator bR, with
R consisting only of the rule (x,y)/(2⇥ x,y).)

5.13. Let (D,v) be a CPO, {di}i2N a chain in D and f : N ! N a function such that
for all i, j 2 N if i < j then f (i) < f ( j). Prove that:

G

i2N
d f (i) =

G

i2N
di.

5.14. Let D,E be two CPO? and f : D ! E, g : E ! D be two continuous functions
between them. Their compositions h = g � f : D ! D and k = f � g : E ! E are
known to be continuos and thus have least fixpoints.

D
f

++h=g� f 99 E
g

kk k= f �g
yy

Let e0 = fix k 2 E. Prove that g(e0) = fix h 2 D by showing that:

1. g(e0) is a fixpoint for h, and
2. that g(e0) is the least pre-fixpoint for h.
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Chapter 6
Denotational Semantics of IMP

The point is that, mathematically speaking, functions are
independent of their means of computation and hence are

“simpler” than the explicitly generated, step-by-step evolved
sequences of operations on representations. (Dana Scott)

Abstract In this chapter we give a more abstract, purely mathematical semantics
to IMP, called denotational semantics. The operational semantics is close to the
memory-based, executable machine-like view: given a program and a state, we derive
the state obtained after the execution of that program. The denotational semantics
takes a program and returns the transformation function over memories associated
with that program: given an initial state as the argument, the final state is returned as
the result. Since functions will be written in some fixed mathematical notation, i.e.,
they can also be regarded as “programs” of a suitable formalism, we can say that,
to some extent, the operational semantics defines an “interpreter” of the language
(given a program and the initial state it returns the final state obtained by executing
the program), while the denotational semantics defines a “compiler” for the language
(from programs to functions, i.e., programs written in a more abstract language). We
conclude the chapter by reconciling the equivalences induced by the operational and
the denotational semantics and by stating the principle of computational induction.

6.1 l -Notation

In the following we shall rely on l -notation as a (meta-)language for writing anony-
mous functions. When considering HOFL, then l -notation will be used both at the
level of the programming language and at the level of the denotational semantics, as
meta-language.

The l -calculus was introduced by Alonzo Church (1903-1995) in order to answer
one of the questions posed by David Hilbert (1862–1943) in his program, known
as Entscheidungsproblem (German for decision problem). Roughly, the problem
consisted in the existence of an algorithm to decide whether a given statement of a
first-order logic (possibly enriched with a finite number of axioms) is deducible or
not from the axioms of logic. Alan Turing (1912-1954) proved that no effectively
calculable algorithm can exist that solves the problem, where “calculable” meant

129
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computable by a Turing machine. Independently, Alonzo Church answered negatively
assuming that “calculable” meant a function expressible in the l -calculus.

6.1.1 l -Notation: Main Ideas

The l -calculus is built around the idea of expressing a calculus of functions, where it
is not necessary to assign names to functions, i.e., where functions can be expressed
anonymously. Conceptually, this amounts to have the possibility of:

• forming (anonymous) functions by abstraction over names in an expression; and
• applying a function to an argument

Building on the two basic considerations above, Church developed a theory of
functions based on rules for computation, as opposed to the classical set-theoretic
view of functions as sets of pairs (argument, result).

Example 6.1. Let us start with a simple example from arithmetic. Take a polynomial
such as

x2 �2x+5.

What is the value of the above expression when x is replaced by 2? We compute the
result by plugging in ‘2’ for ‘x’ in the expression to get

22 �2⇥2+5 = 5.

In l -notation, when we want to express that the value of an expression depends
on some value to be plugged in, we use abstraction. Syntactically, this corresponds to
prefix the expression by the special symbol l and the name of the formal parameter,
as, e.g., in:

lx. (x2 �2x+5)

The informal reading is:

wait for a value v to replace x and then compute v2 �2v+5.

We want to be able to pass some actual parameter to the function above, i.e., to ap-
ply the function to some value v. To this aim, we denote application by juxtaposition:

(lx. (x2 �2x+5)) 2

means that the function (lx. (x2 � 2x + 5)) is applied to 2 (i.e., that the actual
parameter 2 must replace the occurrences of the formal parameter x in x2 �2x+5,
to obtain 22 �2⇥2+5 = 5.)

Note that:

• by writing lx. t we are declaring x as a formal parameter appearing in t;
• the symbol l has no particular meaning (any other symbol could have been used);
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• we say that lx ‘binds’ the (occurrences of the) variable x in t;
• the scope of the formal parameter x is just t; if x occurs also “outside” t, then it

refers to another (homonymous) identifier.

Example 6.2. Let us consider another example:

(lx. ly. (x2 �2y+5)) 2

This time we have a function that is waiting for two arguments (first x, then y), but to
which we pass one value (2). We have

(lx. ly. (x2 �2y+5)) 2 = ly. (22 �2y+5) = ly. (9�2y)

that is, the result of applying lx. ly. (x2 �2y+5) to 2 is still a function (ly. (9�2y)).

In l -calculus we can pass functions as arguments and return functions as results.

Example 6.3. Take the term l f . ( f 2): it waits for a function f that will be applied
to the value 2. If we pass the function (lx. ly. (x2 �2y+5)) to l f . ( f 2), written:

(l f . ( f 2)) (lx. ly. (x2 �2y+5))

then we get the function ly. (9�2y) as a result.

Definition 6.1 (Lambda terms). We define lambda terms as the terms generated by
the grammar:

t ::= x | lx. t | (t0 t1) | t ! (t0, t1)

Where x is a variable.

As we can see the lambda notation is very simple, it has four constructs:

• x: is a simple variable.
• lx. t: is the lambda abstraction which allows to define anonymous functions.
• t0 t1: is the application of a function t0 to its argument t1.
• t ! t0, t1 is the conditional operator, i.e. the “if-then-else” construct in lambda

notation.

Note that we omit some parentheses when no ambiguity can arise.
Lambda abstraction lx. t is the main feature. It allows to define functions, where

x represents the parameter of the function and t is the lambda term which represents
the body of the function. For example the term lx. x is the identity function.

Note that while we can have different terms t and t 0 that define the same function,
Church proved that the problem of deciding whether t = t 0 is undecidable.

Definition 6.2 (Conditional expressions). Let t, t0 and t1 be three lambda terms, we
define:

t ! t0, t1 =

⇢
t0 if t = true
t1 if t = f alse
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All the notions used in this definition, like “true” and “false” can be formalised
in lambda notation only, by using lambda abstraction, as shown in Section 6.1.1.1
for the interested reader. In the following we will take the liberty to assume that data
types such as integers and booleans are available in the lambda-notation as well as
the usual operations on them.

Remark 6.1 (Associativity of abstraction and application). In the following, to limit
the number of parentheses and keep the notation more readable, we assume that
application is left-associative, and lambda-abstraction is right-associative, i.e.,

t1 t2 t3 t4 is read as (((t1 t2) t3) t4)
lx1. lx2. lx3. lx4. t is read as lx1. (lx2. (lx3. (lx4. t)))

Remark 6.2 (Precedence of application). We will also assume that application has
precedence over abstraction, i.e.:

lx. t t 0 = lx. (t t 0)

6.1.1.1 l -Notation: Booleans and Church Numerals

In the above examples, we have enriched standard arithmetic expressions with
abstraction and application. In general, it would be possible to encode booleans and
numbers (and operations over them) just using abstraction and application.

For example, let us consider the following terms:

T def
= lx. ly. x

F def
= lx. ly. y

We can assume that T represents true and F represents false.
Under this convention, we can define the usual logical operations by letting:

AND def
= l p. lq. p q p

OR def
= l p. lq. p p q

NOT def
= l p. lx. ly. p y x

Now suppose that P will reduce either to T or to F . The expression P A B can be
read as ‘if P then A else B’.

For natural numbers, we can adopt the convention that the number n is represented
by a function that takes a function f and an argument x and applies f to x for n times
consecutively. For example:
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0 def
= l f . lx. x

1 def
= l f . lx. f x

2 def
= l f . lx. f ( f x)

· · ·

Then, the operations for successor, sum, multiplication can be defined by letting:

SUCC def
= ln. l f . lx. f (n f x)

SUM def
= ln. lm. l f . lx. m f (n f x)

MUL def
= ln. lm. l f . n (m f )

6.1.2 Alpha-Conversion, Beta-Rule and Capture-Avoiding
Substitution

The names of the formal parameters we choose for a given function should not
matter. Therefore, any two expressions that differ just for the particular choice of
l -abstracted variables and have the same structure otherwise, should be considered
as equal.

For example, we do not want to distinguish between the terms

lx. (x2 �2x+5) ly. (y2 �2y+5)

On the other hand, the expressions

x2 �2x+5 y2 �2y+5

must be distinguished, because depending on the context where they are used, the
symbols x and y could have a different meaning.

We say that two terms are a-convertible if one is obtained from the other by
renaming some l -abstracted variables. We call free the variables x whose occurrences
are not under the scope of a l binder.

Definition 6.3 (Free variables). The set of free variables occurring in a term is
defined by structural recursion:

fv(x) def
= {x}

fv(lx. t) def
= fv(t)\{x}

fv(t0 t1)
def
= fv(t0)[ fv(t1)

fv(t ! t0, t1)
def
= fv(t)[ fv(t0)[ fv(t1)
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The second equation highlights that the lambda abstraction is a binding operator.

Definition 6.4 (Alpha-conversion). We define a-conversion as the equivalence in-
duced by letting

lx. t = ly. (t[y/x]) if y 62 fv(t)

where t[y/x] denotes the substitution of x with y applied to the term t.

Note the side condition y 62 fv(t), which is needed to avoid ‘capturing’ other free
variables appearing in t.

For example:

l z. z2 �2y+5 = lx. x2 �2y+5 6= ly. y2 �2y+5

We have now all ingredients to define the basic computational rule, called b -rule,
which explains how to apply a function to an argument:
Definition 6.5 (Beta-rule). Let t, t 0 be two lambda terms we define:

(lx. t 0) t = t 0[t/x]

this axiom is called b -rule.
In defining alpha-conversion and the beta-rule we have used substitutions like

[y/x] and [t/x]. Let us now try to formalise the notion of substitution by structural
recursion. What is wrong with the following naive attempt?

y[t/x]
def
=

⇢
t if y = x
y if y 6= x

(ly. t 0)[t/x]
def
=

⇢
ly. t 0 if y = x
ly. (t 0[t/x]) if y 6= x

(t0 t1)[t/x]
def
= (t0[t/x]) (t1[t/x])

(t 0 ! t0, t1)[t/x]
def
= (t 0[t/x]) ! (t0[t/x]),(t1[t/x])

Example 6.4 (Substitution, without alpha-renaming). Consider the terms

t def
= lx. ly. (x2 �2y+5) t 0 def

= y.

and apply t to t 0:

t t 0 = (lx. ly. (x2 �2y+5)) y
= (ly. (x2 �2y+5))[y/x]

= ly. ((x2 �2y+5)[y/x])

= ly. (y2 �2y+5)

It happens that the free variable y 2 fv(t t 0) has been ‘captured’ by the lambda-
abstraction ly. Instead, free variables occurring in t should remain free during the
application of the substitution [t/x].
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Thus we need to correct the above version of substitution for the case related
to (ly. t 0)[t/x] by applying first the alpha-conversion to ly. t 0 (to make sure that
if y 2 fv(t), then the free occurrences of y in t will not be captured by ly when
replacing x in t 0) and then the substitution [t/x]. Formally, we let:

Definition 6.6 (Capture-avoiding substitution). Let t, t 0, t0 and t1 be four lambda
terms, we define:

y[t/x]
def
=

⇢
t if y = x
y if y 6= x

(ly. t 0)[t/x]
def
= l z. ((t 0[z/y])[

t/x]) if z 62 fv(ly. t 0)[ fv(t)[{x}

(t0 t1)[t/x]
def
= (t0[t/x]) (t1[t/x])

(t 0 ! t0, t1)[t/x]
def
= (t 0[t/x]) ! (t0[t/x]),(t1[t/x])

Note that the matter of names is not so trivial. In the second equation we first
rename y in t 0 with a fresh name z, then proceed with the substitution of x with t.
As explained, this solution is motivated by the fact that y might not be free in t,
but it introduces some non-determinism in the equations due to the arbitrary nature
of the new name z. This non-determinism immediately disappear if we regard the
terms up to the alpha-conversion equivalence, as previously introduced. Obviously
a-conversion and substitution should be defined at the same time to avoid circularity.
By using the a-conversion we can prove statements like lx. x = ly. y.

Example 6.5 (Application with alpha-renaming). Consider the terms t, t 0 from Exam-
ple 6.4:

t t 0 = (lx. ly. (x2 �2y+5)) y
= (ly. (x2 �2y+5))[y/x]

= l z. ((x2 �2y+5)[z/y][
y/x])

= l z. ((x2 �2z+5)[y/x])

= l z. (y2 �2z+5)

Finally we introduce some notational conventions for omitting parentheses when
defining the domains and codomains of functions:

A ! B⇥C = A ! (B⇥C) A⇥B⇥C = (A⇥B)⇥C
A⇥B ! C = (A⇥B) ! C A ! B ! C = A ! (B ! C)

6.2 Denotational Semantics of IMP

As we said we will use lambda notation as meta-language; this means that we will
express the semantics of IMP by translating IMP syntax to lambda terms.
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The denotational semantics of IMP consists of three separate interpretation func-
tions, one for each syntax category (Aexp,Bexp,Com):

Aexp: each arithmetic expression is mapped to a function from states to integers:

A : Aexp ! (S ! Z)

Bexp: each boolean expression is mapped to a function from states to booleans:

B : Bexp ! (S ! B)

Com: each command is mapped to a (partial) function from states to states:

C : Com ! (S * S)

6.2.1 Denotational Semantics of Arithmetic Expressions: The
Function A

The denotational semantics of arithmetic expressions is defined as the function:

A : Aexp ! S ! Z

We shall define A by structural recursion over the syntax of arithmetic expressions.
Let us fix some notation: We will rely on definitions of the form

A JnK def
= ls . n

with the following meaning:

• A : Aexp ! S ! Z is the interpretation function,
• n is an arithmetic expression (i.e., a term in Aexp). The surrounding brackets J

and K emphasise that it is a piece of syntax rather then part of the metalanguage.
• the expression A JnK is a function whose type is S ! Z. Notice that also the right

part of the equation must be of the same type S ! Z.

We shall often define the interpretation function A by writing equalities such as:

A JnKs def
= n

instead of

A JnK def
= ls . n

In this way, we simplify the notation in the right-hand side. Notice that both sides of
the equation (A JnKs and n) have the type Z.
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Definition 6.7 (Denotational semantics of arithmetic expressions). The denota-
tional semantics of arithmetic expressions is defined by structural recursion as:

A JnKs def
= n

A JxKs def
= sx

A Ja0 +a1Ks def
= (A Ja0Ks)+(A Ja1Ks)

A Ja0 �a1Ks def
= (A Ja0Ks)� (A Ja1Ks)

A Ja0 ⇥a1Ks def
= (A Ja0Ks)⇥ (A Ja1Ks)

Let us briefly comment on the above definitions.

Constants: The denotational semantics of any constant n is just the con-
stant function that always returns n for any s .

Variables: The denotational semantics of any variable x is the function
that takes a memory s and returns the value of x in s .

Binary expressions: The denotational semantics of any binary expression evaluates
the arguments (with the same given s ) and combines the
results by exploiting the corresponding arithmetic operation.

Note that the symbols +, � and ⇥ are overloaded: in the left hand side they represent
elements of the syntax, while in the right hand side they represent operators of the
metalanguage. Similarly for the symbol n in the first equation.

6.2.2 Denotational Semantics of Boolean Expressions: The
Function B

The denotational semantics of boolean expression is given by a function B defined
in a very similar way to A . The only difference is that the values to be returned are
elements of B and not of Z and that B is not always defined in terms of itself: some
defining equations exploit the function A .

Definition 6.8 (Denotational semantics of boolean expressions). The denotational
semantics of boolean expressions is defined by structural recursion as follows:

B JvKs def
= v

B Ja0 = a1Ks def
= (A Ja0Ks) = (A Ja1Ks)

B Ja0  a1Ks def
= (A Ja0Ks)  (A Ja1Ks)

B J¬bKs def
= ¬ (B JbKs)

B Jb0 _b1Ks def
= (B Jb0Ks)_ (B Jb1Ks)

B Jb0 ^b1Ks def
= (B Jb0Ks)^ (B Jb1Ks)
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6.2.3 Denotational Semantics of Commands: The Function C

We are now ready to present the denotational semantics of commands. As one might
expect, the interpretation function of commands is the most complex. It has the
following type:

C : Com ! (S * S)

Since commands can diverge, the codomain of C is the set of partial functions from
memories to memories. As we have discussed in Example 5.14, for each partial
function we can define an equivalent total function. So we define:

C : Com ! (S ! S?)

This will simplify the notation.
Instead of presenting the whole, structurally recursive, definition of C and then

commenting the defining equations, we give each rule separately accompanied by
the necessary explanations.

We start from the simplest commands: skip and assignments.

C JskipKs def
= s (6.1)

We see that C JskipK is the identity function: skip does not modify the memory.

C Jx := aKs def
= s [A JaKs /x] (6.2)

The denotational semantics of the assignment evaluates the arithmetic expression
a via A and then modifies the memory assigning the corresponding value to the
location x.

Let us now consider the sequential composition of two commands. In interpreting
c0;c1 we first interpret c0 in the starting memory and then c1 in the state produced
by c0. The problem is that from the first application of C Jc0K we obtain a value in
S?, not necessarily in S , so we can not apply C Jc1K. To work this problem out we
introduce a lifting operator (·)⇤: it takes a function in S ! S? and returns a function
in S? ! S?, i.e., its type is (S ! S?) ! (S? ! S?).

Definition 6.9 (Lifting). Let f : S ! S?, we define a function f ⇤ : S? ! S? as
follows:

f ⇤(x) =

⇢
? if x = ?
f (x) otherwise

So the definition of the interpretation function for c0;c1 is:

C Jc0;c1Ks def
= C Jc1K⇤ (C Jc0Ks) (6.3)

Note that we apply the lifted version C Jc1K⇤ of C Jc1K to the argument C Jc0Ks .
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Let us now consider the conditional command. Recall that the l -calculus provides
a conditional operator, then we have immediately:

C Jif b then c0 else c1Ks def
= B JbKs ! C Jc0Ks ,C Jc1Ks (6.4)

The definition of the denotational semantics of the while command is more
intricate. We could think to define the interpretation simply as:

C Jwhile b do cKs def
= B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s

Obviously this definition is not a structural recursive, because the same expression
C Jwhile b do cK whose meaning we want to define appears in the right-hand side
of the defining equation. Indeed structural recursion allows only for the presence
of subterms in the right-hand side, like B JbK and C JcK. To solve this issue we will
reduce the problem of defining the semantics of iteration to a fixpoint calculation.
Let us define a function Gb,c : (S ! S?) ! S ! S?:

Gb,c
def
= lj. ls . B JbKs ! j⇤(C JcKs),s

S?

S!S?

(S!S?)!S!S?

The function Gb,c takes a function j : S ! S?, and returns the function

ls . B JbKs ! j⇤(C JcKs),s

of type S ! S?, which given a memory s evaluates B JbKs and depending on the
outcome returns either j⇤(C JcKs) or s . Note that the definition of Gb,c refers only
to subterms of the command while b do c. Clearly we require that C Jwhile b do cK
is a fixpoint of Gb,c, i.e., that:

C Jwhile b do cK = Gb,c C Jwhile b do cK

As there can be several fixpoints for Gb,c, we define C Jwhile b do cK as the least
one. Next we show that Gb,c is a monotone and continuous function, so that we can
prove that Gb,c has a least fixpoint and that by the fixpoint Theorem 5.6:

C Jwhile b do cK def
= fix Gb,c =

G

n2N
G n

b,c(?S!S?) (6.5)

To prove continuity we will consider Gb,c as operating on partial functions:

Gb,c : (S * S) �! (S * S).
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Partial functions in S * S can be represented as sets of pairs (s ,s 0) that we write
as formulas s 7! s 0. Then the effect of Gb,c can be represented by the immediate
consequence operators for the following set of rules.

RGb,c
def
=

⇢
B JbKs C JcKs = s 00 s 00 7! s 0

s 7! s 0
,

¬B JbKs

s 7! s

�

Note that there are infinitely many instance of the rules, but each rule has only a
finite number of premises and that

bRGb,c = Gb,c.

The only formulas appearing in the rules are s 00 7! s 0 (as a premise of the first rule),
s 7! s 0 and s 7! s (as conclusions); the other formulas express side-conditions:
B JbKs ^ C JcKs = s 00 for the first rule and ¬B JbKs for the second rule. An
instance of the first rule schema is obtained by picking up two memories s and s 00

such that B JbKs is true and C JcKs = s 00. Then for every s 0 such that s 00 7! s 0

we can derive s 7! s 0. The second rule schema is an axiom expressing that s 7! s
whenever ¬B JbKs .

Since all the rules obtained in this way have a finite number of premises (actually
one or none), we can apply Theorem 5.8, which ensures the continuity of bRGb,c . Now
by using Theorem 5.10 we have:

fix Gb,c = fix bRGb,c = IRGb,c

Let us conclude this section with three examples which explain how to use the
definitions we have given.

Example 6.6. Let us consider the command:

w = while true do skip

now we will see how to calculate its semantics. We have C JwK def
= fix Gtrue,skip where

Gtrue,skipjs = B JtrueKs ! j⇤ (C JskipKs) ,s
= true ! j⇤ (C JskipKs) ,s
= j⇤ (C JskipKs)

= j⇤s
= js

So we have Gtrue,skipj = j , that is Gtrue,skip is the identity function. Then each
function j is a fixpoint of Gtrue,skip, but we are looking for the least fixpoint. This
means that the sought solution is the least function in the CPO? of functions S ! S?.
Then we have

fix Gtrue,skip = ls . ?S? .
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In the following we will often write just G when the subscripts b and c are obvious
from the context.

Example 6.7. Let us consider the commands

w def
= while b do c

c0 def
= if b then (c ; w) else skip

Now we show the denotational equivalence between w and c0 for any b and c.
Since C JwK is a fixpoint we have:

C JwK = G (C JwK) = ls . B JbKs ! C JwK⇤ (C JcKs),s

For c0 we have:

C Jif b then (c;w) else skipK = ls . B JbKs ! C Jc;wKs ,C JskipKs
= ls . B JbKs ! C JwK⇤ (C JcKs),s

Hence C JwK = C Jc0K.

Example 6.8. Let us consider the command:

c def
= while x 6= 0 do x := x�1

we have C JcK def
= fix G where:1

G j def
= ls . B Jx 6= 0Ks ! j⇤(C Jx := x�1Ks),s
= ls . sx 6= 0 ! j⇤ �s [sx�1/x]

�
,s

= ls . sx 6= 0 ! j
�
s [sx�1/x]

�
,s

Let us see some calculation for approximating the fixpoint:

j0 = G 0 ?S!S? = ?S!S? = ls . ?S?

j1 = G j0

= ls . sx 6= 0 ! ?S!S?| {z }
j0

�
s [sx�1/x]

�
,s

= ls . sx 6= 0 ! ?S? ,s
j2 = G j1

= ls . sx 6= 0 ! (ls 0. s 0x 6= 0 ! ?S? ,s 0
| {z }

j1

)
�
s [sx�1/x]

�
,s

Now we have the following possibilities for computing j2s :

1 Note that in the last step we can remove the lifting operation from j⇤ because s [sx�1/x] 6= ?.
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sx < 0) Then sx 6= 0 and s [sx�1/x]x 6= 0 and thus j2s = ?S? .
sx = 0) Then sx 6= 0 is false and thus j2s = s = s [0/x]
sx = 1) Then sx 6= 0 and s [sx�1/x]x = 0 and thus j2s = s [sx�1/x] = s [0/x].
sx > 1) Then sx 6= 0 and s [sx�1/x]x 6= 0 and thus j2s = ?S? .

Summarising:

sx < 0

j2s = ?

sx = 0

j2s = s [0/x]

sx = 1

j2s = s [0/x]

sx > 1

j2s = ?

So we have:
j2 = ls . sx < 0 ! ? , (sx < 2 ! s [0/x],?)

We can conjecture that 8n 2 N. P(n), where:

P(n)
def
= ( jn = ls . 0  sx < n ! s [0/x] , ?)

We are now ready to prove our conjecture by mathematical induction on n.

Base case: The base case is trivial, indeed we know j0 = ls . ? and

ls . 0  sx < 0 ! s [0/x] , ? = ls . false ! s [0/x],?)

= ls . ?

Inductive case: For the inductive case, let us assume

P(n)
def
= ( jn = ls . 0  sx < n ! s [0/x] , ?).

We want to prove:

P(n+1)
def
= ( jn+1 = ls . 0  sx < n+1 ! s [0/x] , ?)

By definition:

jn+1 = G jn = ls . sx 6= 0 ! jn(s [sx�1/x]),s

By the inductive hypothesis, we have:

jn(s [sx�1/x]) = 0  (s [sx�1/x])x < n ! (s [sx�1/x])[
0/x] , ?

= 0  sx�1 < n ! s [0/x] , ?
= 1  sx < n+1 ! s [0/x] , ?

Thus:

jn+1s = sx 6= 0 ! (1  sx < n+1 ! s [0/x] , ?) , s

Now we have the following possibilities for computing jn+1s :
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sx < 0) Then sx 6= 0 and sx < 1, thus jn+1s = ?.
sx = 0) Then sx 6= 0 is false and thus jn+1s = s =

s [0/x]
1  sx < n+1) Then sx 6= 0 and 1  sx < n+1 are true, thus

jn+1s = s [0/x].
sx � n+1) Then sx 6= 0 is true, but 1  sx < n+1 is false,

thus jn+1s = ?.

Summarising:

sx < 0

jn+1s = ?

sx = 0

jn+1s = s [0/x]

1  sx < n+1

jn+1s = s [0/x]

sx � n+1

jn+1s = ?

Then:
jn+1 = ls . 0  sx < n+1 ! s [0/x] , ?

which proves P(n+1).

Finally we have:

C JcK = fix G =
G

n2N
G n? =

G

n2N
jn = ls . 0  sx ! s [0/x] , ?

6.3 Equivalence Between Operational and Denotational
Semantics

This section deals with the issue of equivalence between the two semantics of
IMP introduced up to now. As we will show, the denotational and operational
semantics agree. As usual we will handle first arithmetic and boolean expressions,
then assuming the proved equivalences we will show that operational and denotational
semantics agree also on commands.

6.3.1 Equivalence Proofs For Expressions

We start by considering arithmetic expressions. We want to prove that the operational
and denotational semantics coincide, that is, the results of evaluating an arithmetic
expression both by operational and denotational semantics are the same. If we
regard the operational semantics as an interpreter and the denotational semantics
as a compiler we are proving that interpreting an IMP program and executing its
compiled version starting from the same memory leads to the same result.

Theorem 6.1. For all arithmetic expressions a 2 Aexp, the predicate P(a) holds,
where:

P(a)
def
= 8s 2 S . ha,si ! A JaKs
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Proof. The proof is by structural induction on arithmetic expressions.

Const: P(n)
def
= 8s . hn,si ! A JnKs holds because, given a generic s , we have

hn,si ! n and A JnKs = n.
Vars: P(x) def

= 8s . hx,si ! A JxKs holds because, given a generic s , we have
hx,si ! sx and A JxKs = sx.

Ops: Let us generalize the proof for the binary operations of arithmetic expres-
sions. Consider two arithmetic expressions a0 and a1 and a binary operator
� 2 {+,�,⇥} of IMP, whose corresponding semantic operator is ·. We
assume:

P(a0)
def
= ha0,si ! A Ja0Ks

P(a1)
def
= ha1,si ! A Ja1Ks

and we want to prove

P(a0 �a1)
def
= ha0 �a1,si ! A Ja0 �a1Ks .

By using the inductive hypothesis we derive:

ha0 �a1,si ! A Ja0Ks ·A Ja1Ks

Finally, by definition of A

A Ja0Ks ·A Ja1Ks = A Ja0 �a1Ks .

ut

The case of boolean expressions is completely similar to that of arithmetic expres-
sions, so we leave the proof as an exercise (see Problem 6.2).

Theorem 6.2. For all boolean expressions b 2 Bexp, the predicate P(b) holds,
where:

P(b)
def
= 8s 2 S . hb,si ! B JbKs

From now on we will assume the equivalence between denotational and opera-
tional semantics for boolean and arithmetic expressions.

6.3.2 Equivalence Proof for Commands

Central to the proof of equivalence between denotational and operational semantics
is the case of commands. Operational and denotational semantics are defined in
very different formalisms: on the one hand we have an inference rule system which
allows to calculate the execution of each command, on the other hand we have a
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function which associates to each command its functional meaning. So to show the
equivalence between the two semantics we will prove the following property:

Theorem 6.3. 8c 2 Com. 8s ,s 0 2 S . hc,si ! s 0 () C JcKs = s 0.

As usual we divide the proof in two parts:

Completeness: 8c 2 Com, 8s ,s 0 2 S we prove

P(hc,si ! s 0)
def
= C JcKs = s 0.

Correctness: 8c 2 Com we prove

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0.

Notice that in this way the non defined cases are also handled for the equivalence:
for instance we have

hc,si 6! ) C JcKs = ?S?

since otherwise, assuming C JcKs = s 0 for some s 0 2 S , it would follow that
hc,si ! s 0. Similarly in the opposite direction.

C JcKs = ?S? ) hc,si 6!

6.3.2.1 Completeness of the Denotational Semantics

Let us prove the first part of Theorem 6.3. We let

P
�
hc,si ! s 0� def

= C JcKs = s 0

and prove that P(hc,si ! s 0) holds for any c 2 Com and s ,s 0 2 S .
We proceed by rule induction. So for each rule we will assume the property holds

for the premises and we will prove the property holds for the conclusion.

skip: Let us consider the operational rule for the skip

hskip,si ! s

We want to prove:

P(hskip,si ! s)
def
= C JskipKs = s

Obviously the proposition is true by definition of denotational semantic.
assign: Let us consider the rule for the assignment command:

ha,si ! m

hx := a,si ! s [m/x]
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We can assume ha,si ! m and therefore A JaKs = m by the correspon-
dence between the operational and denotational semantics of arithmetic
expressions.
We want to prove:

P(hx := a,si ! s [m/x])
def
= C Jx := aKs = s [m/x]

By the definition of denotational semantics:

C Jx := aKs = s [A JaKs /x] = s [m/x]

seq: Let us consider the concatenation rule:

hc0,si ! s 00 ⌦
c1,s 00↵! s 0

hc0;c1,si ! s 0

We assume:

P(hc0,si ! s 00)
def
= C Jc0Ks = s 00

P(
⌦
c1,s 00↵! s 0)

def
= C Jc1Ks 00 = s 0

We want to prove:

P(hc0;c1,si ! s 0)
def
= C Jc0;c1Ks = s 0

By denotational semantics definition and inductive hypotheses:

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = C Jc1K⇤ s 00 = C Jc1Ks 00 = s 0

Note that the lifting operator can be removed because s 00 6= ? by inductive
hypothesis.

iftt: Let us consider the rule:

hb,si ! true hc0,si ! s 0

hif b then c0 else c1,si ! s 0

We assume:

• hb,si ! true and therefore B JbKs = true by the correspondence be-
tween operational and denotational semantics for boolean expressions;

• P(hc0,si ! s 0)
def
= C Jc0Ks = s 0.

We want to prove:

P(hif b then c0 else c1,si ! s 0)
def
= C Jif b then c0 else c1Ks = s 0

In fact, we have:
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C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks
= true ! s 0,C Jc1Ks
= s 0

ifff: The proof for the second rule of the conditional coommand is completely
analogous to the previous one and thus omitted.

whff: Let us consider the rule:

hb,si ! false

hwhile b do c,si ! s

We assume hb,si ! false and therefore B JbKs = false. We want to
prove:

P(hwhile b do c,si ! s)
def
= C Jwhile b do cKs = s

By the fixpoint property of the denotational semantics:

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs),s
= false ! C Jwhile b do cK⇤ (C JcKs),s
= s

whtt: At last we consider the second rule of the while command

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵! s 0

hwhile b do c,si ! s 0

We assume:

• hb,si ! true and therefore B JbKs = true
• P(hc,si ! s 00)

def
= C JcKs = s 00

• P(hwhile b do c,s 00i ! s 0)
def
= C Jwhile b do cKs 00 = s 0

We want to prove:

P(hwhile b do c,si ! s 0)
def
= C Jwhile b do cKs = s 0

By the definition of the denotational semantics and inductive hypotheses:

C Jwhile b do cKs = B JbKs ! C Jwhile b do cK⇤ (C JcKs) ,s
= true ! C Jwhile b do cK⇤ s 00,s
= C Jwhile b do cK⇤ s 00

= C Jwhile b do cKs 00

= s 0
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Note that the lifting operator can be removed since s 00 6= ?.

6.3.2.2 Correctness of the Denotational Semantics

Let us conclude the proof of Theorem 6.3 by showing the correctness of the denota-
tional semantics. We need to prove, for all c 2 Com:

P(c) def
= 8s ,s 0 2 S . C JcKs = s 0 ) hc,si ! s 0

Since the denotational semantics is given by structural recursion we will proceed
by induction on the structure of commands.

skip: We need to prove:

P(skip)
def
= 8s ,s 0. C JskipKs = s 0 ) hskip,si ! s 0

By definition we have C JskipKs = s and hskip,si ! s is an axiom of
the operational semantics.

assign: We need to prove:

P(x := a)
def
= 8s ,s 0. C Jx := aKs = s 0 ) hx := a,si ! s 0

By denotational semantics definition we have s 0 = s [A JaKs /x] and by the
equivalence between operational and denotational semantics for expres-
sions we have ha,si ! A JaKs , thus we can apply the rule (assign) to
conclude

hx := a,si ! s [A JaKs /x].

seq: We assume:

• P(c0)
def
= 8s ,s 00. C Jc0Ks = s 00 ) hc0,si ! s 00

• P(c1)
def
= 8s 00,s 0. C Jc1Ks 00 = s 0 ) hc1,s 00i ! s 0

We want to prove:

P(c0;c1)
def
= 8s ,s 0. C Jc0;c1Ks = s 0 ) hc0;c1,si ! s 0

We assume C Jc0;c1Ks = s 0 and prove hc0;c1,si ! s 0. We have

C Jc0;c1Ks = C Jc1K⇤ (C Jc0Ks) = s 0.

Since s 0 6= ?, it must be C Jc0Ks 6= ?, i.e., we can assume the termination
of c0 and can omit the lifting operator:

C Jc0;c1Ks = C Jc1K(C Jc0Ks) = s 0
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Let C Jc0Ks = s 00. We have C Jc1Ks 00 = s 0. Then we can apply modus
ponens to the inductive assumptions P(c0) and P(c1), to get hc0,si ! s 00

and hc1,s 00i ! s 0. Thus we can apply the inference rule:

hc0,si ! s 00 ⌦
c1,s 00↵! s 0

hc0;c1,si ! s 0

to conclude hc0;c1,si ! s 0.
if: We assume:

• P(c0)
def
= 8s ,s 0. C Jc0Ks = s 0 ) hc0,si ! s 0

• P(c1)
def
= 8s ,s 0. C Jc1Ks = s 0 ) hc1,si ! s 0

We need to prove:

P(if b then c0 else c1)
def
= 8s ,s 0. C Jif b then c0 else c1Ks = s 0

) hif b then c0 else c1,si ! s 0

Let us assume the premise C Jif b then c0 else c1Ks = s 0 and prove that
hif b then c0 else c1,si ! s 0. By definition:

C Jif b then c0 else c1Ks = B JbKs ! C Jc0Ks ,C Jc1Ks

Now, either B JbKs = false or B JbKs = true.
If B JbKs = false, we have also hb,si ! false. Then:

C Jif b then c0 else c1Ks = C Jc1Ks = s 0

By modus ponens on the inductive hypothesis P(c1) we have hc1,si ! s 0.
Thus we can apply the rule:

hb,si ! false hc1,si ! s 0

hif b then c0 else c1,si ! s 0

to conclude hif b then c0 else c1,si ! s 0.
The case where B JbKs = true is completely analogous and thus omitted.

while: We assume:

P(c) def
= 8s ,s 00. C JcKs = s 00 ) hc,si ! s 00

We need to prove:

P(while b do c) def
= 8s ,s 0. C Jwhile b do cKs = s 0

) hwhile b do c,si ! s 0

By definition C Jwhile b do cKs = fix Gb,c s =
⇣F

n2NG n
b,c?

⌘
s so:
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C Jwhile b do cKs = s 0 ) hwhile b do c,si ! s 0

,⇣F
n2NG n

b,c?
⌘

s = s 0 ) hwhile b do c,si ! s 0

,⇣
9n 2 N. (G n

b,c?)s = s 0
⌘

) hwhile b do c,si ! s 0

,
8n 2 N.

⇣
G n

b,c?s = s 0 ) hwhile b do c,si ! s 0
⌘

Let
A(n)

def
= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0

We prove that 8n 2 N. A(n) by mathematical induction.

Base case: We have to prove A(0), namely:

8s ,s 0. G 0
b,c?s = s 0 ) hwhile b do c,si ! s 0

Since G 0
b,c?s = ?s = ? and s 0 6= ? the premise is false

and hence the implication is true.
Ind. case: Let us assume

A(n)
def
= 8s ,s 0. G n

b,c?s = s 0 ) hwhile b do c,si ! s 0.

We want to show that

A(n+1)
def
= 8s ,s 0. G n+1

b,c ?s = s 0 ) hwhile b do c,si ! s 0.

We assume G n+1
b,c ?s = Gb,c

⇣
G n

b,c?
⌘

s = s 0, that is

B JbKs !
�
G n

b,c?
�⇤

(C JcKs) ,s = s 0

Now either B JbKs = false or B JbKs = true.
• If B JbKs = false, we have hb,si ! false and s 0 = s .

Now by using the rule (whff):

hb,si ! false

hwhile b do c,si ! s

we conclude hwhile b do c,si ! s .
• if B JbKs = true we have hb,si ! true and

�
G n

b,c?
�⇤

(C JcKs) = s 0.

Since s 0 6= ? there must exists some s 00 6= ? with
C JcKs = s 00 and by structural induction hc,si ! s 00.
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Since
⇣

G n
b,c?

⌘⇤
(C JcKs) =

⇣
G n

b,c?
⌘

s 00 = s 0 we have
by the mathematical induction hypothesis A(n) that

⌦
while b do c,s 00↵! s 0.

Finally by using the rule (whtt):

hb,si ! true hc,si ! s 00 ⌦
while b do c,s 00↵! s 0

hwhile b do c,si ! s 0

we conclude hwhile b do c,si ! s 0.

6.4 Computational Induction

How are we able to prove properties about fixpoints? To fill this gap we introduce
Scott’s computational induction, which applies to a class of properties corresponding
to inclusive sets.

Definition 6.10 (Inclusive property). Let (D,v) be a CPO, let P ✓ D be a set, we
say that P is an inclusive set if and only if:

(8n 2 N,dn 2 P) )
G

n2N
dn 2 P

A property is inclusive if the set of values on which it holds is inclusive.

Intuitively, a set P is inclusive if whenever we form a chain out of elements in P,
then the limit of the chain is also in P, i.e., P is inclusive if and only if it forms a
CPO.

Example 6.9 (Non inclusive property). Let ({a,b}⇤ [ {a,b}•,v) be a CPO where
x v y , 9z. y = xz. So the elements of the CPO are sequences of a and b and x v y
iff x is a finite prefix of y. Let us now define the following property:

• x 2 {a,b}⇤ [{a,b}• is fair iff 6 9y 2 {a,b}⇤. x = ya• _ x = yb•

Fairness is the property of an arbiter which does not favor one of two competitors all
the times from some point on. Fairness is not inclusive, indeed,

• the sequence an is finite and thus fair for any n 2 N;
•
F

n2N an = a•;
• a• is obviously not fair.

Theorem 6.4 (Computational Induction). Let P be a property, (D,v) a CPO? and
f a monotone and continuous function on it. Then the inference rule:



DRAFT

152 6 Denotational Semantics of IMP

P inclusive ? 2 P 8d 2 D. (d 2 P ) f (d) 2 P)

fix f 2 P

is sound.

Proof. Given the second and the third premises, it is easy to prove by mathematical
induction that 8n. f n(?) 2 P. Then also

F
n2N f n(?) 2 P since P is inclusive and

fix( f ) =
F

n2N f n(?). ut
Example 6.10 (Computational induction). Let us consider the command

w def
= while x 6= 0 do x := x�1

from Example 6.8. We want to prove the property

C Jwhile x 6= 0 do x := x�1Ks = s 0 ) sx � 0^s 0 = s [0/x]

By definition:

C JwK = fixG where G def
= lj. ls . sx 6= 0 ! js [sx�1/x],s

Let us define the property:

P(j)
def
= 8s ,s 0. (js = s 0 ) sx � 0^s 0 = s [0/x])

we will show that the property is inclusive, that is, taken a chain {ji}i2N we have:

(8i 2 N. P(ji)) ) P(
G

i2N
ji)

Let us assume 8i 2 N. P(ji), namely that:

8i,s ,s 0.
�
jis = s 0 ) sx � 0^s 0 = s [0/x]

�

We want to prove that

8s ,s 0.

 
(
G

i2N
ji)s = s 0 ) sx � 0^s 0 = s [0/x]

!

Suppose (
F

i2N ji)s = s 0. We are left to prove that sx � 0 ^ s 0 = s [0/x]. By
(
F

i2N ji)s = s 0 we have that 9k 2 N. jks = s 0. Then we can conclude the thesis
by P(jk).

We can now use the computational induction:

P inclusive P(?) 8j. P(j) ) P(G j)

P(fixG )

as P(fixG ) = P(C JwK).
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P inclusive: It has been proved above.
P(?): It is obvious, since ?s = s 0 is always false.
8j. P(j) ) P(G j): We assume

P(j)
def
= 8s ,s 0. (js = s 0 ) sx � 0^s 0 = s [0/x])

and we want to prove

P(G j) = 8s ,s 0. (G js = s 0 ) sx � 0^s 0 = s [0/x])

We assume the premise

G js =
�
sx 6= 0 ! js [sx�1/x],s

�
= s 0

and need to prove that sx � 0^s 0 = s [0/x]. There are two
cases to consider:

• If sx = 0, we have

(sx 6= 0 ! js [sx�1/x],s) = s

therefore s 0 = s and trivially

sx = 0 � 0 s 0 = s = s [0/x].

• If sx 6= 0, we have

(sx 6= 0 ! js [sx�1/x],s) = js [sx�1/x].

Let s 00 = s [sx�1/x]. We exploit P(j) over s 00,s 0:

j s [sx�1/x]| {z }
s 00

= s 0 ) s 00x � 0^s 0 = s 00[0/x]

we have:

s 00x � 0 , s [sx�1/x]x � 0 , sx � 1 ) sx � 0

s 0 = s 00[0/x] = s [sx�1/x][
0/x] = s [0/x]

Finally, we can conclude by computational induction that
the property P holds for the fixpoint fixG and thus for the
semantics of the command w as C JwK = fixG .
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Problems

6.1. The following problems serve to get acquainted with the use of variables in the
lambda-notation.

1. Is lx. lx. x a-convertible to one or more of the following expressions?

a. ly. lx. x
b. ly. lx. y
c. ly. ly. y
d. lx. ly. x
e. l z. lw. w

2. Is ((lx. ly. x) y) equivalent to one or more of the following expressions?

a. ly. ly. y
b. ly. y
c. ly. z
d. l z. y
e. lx. y

6.2. Prove Theorem 6.2.

6.3. Prove that the commands

c def
= x := 0; if x = 0 then c1 else c2 c0 def

= x := 0; c1

are semantically equivalent for any commands c1,c2. Carry out the proof using both
the operational semantics and the denotational semantics.

6.4. Prove that the two commands

w def
= while b do c w0 def

= while b do (if b then c else skip)

are equivalent for any b and c using the denotational semantics.

6.5. Prove that C Jwhile true do skipK = C Jwhile true do x := x+1K.

6.6. Prove that C Jwhile x 6= 0 do x := 0K = C Jx := 0K.

6.7. Prove that

C Jwhile x = 0 do skipK = C Jif x = 0 then (while true do x := 0) else skipK .

6.8. Introduce in IMP the command

repeat n times c

with n natural number, instead of the command while. Its denotational semantics is

C Jrepeat n times cKs = (C JcK)ns
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1. Define the operational semantics of the new command.
2. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.
3. Prove that the execution of every command terminates.

6.9. Add to IMP the command

reset x in c

with the following informal meaning: execute the command c in the state where x is
reset to 0, then after the execution of c reassign to location x its original value.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
3. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.

6.10. Add to IMP the command

do c undoif b

with the following informal meaning: execute c; if after the execution of c the boolean
expression b is satisfied, then go back to the state before the execution of c.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
3. Extend the proof of equivalence of the operational and denotational semantics of

IMP to take into account the new command.

6.11. Extend IMP with the command

try c1 = c2 else c3

that returns the store obtained by computing c1 if it coincides with the one obtained
by computing c2; if they differ returns the store obtained by computing c3; it diverges
otherwise.

1. Define the operational semantics of the new command.
2. Define the denotational semantics of the new command.
3. Extend the proof of correspondence between the operational and the denotational

semantics.

6.12. Consider the IMP command

w def
= while y > 0 do (r := r ⇥ x ; y := y�1)

Compute the denotational semantics C JwK = fix G .
Hint: Prove that letting jn

def
= G n?S!S? it holds 8n � 1

jn = ls . (sy > 0) ! ( (sy � n) ! ?S? , s [sr⇥(sx)sy
/r,

0 /y] ) , s .
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6.13. Consider the IMP command

w def
= while x 6= 0 do (x := x�1 ; y := y+1)

Prove, using Scott computational induction, that for all s ,s 0 we have:

C JwKs = s 0 ) s(x) � 0^s 0 = s [s(x)+s(y)/y,
0 /x]
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HOFL: a higher-order functional language
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This part focuses on models for sequential computations that are associated to HOFL,
a higher-order declarative language that follows the functional style. Chapter 7
presents the syntax, typing and operational semantics of HOFL, while Chapter 9
defines its denotational semantics. The two are related in Chapter 10. Chapter 8
extends the theory presented in Chapter 5 to allow the definition of more complex
domains, as needed by the type-constructors available in HOFL.
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Chapter 7
Operational Semantics of HOFL

Typing is no substitute for thinking. (Richard Hamming)

Abstract In the previous part of the book we have introduced and studied an imper-
ative language called IMP. In this chapter we move our attention to functional lan-
guages. In particular, we introduce HOFL, a simple higher-order functional language
which allows for the explicit construction of infinitely many types. We overview
Church and Curry type theories. Then, we present a lazy operational semantics,
which corresponds to a call-by-name strategy, namely actual parameters are passed to
functions without evaluating them. This view is contrasted with the eager evaluation
semantics, which corresponds to a call-by-value strategy, where all actual parameters
are evaluated before being passed to functions. The operational semantics evaluates
(well-typed) terms to suitable canonical forms.

7.1 Syntax of HOFL

We start by introducing the plain syntax of HOFL. Then we discuss the type theory
and define the well-formed terms. Finally we present the operational semantics of
well-formed terms, which reduces terms to their canonical form (when they exist).

In IMP there are only three types: Aexp for arithmetic expressions, Bexp for
boolean expressions and Com for commands. Since IMP does not allow to construct
other types explicitly, these types are directly embedded in its syntax. HOFL, instead,
allows one to define a variety of types, so we first present the grammar for pre-terms,
then we introduce the concept of typed terms, namely the well-formed sentences of
HOFL. Due to the context-sensitive constraints induced by the types, it is possible to
see that well-formed terms could not be defined by a syntax expressed in a context-
free format. We assume a set Var of variables is given.

Definition 7.1 (HOFL: syntax). The following productions define the syntax of
HOFL pre-terms:

159
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t ::= x | n | t0 + t1 | t0 � t1 | t0 ⇥ t1 | if t then t0 else t1 |
(t0, t1) | fst(t) | snd(t) | lx. t | (t0 t1) | recx. t

where x is a variable and n an integer.

Besides usual variables x, constants n and arithmetic operators +,�,⇥, we find:
a conditional construct if t then t0 else t1 that reads as if t = 0 then t0 else t1;
the constructs for pairing terms (t0, t1) and for projecting over the first and second
component of a pair fst(t) and snd(t); function abstraction lx. t and application
(t0 t1); and recursive definition recx. t. Recursion allows to define recursive terms,
namely recx. t defines a term t that can contain variable x, which in turn can be
replaced by its recursive definition recx. t.

We call pre-terms the terms generated by the syntax above, because it is evident
that one could write ill-formed terms, like applying a projection to an integer instead
of a pair (fst(1)) or summing an integer to a function (1 + lx. x). To avoid these
constructions we introduce the concepts of type and typed term.

7.1.1 Typed Terms

Definition 7.2 (HOFL types). A HOFL type is a term constructed by using the
following grammar:

t ::= int | t0 ⇤ t1 | t0 ! t1

We let T denote the set of all types.

We allow constant type int, the pair type t0 ⇤ t1 and the function type t0 ! t1.
Using these productions we can define infinitely many types, like (int ⇤ int) ! int
for functions that take as argument a pair of integers and return an integer, and
int ! (int ⇤ (int ! int)) for functions that take an integer and return an integer in
pair with a function from integers to integers.

Now we define the rule system which allows to say if a pre-term of HOFL is
well-formed (i.e., if we can or not associate a type expressed in the above grammar to
a given pre-term). The predicates we are interested in are of the form t : t , expressing
that the pre-term t is well-formed and has type t . We assume variables are typed, i.e.,
that a function c(·) : Var ! T is given, which assigns a unique type to each variable.

x : bx
The rule for variables assign to each variable x its type bx.

n : int
t0 : int t1 : int

t0 op t1 : int
op 2 {+,�,⇥}

t : int t0 : t t1 : t

if t then t0 else t1 : t
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The rules for arithmetic expressions assign type int to each integer n and to each
expression built using +,�,⇥, whose arguments must be of type int too. The rule
for conditional expressions if t then t0 else t1 : t requires the condition t to be of
type int and the the two branches t0 and t1 to have the same type t , which is also the
type of the conditional expression.

t0 : t0 t1 : t1

(t0, t1) : t0 ⇤ t1

t : t0 ⇤ t1

fst(t) : t0

t : t0 ⇤ t1

snd(t) : t1

The rule for pairing says that the type of a term (t0, t1) is the pair type t0 ⇤ t1,
where ti has type ti for i = 0,1. Vice versa, for projections it is required that the
argument t has pair type t0 ⇤ t1 for some t0 and t1, and the result has type t0 when
the first projection is used or t1 when the second projection is used.

x : t0 t : t1

lx. t : t0 ! t1

t1 : t0 ! t1 t0 : t0

(t1 t0) : t1

The rule for function abstraction assigns to lx. t the functional type t0 ! t1,
where t0 is the type of x and t1 is the type of t. In the case of function application
(t1 t0), it is required that t1 has functional type t0 ! t1 for some types t0 and t1,
where t0 is also the type of t0. Then, the result has type t1.

x : t t : t

rec x. t : t

The last rule handles recursion: it check that the type t of the defining expression
t is the same as the type of the recursively defined name x; if so, then t is also the
type of the recursive expression rec x. t.

Definition 7.3 (Well-Formed Terms). Let t be a pre-term of HOFL, we say that t is
well-formed (or well-typed, or typable) if there exists a type t such that t : t .

We name Tt the set of well-formed terms of type t .
Note that our type system is very simple. Indeed it does not allow to construct

useful types, such as recursive, parametric, dependent, polymorphic or abstract types.
These limitations imply that we cannot construct many useful terms. For instance,
while it is easy to express the types for lists of integer numbers of fixed length (using
the type pairing operator ⇤) and functions that manipulate them, in our type system
lists of integer numbers of variable length are not typable, because some form of
recursion should be allowed at the level of types to express them.
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7.1.2 Typability and Typechecking

As we said in the last section we will give semantics only to well-formed terms,
namely terms which have a type in our type system. Therefore we need an algorithm
to say if a term is well-formed. In this section we will present two different solutions
to the typability problem, introduced by Church and by Curry, respectively.

7.1.2.1 Church Type Theory

In Church type theory we explicitly associate a type to each variable and deduce
the type of each term by structural recursion (i.e., by using the inference rules in a
bottom-up fashion).

In this case, we sometimes annotate directly the bounded variables with their type,
like in lx : int. x+ x or rec f : int ! int. lx : int. f x.

Example 7.1 (Factorial with Church types). Let x : int and f : int ! int in the pre-
term:

fact def
= rec f . lx. if x then 1 else (x⇥ ( f (x�1)))

So we can type fact and all its subterms as below:

bf = int ! int

f : int ! int

bx = int

x : int

bx = int

x : int 1 : int

bx = int

x : int

bf = int ! int

f : int ! int

bx = int

x : int 1 : int

x�1 : int

f (x�1) : int

(x⇥ ( f (x�1))) : int

if x then 1 else (x⇥ ( f (x�1))) : int

lx. if x then 1 else (x⇥ ( f (x�1))) : int ! int

fact : int ! int

More concisely, we write:

fact def
= rec f

int!int

.l x
int

. if x
int

then 1
int

else x
int

⇥( f
int!int

( x
int

� 1
int

int

int

))

int

int

int!int

: int ! int
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7.1.2.2 Curry Type Theory

In Curry style, we do not need to explicitly declare the type of each variable. Instead
we use the inference rules to calculate type equations (i.e., equations which have
types as variables) whose solutions define all the possible type assignments for the
term. This means that the result will be a set of types associated to the typed term.
The surprising fact is that this set can be represented as all the instances of a single
type term with variables, where one instance is obtained by freely replacing each
variable with any type. We call this term with variables the principal type of the term.
This construction is made by using the rules in a goal-oriented fashion, as we have
done in Example 7.5.

Example 7.2 (Identity). Let us consider the identity function:

lx. x

By using the type system we have:

lx. x : t -t=t1!t2, bx=t1 x : t2

-bx=t2 ⇤

So we have bx = t1 = t2 and the principal type of lx. x is t1 ! t1. Now each solution
of the type equation will be an identity function for a specified type. For example if
we set t1 = int we have t = int ! int, but if we set t1 = int ⇤ (int ! int) we have
t = (int ⇤ (int ! int)) ! (int ⇤ (int ! int)).

Example 7.3 (Non-typable term of HOFL). Let us consider the following function,
which computes the factorial without using recursion.

begin
fact( f ,x) def

= if x = 0 then 1 else x⇥ f ( f ,x�1)
fact(fact,3)

end

The first instruction defines fact as a function that takes two arguments (e.g., a
function f and an integer x) and returns 1 if x = 0 and returns x⇥ f ( f ,x�1) otherwise.
The second instruction invokes fact by passing fact as a first argument and the
number 3 as second argument. Since 3 6= 0, the invocation will trigger the calculation
3⇥ fact(fact,2) and so on. It can be translated to HOFL as follows:

fact def
= ly. if snd(y) = 0 then 1 else snd(y)⇥ fst(y)(fst(y),snd(y)�1)

We can try to infer the type of fact as follows:
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l y
t1

. if snd( y
t1=t2⇤int

)

int

then 1
int

else snd(y)
int

⇥( fst(y)
t2=(t2⇤int)!int

(fst(y)
t2

, snd(y)
int

� 1
int

int

)

t2⇤int

int

int

int

(t2⇤int)!int

We derive fst(y) : t2 and fst(y) : (t2 ⇤ int) ! int. Thus we have t2 = (t2 ⇤ int) ! int
which has no solution.

We recall the unification algorithm from Section 2.1.4 that can be used to solve
general systems of type equations as well. We recall it here, in compact form, to
address explicitly the unification of terms that denote types. The idea is that types
are terms built over a suitable signature. In the case of HOFL, the signature just
consists of the constant int and two binary operators ⇤ and ! and variables are
usually denoted as t’s. We start from a system of type equations like:

8
>>><

>>>:

t1 = t 01
t2 = t 02
· · ·
tk = t 0k

and then we apply iteratively in any order the following steps:

1. We eliminate all the equations like t = t for t a type variable.
2. For each equation of the form f (u1, . . . ,un) = f 0(u0

1, . . . ,u
0
m):1

if f 6= f 0: then the system has no solutions and we stop.
if f = f 0: then n = m so we must have:

u1 = u0
1,u2 = u0

2, . . . ,un = u0
n

and thus we replace the original equation with these.

3. For each equation of the type t = t with t 6= t:

if t appears in t: then the system has no solutions.
if t does not appear in t: we replace each occurrence of t with t in all the other

equations.

Eventually, either the system is recognised as unsolvable, or all the variables in the
original equations are assigned to solution terms. Note that the order of the step
executions can affect the complexity of the algorithm but not the solution. The best

1 In our case f and f 0 can be taken from {int,⇤,!}.
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execution strategies yield a complexity linear or quasi linear with the size of the
original system of equations.

Example 7.4. Let us now apply the algorithm to the Example 7.3: We have the type
equation

t2 = (t2 ⇤ int) ! int

1. We cannot apply step 1 of the algorithm, because the equation does not express a
trivial equality.

2. We cannot apply step 2 either, because the left-hand side of the equation consists
of a variable and not of an operator applied to some subterms, as required.

3. Step 3 can be applied and it fails, because the type variable t2 appears in the right
hand side.

Here we show another interesting term which is not typable.

Example 7.5 (Non-typable terms). Let us define a pre-term t which, when applied to
the argument 0, should define the list of all even numbers:

t def
= rec p. lx. (x,(p (x+2)))

Intuitively, the term t 0 takes the value 0 and place it in the first position of a pair,
whose second component is the term t itself applied to 0+2 = 2, so recursively t 0
should represent the infinite list of all even numbers:

t 0 ⌘ (0,(t 2)) ⌘ (0,(2,(t 4))) ⌘ · · · ⌘ (0,(2,(4, . . .)))

Let us show that this term is not typable:

t = rec p. lx. (x,(p (x+2))) : t -bp=t lx. (x,(p (x+2))) : t
-t=t1!t2, bx=t1 (x,(p (x+2))) : t2

-t2=t3⇤t4 x : t3, (p (x+2)) : t4

-bx=t3 (p (x+2)) : t4

- p : t5 ! t4, (x+2) : t5

-bp=t5!t4 (x+2) : t5

-t5=int x : int
-bx=int ⇤

So we have:

bx = t1 = t3 = int t2 = (t3 ⇤t4) = (int ⇤t4) t = (t1 ! t2) = (int ! (int ⇤t4)) t5 = int

From which:

bp = t = (int ! (int ⇤ t4)) and bp = (t5 ! t4) = (int ! t4)

Thus it must be the case that
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int ⇤ t4 = t4

which is absurd, because it is not possible to unify t4 with a composed term containing
an occurrence of t4. The above argument is represented more concisely below:

t = rec p. l x
int

. ( x
int

,( p
int!t4

( x
int

+ 2
int

)

int

)

t4

)

int⇤t4

(int!(int⇤t4)) = (int!t4) ) t4=(int⇤t4)

So we have no solutions, and the term is not a well-formed term.

7.2 Operational Semantics of HOFL

In Section 6.1 we have defined the concepts of free variables and substitution for the
l -calculus. Now we define the same concepts in the case of HOFL, which will be
necessary to define its operational semantics.

Definition 7.4 (Free variables). We define the set of free-variables of HOFL terms
by structural recursion, as follows:

fv(n)
def
= ?

fv(x) def
= {x}

fv(t0 op t1)
def
= fv(t0)[ fv(t1)

fv(if t then t0 else t1)
def
= fv(t)[ fv(t0)[ fv(t1)

fv((t0, t1))
def
= fv(t0)[ fv(t1)

fv(fst(t)) def
= fv(t)

fv(snd(t)) def
= fv(t)

fv(lx. t) def
= fv(t)\{x}

fv((t0 t1))
def
= fv(t0)[ fv(t1)

fv(rec x. t) def
= fv(t)\{x}

Finally as done for l -calculus we define the substitution operator on HOFL.

Definition 7.5 (Capture-avoiding substitution). Capture avoiding substitution [t/x]
of x with t is defined by structural recursion over HOFL terms as follows:
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n[t/x] = n

y[t/x]
def
=

⇢
t if y = x
y if y 6= x

(t0 op t1)[t/x]
def
= t0[t/x] op t1[t/x] with op 2 {+,�,⇥}

(if t 0 then t0 else t1)[t/x]
def
= if t 0[t/x] then t0[t/x] else t1[t/x]

(t0, t1)[t/x]
def
= (t0[t/x], t1[t/x])

fst(t 0)[t/x]
def
= fst(t 0[t/x])

snd(t 0)[t/x]
def
= snd(t 0[t/x])

(t0 t1)[t/x]
def
= (t0[t/x] t1[t/x])

(ly. t 0)[t/x]
def
= l z. ( t 0[z/y][

t/x] ) with z /2 fv(ly. t 0)[ fv(t)[{x}

(rec y. t 0)[t/x]
def
= rec z. (t 0[z/y][

t/x]) with z /2 fv(rec y. t 0)[ fv(t)[{x}

Note that in the last two rules we perform a-conversion [z/y] of the bound variable
y with a fresh identifier z before the substitution. This ensures that the free occurrences
of y in t, if any, are not bound accidentally after the substitution. As discussed
in Section 6.1, the substitution is well-defined if we consider the terms up to a-
conversion (i.e., up to the renaming of bound variables). Obviously, we would like
to extend these concepts to typed terms. So we are interested in understanding how
substitution and a-conversion interact with typing. We have the following results:

Theorem 7.1 (Substitution Respects Types). Let x, t : t and t 0 : t 0. Then, we have

t 0[t/x] : t 0

Proof. The proof is in two steps. First we prove by rule induction the stronger
predicate (for any term t 0 and type t 0)

P(t 0 : t 0)
def
= 8x, t : t. 8n 2 N. 8x1,z1 : t1, ...,xn,zn : tn. t 0[z1/x1 , · · · ,

zn /xn ,
t /x] : t 0

Second, the main statement of the theorem follows as the special case where n = 0.
The stronger assertion is needed for handling the cases of functions (i.e., t 0 = ly. t 00
for some y and t 00) and recursive expressions (i.e., t 0 = rec y. t 00 for some y and t 00),
which are the only non trivial cases (because of the way in which capture-avoiding
substitution is defined). The reader is left to fill in the missing details of the proof as
an exercise. ut

We are now ready to present the operational semantics of HOFL. Unlike IMP, the
operational semantics of HOFL is a simple manipulation of terms. This means that
the operational semantics of HOFL defines a method to calculate the canonical form
of a given term of HOFL. In particular, we focus on closed terms only, i.e., terms
t with no free variables (fv(t) = ?). Canonical forms are particular closed terms,
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which we will assume to be the results of calculations (i.e., as ordinary values). For
each type we fix the set of terms in canonical form by taking a subset of terms which
reasonably represent the notion of values for that type.

As shown in the previous section, HOFL has three type constructors: the constant
int, and the binary operators ⇤ for pairs and ! for functions. Terms which represent
the integers provide the obvious canonical forms for the integer type. For pair types
we take any pair of terms as canonical form: note that this choice is arbitrary; for
example we could have taken instead pairs of terms that are themselves in canonical
form. We will explain later the rationale of our choice. Finally, since HOFL is a
higher-order language, functions are values. So is quite natural to take all abstractions
as canonical forms for the arrow type.

Definition 7.6 (Canonical forms). Let us define a set Ct of canonical forms for each
type t as follows:

n 2 Cint

t0 : t0 t1 : t1 t0, t1 closed

(t0, t1) 2 Ct0⇤t1

lx. t : t0 ! t1 lx. t closed

lx. t 2 Ct0!t1

We now define the rules of the operational semantics; these rules define an evaluation
relation:

t ! c

where t is a well-formed closed term of HOFL and c is its canonical form.
For terms that are already in canonical form according to Definition 7.6 we let:

c ! c

For clarity, the above rule offers a concise representation to the otherwise verbose
rules:

n ! n

t0 : t0 t1 : t1 t0, t1 closed

(t0, t1) ! (t0, t1)

lx. t : t0 ! t1 lx.t closed

lx. t ! lx. t

Next, we give the rules for arithmetic expressions.

t0 ! n0 t1 ! n1

t0 op t1 ! n0 op n1

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

t ! n n 6= 0 t1 ! c1

if t then t0 else t1 ! c1

For the arithmetic operators the semantics is obviously the simple application
of the correspondent meta-operator as well as in IMP. Only, here we distinguish
between HOFL syntactic operators and meta-operators by underlying the latter. For
instance, we have 1+2 ! 3, since 1 ! 1, 2 ! 2 and 1+2 = 3.

We recall that for the conditional statement, since we have no boolean values, we
use the convention that if t then t0 else t1 stands for if t = 0 then t0 else t1, so the
premise t ! n 6= 0 means the test is false and t ! 0 means the test is true.
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Let us now consider the pairing. Obviously, since we consider pairs as canonical
values, we do not have to add further rules for simple pairs. We have instead two
rules for projections:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

t ! (t0, t1) t1 ! c1

snd(t) ! c1

The rules are obviously similar: the canonical form of t is computed, which must
be of the form (t0, t1), because t must have pair type for the projection to be applicable
and fst(t) typable. Note however that t0 and t1 need not be in canonical form. So
only the canonical form of the component indicated by the projection operator is
computed, with the other component discarded.

Function abstraction is handled by the axiom for terms already in canonical form,
as in the case of pairing. For function application, we show two rules, according
to two different evaluation strategies, called lazy and eager. In the lazy operational
semantics, we do not evaluate the canonical forms of the parameters when passing
them to the function body. The lazy semantics will be our primary focus in the rest
of this part of the book concerned with HOFL.

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c
(lazy)

We remark that the in the second premise of the rule, we replace with t0 each
occurrence of x in t 01, i.e., we replace each instance of x with a copy of the (non
evaluated) parameter t0 and not with its canonical form.

For the sake of discussion let us consider the eager alternative to this rule.

t1 ! lx. t 01 t0 ! c0 t 01[
c0/x] ! c

(t1 t0) ! c
(eager)

Unlike the lazy semantics, the eager semantics evaluates the parameters only once
and before the substitution. Note that these two types of evaluation are not equivalent.
If the evaluation of the argument does not terminate, and it is not needed, the lazy rule
will guarantee convergence, while the eager rule will diverge. Vice versa, according
to the lazy semantics, if the argument is actually needed it may be later evaluated
several times (every times it is used).

Finally, we have a last rule for recursive terms:

t[rec x. t/x] ! c

rec x. t ! c

To evaluate the canonical form of rec x. t we first plug in t the recursive definition
itself in place of every occurrence of x and then compute the canonical form.
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Example 7.6. Let us consider the term t def
= lx. 0+x. Clearly the term t is closed and

typable, with t : int ! int. It is already in canonical form and we have in fact:

t ! c -c=lx. 0+x ⇤

Example 7.7. Let us consider the term t def
= rec x. 0+ x. Clearly the term t is closed

and typable, with t : int. We show that the term has no canonical form, in fact:

t ! c - (0+ x)[t/x] ! c
= 0+ t ! c

-c=c1+c2 0 ! c1, t ! c2

-c1=0 t ! c2

- · · ·

Let us see an example which illustrates how rules are used to evaluate a function
application.

Example 7.8 (Factorial). Let us consider the well-formed factorial function seen in
the Example 7.1:

fact def
= rec f . lx. if x then 1 else x⇥ ( f (x�1))

It is immediate to see that fact is closed and we know it has type int ! int. So we
can calculate its canonical form by using the last rule seen and the axiom for terms
in canonical form:

lx. if x then 1 else x⇥ (fact(x�1)) ! lx. if x then 1 else x⇥ (fact(x�1))

fact ! lx. ifx then1elsex⇥ (fact(x�1))

We can apply this function to a specific value and calculate the canonical form of the
result. For example, we see what is the canonical form c of the (closed and typable)
term (fact 2) : int
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(fact 2) ! c - fact ! lx0. t 0, t 0[2/x0 ] ! c
- lx. if x then 1 else x⇥ (fact(x�1)) ! lx0. t 0,

t 0[2/x0 ] ! c
-x0=x, t 0=if x then 1 else x⇥fact(x�1) if 2 then 1 else 2⇥ (fact(2�1)) ! c

-⇤ 2⇥ (fact(2�1)) ! c
-c=c1⇥c2 2 ! c1, (fact(2�1)) ! c2

-⇤
c1=2 fact ! lx00. t 00, t 00[2�1/x00 ] ! c2

note that 2�1 is not evaluated

-x00=x, t 00=if x then 1 else x⇥fact(x�1) if (2�1) then 1
else (2�1)⇥ (fact((2�1)�1)) ! c2

- 2�1 ! n, n 6= 0,

(2�1)⇥ fact((2�1)�1) ! c2

-n=n1�n2 2 ! n1, 1 ! n2, n1�n2 6= 0,

(2�1)⇥ fact((2�1)�1) ! c2

-⇤
n1=2, n2=1 (2�1)⇥ fact((2�1)�1) ! c2

-⇤
c2=c3⇥c4

2�1 ! c3, fact((2�1)�1) ! c4

-⇤
c3=1 fact((2�1)�1) ! c4

-⇤ if (2�1)�1 then 1
else((2�1)�1)⇥ (fact(((2�1)�1)�1)) ! c4

- (2�1)�1 ! 0, 1 ! c4

-⇤
c4=1 ⇤

So we have
c = c1⇥c2 = 2⇥(c3⇥c4) = 2⇥(1⇥1) = 2

Example 7.9 (Lazy vs eager evaluation). The aim of this example is to illustrate the
difference between lazy and eager semantics. Let us consider the term

t def
= ((lx : int. 3)(rec y : int. y)) : int

also written more concisely as

t def
= (lx. 3)rec y. y

assuming bx = by = int. It consists of the constant function lx. 3 applied to a diverging
term rec y. y (i.e., a term with no canonical form).

• Lazy evaluation
Lazy evaluation evaluates a parameter only if needed: if a parameter is never used
in a function or in a specific instance of a function it will never be evaluated. Let
us show our example:
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((lx. 3)rec y. y) ! c - lx. 3 ! lx. t, t[rec y. y/x] ! c
-t=3 3[rec y. y/x] ! c
-c=3 ⇤

So although the argument rec y. y has no canonical form the application can be
evaluated.

• Eager evaluation
On the contrary in the eager semantics this term has no canonical form since
the parameter must be evaluated before the application, leading to a diverging
computation:

((lx. 3)rec y. y) ! c - lx. 3 ! lx. t, rec y. y ! c1, t[c1/x] ! c
-t=3 rec y. y ! c1, 3[c1/x] ! c

- rec y. y ! c1 3[c1/x] ! c
- . . .

So the evaluation does not terminate.

However if the parameter of a function is used n times, the parameter would be
evaluated n times (at most) in the lazy semantics and only once in the eager case.

We conclude this chapter by presenting a theorem that guarantees that

1. if a term can be reduced to a canonical form then it is unique (determinacy);
2. the evaluation of the canonical form preserves the type assignments (type preser-

vation).

Theorem 7.2. Let t be a closed and typable term.

1. For any canonical form c,c0, if t ! c and t ! c0 then c = c0

2. For any canonical form c and type t , if t ! c and t : t then c : t

Proof. Property 1 is proved by rule induction, taking the predicate

P(t ! c) def
= 8c0. t ! c0 ) c = c0

We show only the case of the application rule, the remainder of the proof of the
theorem, including the proof of Property 2, is left as an exercise (see Problem 7.11).
We have the rule:

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We assume the inductive hypotheses:

• P(t1 ! lx. t 01)
def
= 8c0. t1 ! c0 ) lx. t 01 = c0

• P(t 01[
t0/x] ! c) def

= 8c0. t 01[
t0/x] ! c0 ) c = c0
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We want to prove:

P((t1 t0) ! c) def
= 8c0. (t1 t0) ! c0 ) c = c0

As usual, we assume the premise of the implication:

(t1 t0) ! c0

From it, by goal reduction:

(t1 t0) ! c0 - t1 ! lx0. t 001 , t 001 [t0/x0 ] ! c0

Then we have by the first inductive hypothesis:

lx. t 01 = lx0. t 001

i.e., x = x0 and t 01 = t 001 . Then t 001 [t0/x0 ] = t 01[
t0/x] and by the second inductive hypothesis

we have c = c0. ut

Problems

7.1. Let x,y,w : int, and f : int ! (int ! int). Consider the HOFL term

t def
= rec f . lx. if x then (ly. (y+w)) else ( f w)

1. Compute the term t[(( f x) y)/w].
2. Compute the term t[(( f x) y)/x].

Hint: The exercise is about making practice with capture-avoiding substitutions. You
are allowed to introduce additional (typed) variables if needed.

7.2. Is it possible to assign a type to the HOFL pre-term below? If yes, compute its
principal type.

rec f . lx. if snd(x) then 1 else f ( fst(x) , (fst(x) snd(x)))

7.3. A list of positive numbers is defined by the following syntax, where n 2N,n > 0:

L ::= (n,0) | (n,L)

For instance the list with 3 followed by 5 is represented by the term (3,(5,0)).

1. Define a HOFL term t (closed and typable) such that the application (t L) to a list
L of 3 elements returns the last element of the list.

2. Is it possible to find a closed and typable HOFL term which returns the last
element of a generic list?
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7.4. Given the two HOFL terms

t1
def
= lx. ly. x+3

t2
def
= l z. fst(z)+3

1. Compute their types.
2. Prove that, given the canonical form c : t , the two terms

((t1 1) c) and (t2 (1,c))

yield the same canonical form.

7.5. Let us consider the HOFL term

map def
= l f . lx. (( f fst(x)),( f snd(x)))

Show that map is a typable term and give its principal type. Then, compute the
canonical form of the term

((map (lx. 2⇥ x)) (1,2))

7.6. Determine the type of the HOFL term

t def
= rec x. ((ly. if y then 0 else 0) x).

Then compute its operational semantics.

7.7. Recall the definition of binomial coefficients
✓

n
k

◆
from Problem 4.13:

✓
n
0

◆
def
= 1

✓
n
n

◆
def
= 1

✓
n+1
k +1

◆
def
=

✓
n
k

◆
+

✓
n

k +1

◆
.

where n,k 2 N and 0  k  n. Consider the corresponding HOFL program:

t def
= rec f . ln. lk. if k then 1

else if n� k then 1
else (( f (n�1)) k)+(( f (n�1)) (k �1)).

Compute its type and evaluate the canonical form of the term ((t 2) 1).

7.8. Consider the Fibonacci sequence already found in Problem 4.14

F(0)
def
= 1 F(1)

def
= 1 F(n+2)

def
= F(n+1)+F(n)

where n 2 N.

1. Write a well-formed, closed HOFL term t : int ! int to compute F .
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2. Compute the operational semantics of (t 2)

7.9. Check if the HOFL pre-term

lx. ly. l z. if z then (y x) else (x y).

is typable, in which case give its type.

7.10. Let us consider the HOFL pre-term t = lx. (x x). Prove that it is not typable.
Try to compute anyway the canonical form of the application (t t). Given that any
well-typed term without recursion has a canonical form, argue why the given term is
not typable.

7.11. Complete the proof of Theorem 7.2.

7.12. Suppose we extend HOFL with the inference rule:

t1 ! 0
t1 ⇥ t2 ! 0

Prove that the property of determinacy

8t,c1,c2. t ! c1 ^ t ! c2 ) c1 = c2

is still valid. What if also the inference rule below is added?

t2 ! 0
t1 ⇥ t2 ! 0

7.13. Prove that typable terms are uniquely typed, i.e., that for any pre-term t and
types t,t 0, if t : t and t : t 0 then t = t 0.
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Chapter 8
Domain Theory

Order, unity and continuity are human inventions just as truly as
catalogues and encyclopedias. (Bertrand Russell)

Abstract As done for IMP, we would like to introduce the denotational semantics
of HOFL, for which we need to develop a proper domain theory that is more so-
phisticated than the one presented in Chapter 5. In order to define the denotational
semantics of IMP, we have shown that the semantic domain of commands, for which
we need to apply fixpoint theorem, has the required properties. The situation is more
complicated for HOFL, because HOFL provides constructors for infinitely many
term types, so there are infinitely many domains to be considered. We will handle
this problem by showing, using structural induction, that the type constructors of
HOFL correspond to domains which are equipped with adequate CPO? structures
and that we can define useful continuous functions between them.

8.1 The Flat Domain of Integer Numbers Z?

The first domain we introduce is very simple: it consists of all the integers numbers
together with a distinguished bottom element. It relies on a flat order in the sense of
Example 5.5.

Definition 8.1 (Z?). We define the CPO with bottom Z? = (Z[{?},v) as follows:

• Z is the set of integer numbers;
• ? is a distinguished bottom element that we add to the purpose;
• 8x 2 Z[{?}. ? v x and x v x

It is immediate to check that Z? is a CPO with bottom, where ? is the bottom
element and each chain has a lub because chains are all finite: they either contain 1
or 2 different elements.

Remark 8.1. Since in this chapter we present several different domains, each coming
with its proper order relation and bottom element, we find it useful to annotate them
with the name of the domain as a subscript to avoid ambiguities. For example, we
can write ?Z? to make explicit that we are referring to the bottom element of the
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domain Z?. Also note that the subscript ? we attach to the name of the domain Z is
just a tag and it should not be confused with the name of the bottom element itself: it
is the standard way to indicate that the domain Z is enriched with a bottom element
(e.g., we could have used a different notation like Z to the same purpose).

8.2 Cartesian Product of Two Domains

Given two CPO?s we can combine them to obtain another CPO? whose elements
are pairs formed with one element from each CPO?.

Definition 8.2. Let:
D = (D,vD) E = (E,vE)

be two CPO?s. Now we define their Cartesian product domain

D ⇥E = (D⇥E,vD⇥E)

1. whose elements are the pairs of elements from D and E; and
2. whose order vD⇥E is defined as follows:1

8d0,d1 2 D, 8e0,e1 2 E. (d0,e0) vD⇥E (d1,e1) , d0 vD d1 ^ e0 vE e1

Proposition 8.1. (D⇥E,vD⇥E) is a partial order with bottom.

Proof. We need to show that the relation vD⇥E is reflexive, antisymmetric and
transitive:

reflexivity: since vD and vE are reflexive we have 8e 2 E. e vE e and 8d 2
D. d vD d so by definition of vD⇥E we have

8d 2 D 8e 2 E. (d,e) vD⇥E (d,e).

antisymmetry: let us assume (d0,e0) vD⇥E (d1,e1) and (d1,e1) vD⇥E (d0,e0) so
by definition of vD⇥E we have d0 vD d1 (using the first relation)
and d1 vD d0 (by using the second relation) so it must be d0 = d1
and similarly e0 = e1, hence (d0,e0) = (d1,e1).

transitivity: let us assume (d0,e0) vD⇥E (d1,e1) and (d1,e1) vD⇥E (d2,e2). By
definition of vD⇥E we have d0 vD d1, d1 vD d2, e0 vE e1 and
e1 vE e2. By transitivity of vD and vE we have d0 vD d2 and
e0 vE e2. By definition of vD⇥E we get (d0,e0) vD⇥E (d2,e2).

Finally, we show that the there is a bottom element. Let ?D⇥E = (?D,?E). In fact
8d 2 D,e 2 E. ?D v d ^?E v e, thus (?D,?E) vD⇥E (d,e). ut

It remains to show the completeness of D ⇥E .

1 Note that the order is different from the lexicographic one considered in Example 4.9.
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Theorem 8.1 (Completeness of D ⇥E ). The PO D ⇥E defined above is complete.

Proof. We prove that for each chain {(di,ei)}i2N it holds:

G

i2N
(di,ei) =

 
G

i2N
di,
G

i2N
ei

!

Obviously (
F

i2N di,
F

i2N ei) is an upper bound, indeed for each j 2 N we have
d j vD

F
i2N di and e j vE

F
i2N ei so by definition of vD⇥E it holds (d j,e j) vD⇥E

(
F

i2N di,
F

i2N ei).
Moreover (

F
i2N di,

F
i2N ei) is also the least upper bound. Indeed, let (d,e) be an

upper bound of {(di,ei)}i2N, since
F

i2N di is the lub of {di}i2N we have
F

i2N di vD d,
furthermore we have that

F
i2N ei is the lub of {ei}i2N then

F
i2N ei vE e. So by

definition of vD⇥E we have (
F

i2N di,
F

i2N ei) vD⇥E (d,e). Thus (
F

i2N di,
F

i2N ei)
is the least upper bound. ut

We can now define suitable projection operators over D ⇥E .

Definition 8.3 (Projection operators p1 and p2 ). Let (d,e) 2 D⇥E be a pair, we
define the left and right projection functions p1 : D⇥E ! D and p2 : D⇥E ! E as
follows.

p1 ((d,e)) def
= d and p2 ((d,e)) def

= e.

Recall that in order to use a function in domain theory we have to show that it
is continuous; this ensures that the function respects the domain structure (i.e., the
function preserves the order and limits) and so we can calculate its fixpoints to solve
recursive equations. So we have to prove that each function which we use on D ⇥E
is continuous. The proof that projections are monotone is immediate and left as an
exercise (see Problem 8.1).

Theorem 8.2 (Continuity of p1 and p2). Let p1 and p2 be the projection functions
in Definition 8.3 and let {(di,ei)}i2N be a chain of elements in D ⇥E , then:

p1

 
G

i2N
(di,ei)

!
=
G

i2N
p1 ((di,ei)) p2

 
G

i2N
(di,ei)

!
=
G

i2N
p2 ((di,ei))

Proof. Let us prove the first statement:

p1

 
G

i2N
(di,ei)

!
= p1

  
G

i2N
di,
G

i2N
ei

!!
(by definition of limit in D⇥E)

=
G

i2N
di (by definition of projection)

=
G

i2N
p1 ((di,ei)) (by definition of projection).

For the second statement the proof is completely analogous. ut
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8.3 Functional Domains

Let (D,vD) and (E,vE) be two CPOs. In the following we denote by D ! E def
=

{ f | f : D ! E} the set of all functions from D to E (where the order relations are not
important), while we denote by [D ! E] ✓ D ! E the set of all continuous functions
from D to E (i.e., [D ! E] contains just the functions that preserve order and limits).
As for Cartesian product, we can define a suitable order on the set [D ! E] to get a
CPO?. Note that as usual we require the continuity of the functions to preserve the
applicability of fixpoint theory.

Definition 8.4. Let us consider the CPO?s:

D = (D,vD) E = (E,vE)

We define an order on the set of continuous functions from D to E as follows:

[D ! E ] =
�
[D ! E] ,v[D!E]

�

where:

1. [D ! E] = { f | f : D ! E, f is continuous}
2. f v[D!E] g , 8d 2 D. f (d) vE g(d)

We leave as an exercise the proof that [D ! E ] is a PO with bottom, namely
that the relation v[D!E] is reflexive, antisymmetric, transitive and that the function
?[D!E] : D ! E defined by letting, for any d 2 D:

?[D!E](d)
def
= ?E

is continuous and that it is also the bottom element of [D ! E ] (see Problem 8.2).
We show that the PO [D ! E ] is complete. In order to simplify the proof we

introduce first the following lemmas.

Lemma 8.1 (Switch Lemma). Let (E,vE) be a CPO whose elements are of the
form en,m with n,m 2 N. If vE is such that:

en,m vE en0,m0 if n  n0 and m  m0

then, it holds:

G

n,m2N
en,m =

G

n2N

 
G

m2N
en,m

!
=
G

m2N

 
G

n2N
en,m

!
=
G

k2N
ek,k

Proof. The relation between the elements of E can be summarized as follows:
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...
...

...
... . .

.

v v v v

en,0 v en,1 v en,2 v · · · v en,m v · · ·

v v v v

...
...

... . .
. ...

v v v v

e2,0 v e2,1 v e2,2 v · · · v e2,m v · · ·

v v v v

e1,0 v e1,1 v e1,2 v · · · v e1,m v · · ·

v v v v

e0,0 v e0,1 v e0,2 v · · · v e0,m v · · ·

We show that all the following sets have the same upper bounds:

{en,m}n,m2N

(
G

m2N
en,m

)

n2N

(
G

n2N
en,m

)

m2N

{ek,k}k2N

• Let us consider the first two sets. For any n 2 N, let en =
F

j2N en, j. This amounts
to consider each row of the above diagram and compute the least upper bound for
the elements in the same row. Clearly, en1 v en2 when n1  n2 because for any
j 2 N an upper bound of en2, j is also an upper bound of en1, j.

...
...

...
...

...

v v v v v

en,0 v en,1 v en,2 v · · · v en,m v · · · v en =
F

m2N en,m

v v v v v

...
...

...
...

...

v v v v v

e2,0 v e2,1 v e2,2 v · · · v e2,m v · · · v e2 =
F

m2N e2,m

v v v v v

e1,0 v e1,1 v e1,2 v · · · v e2,m v · · · v e1 =
F

m2N e1,m

v v v v v

e0,0 v e0,1 v e0,2 v · · · v e2,m v · · · v e0 =
F

m2N e0,m

Let e be an upper bound of {ei}i2N, we want to show that e is an upper bound for
{en,m}n,m2N. Take any n,m 2 N. Then

en,m v
G

j2N
en, j = en v e

since en,m is an element of the chain {en, j} j2N whose limit is en =
F

j2N en, j. Thus
e is an upper bound for {en,m}n,m2N.
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Vice versa, let e be an upper bound of {ei, j}i, j2N and consider en =
F

m2N en,m
for some n. Since {en,m}m2N ✓ {ei, j}i, j2N, obviously e is an upper bound for
{en,m}m2N and therefore en v e, because en is the lub of {en,m}m2N.

• The correspondence between the sets of upper bounds of {en,m}n,m2N and
{
F

n2N en,m}m2N can be proved analogously.
• Finally, let us consider the sets {en,m}n,m2N and {ek,k}k2N and show that they have

the same set of upper bounds.
Taken any n,m 2 N the element, let k = max{n,m}. We have

en,m v en,k v ek,k

thus any upper bound of {ek,k}k2N is also an upper bound of {en,m}n,m2N.
Vice versa, it is immediate to check that {ek,k}k2N is a subset of {en,m}n,m2N so
any upper bound of {en,m}n,m2N is also an upper bound of {ek,k}k2N.

We conclude by noting that the set of upper bounds {en,m}n,m2N has a least
element. In fact, {

F
m2N en,m}n2N is a chain, and it has a lub because E is a CPO. ut

Lemma 8.2. Let { fn}n2N be a chain of functions2 in D ! E . Then the lub
F

n2N fn
exists and it is defined as:

 
G

n2N
fn

!
(d) =

G

n2N
( fn(d))

Proof. The function
h def

= ld.
G

n2N
( fn(d))

is clearly an upper bound for { fn}n2N since for every k 2 N and d 2 D we have
fk(d) vE

F
n2N fn(d).

The function h is also the lub of { fn}n2N. In fact, given any other upper bound g,
i.e., such that fn vD!E g for any n 2 N, we have that for any d 2 D the element g(d)
is an upper bound of the chain { fn(d)}n2N and therefore

F
n2N( fn(d)) vE g(d). ut

Lemma 8.3. Let { fn}n2N be a chain of continuous functions in [D ! E ] and let
{dn}n2N be a chain of D . Then, the function

h def
= ld.

G

n2N
( fn(d))

is continuous, namely

h

 
G

m2N
dm

!
=
G

m2N
h(dm)

Furthermore, h is the lub of { fn}n2N not only in D ! E as stated by Lemma 8.2, but
also in [D ! E ].
2 Note that the fn are not necessarily continuous, because we select D ! E and not [D ! E ].
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Proof.

h

 
G

m2N
dm

!
=
G

n2N

 
fn

 
G

m2N
dm

!!
(by definition of h)

=
G

n2N

 
G

m2N
( fn (dm))

!
(by continuity of fn)

=
G

m2N

 
G

n2N
( fn (dm))

!
(by Switch Lemma 8.1)

=
G

m2N
h(dm) (by definition of h)

Note that, in the previous passages, the premises for applying the Switch Lemma 8.1
because the elements { fn(dm)}n,m2N are in the CPO E and they satisfy fn(dm) vE
fn0(dm0) whenever n  n0 and m  m0 as fn(dm) vE fn(dm0) by monotonicity of
fn (because dm vD dm0) and fn(dm0) vE fn0(dm0) because fn v[D!E] fn0 . The upper
bounds of { fn}n2N in the PO D ! E are a larger set then those in [D ! E ], thus if
h is the lub in D ! E , it is also the lub in [D ! E ]. ut

Theorem 8.3 ([D ! E ] is a CPO?). The PO [D ! E ] is a CPO?

Proof. The statement follows immediately from the previous lemmas. ut

8.4 Lifting

In IMP we introduced a lifting operator (see Definition 6.9) on functions f : S ! S?to
derive a function f ⇤ : S? ! S? defined over the lifted domain S?, and thus able to
handle the argument ?S? . In the semantics of HOFL we need the same operator in a
more general fashion: we need to apply the lifting operator to any domain, not just S .

Definition 8.5 (Lifted domain). Let D = (D,vD) be a CPO and let ? be an element
not in D. We define the lifted domain D? = (D?,vD?) as follows:

• D?
def
= {?}]D = {(0,?)}[{1}⇥D

• ?D?
def
= (0,?)

• 8x 2 D?. ?D? vD? x
• 8d1,d2 2 D. d1 vD d2 ) (1,d1) vD? (1,d2)

We leave it as an exercise to show that D? is a CPO? (see Problem 8.3).
We define a lifting function b·c : D ! D? by letting, for any d 2 D:

bdc def
= (1,d)
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As it was the case for S in the IMP semantics, when we add a bottom element
to a domain D we would like to extend the continuous functions in [D ! E] to
continuous functions in [D? ! E]. The function defining the extension should itself
be continuous.

Definition 8.6 (Lifting). Let D be a CPO and let E be a CPO?. We define the lifting
operator (·)⇤ : [D ! E] ! [D? ! E] as follows:

8 f 2 [D ! E] . f ⇤(x) def
=

⇢
?E if x = ?D?
f (d) if x = bdc for some d 2 D

We need to prove that the definition is well-given and that the lifting operator is
continuous.

Theorem 8.4. Let D ,E be two CPOs.

1. If f : D ! E is continuous, then f ⇤ is continuous.
2. The operator (·)⇤ is continuous.

Proof. We prove the two statements separately.

1. We need to prove that if f 2 [D ! E], then f ⇤ 2 [D? ! E]. Let {xn}n2N be a
chain in D?. We have to prove f ⇤(

F
n2N xn) =

F
n2N f ⇤(xn).

If 8n 2 N. xn = ?D? , then this is obvious.
Otherwise, for some k 2 N there must exist a set of elements {dn+k}n2N in D
such that for all m � k we have xm = bdmc and also

F
n2N xn =

F
n2N xn+k =

b
F

n2N dn+kc (by prefix independence of the limit, Lemma 5.1). Then:

f ⇤

 
G

n2N
xn

!
= f ⇤

 $
G

n2N
dn+k

%!
by the above argument

= f

 
G

n2N
dn+k

!
by definition of lifting

=
G

n2N
f (dn+k) by continuity of f

=
G

n2N
f ⇤(bdn+kc) by definition of lifting

=
G

n2N
f ⇤(xn+k) by definition of xn+k

=
G

n2N
f ⇤(xn) by Lemma 5.1

2. We leave the proof that (·)⇤ is monotone as an exercise (see Problem 8.4).
Let { fi}i2N be a chain of functions in [D ! E ]. We will prove that for all x 2 D?:

 
G

i2N
fi

!⇤

(x) =

 
G

i2N
f ⇤
i

!
(x)
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if x = ?D? both sides of the equation simplify to ?E . So let us assume x = bdc
for some d 2 D we have:
 
G

i2N
fi

!⇤

(bdc) =

 
G

i2N
fi

!
(d) by definition of lifting

=
G

i2N
( fi(d)) by def. of lub in a functional domain

=
G

i2N
( f ⇤

i (bdc)) by definition of lifting

=

 
G

i2N
f ⇤
i

!
(bdc) by def. of lub in a functional domain

ut

8.5 Function’s Continuity Theorems

In this section we show some theorems which allow to prove the continuity of some
functions. We start proving that the composition of two continuous functions is
continuous.

Theorem 8.5 (Continuity of composition). Let f 2 [D ! E] and g 2 [E ! F ]. Their
composition

f ;g = g� f def
= ld. g( f (d)) : D ! F

is a continuous function, i.e., g� f 2 [D ! F ].

Proof. The statement is just a rephrasing of Theorem 5.5. ut

Now we consider a function whose outcome is a pair of values. So the function
has a single CPO as domain but it returns a result over a product of CPOs.

f : D ! E1 ⇥E2

For this type of functions we introduce a theorem which allows to prove the continuity
of f in a convenient way. We will consider f as the pairing of two simpler functions
g1 : D ! E1 and g2 : D ! E2, such that f (d) = (g1(d),g2(d)) for any d 2 D. Then
we can prove the continuity of f from the continuity of g1 and g2 (and vice versa).

Theorem 8.6. Let f : D ! E1 ⇥E2 be a function over CPOs and let

g1
def
= f ;p1 : D ! E1 g2

def
= f ;p2 : D ! E2

where f ;pi = lx. pi( f (x)) is the composition of f and pi for i = 1,2. Then: f is
continuous if and only if g1 and g2 are continuous.
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Proof. Notice that we have

8d 2 D. f (d) = (g1(d),g2(d))

We prove the two implications separately.

)) Since f is continuous, by Theorem 8.5 (continuity of composition) and The-
orem 8.2 (continuity of projections), also g1 and g2 are continuous, because
they are obtained as the composition of continuous functions.

() We assume the continuity of g1 and g2 and we want to prove that f is continu-
ous. Let {di}i2N be a chain in D. We want to prove:

f

 
G

i2N
di

!
=
G

i2N
f (di)

So we have:

f

 
G

i2N
di

!
=

 
g1

 
G

i2N
di

!
,g2

 
G

i2N
di

!!
(by definition of g1,g2)

=

 
G

i2N
g1(di),

G

i2N
g2(di)

!
(by continuity of g1 and g2)

=
G

i2N
(g1(di),g2(di)) (by definition of lub of pairs)

=
G

i2N
f (di) (by definition of g1,g2)

ut

Now let us consider the case of a function f : D1 ⇥D2 ! E over CPOs which takes
a pair of arguments in D1 and D2 and then returns an element of E. The following
theorem allows us to study the continuity of f by analysing each parameter separately.

Theorem 8.7. Let f : D1 ⇥D2 ! E be a function over CPOs. Then f is continuous
if and only if all the functions in the following two classes are continuous:

1. 8d0 2 D1. fd0 : D2 ! E is defined as fd0
def
= ly. f (d0,y);

2. 8d00 2 D2. fd00 : D1 ! E is defined as fd00
def
= lx. f (x,d00).

Proof. We prove the two implications separately:

)) If f is continuous then for all d0 2 D1,d00 2 D2 the functions fd0 and fd00 are
continuous, since we are considering only certain chains (where one element of
the pair is fixed). For example, let us fix d0 2 D1 and consider a chain {d00

i }i2N
in D2. Then we prove that fd0 is continuous as follows:
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fd0

 
G

i2N
d00

i

!
= f

 
d0,
G

i2N
d00

i

!
(by definition of fd0 )

= f

 
G

i2N
(d0,d00

i )

!
(by definition of lub)

=
G

i2N
f (d0,d00

i ) (by continuity of f )

=
G

i2N
fd0(d00

i ) (by definition of fd0 )

Similarly, if we fix d00 2 D2 and take a chain {d0
i}i2N in D1 we have

fd00(
F

i2N d0
i) =

F
i2N fd00(d0

i).
() In the opposite direction, assume that fd0 and fd00are continuous for all elements

d0 2 D1 and d00 2 D2. We want to prove that f is continuous. Take a chain
{(d0

k,d
00
k )}k2N. By definition of lub on pairs, we have

G

k2N
(d0

k,d
00
k ) =

 
G

i2N
d0

i ,
G

j2N
d00

j

!

Let d00 def
=
F

j2N d00
j . It follows:
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f

 
G

k2N
(d0

k,d
00
k )

!
= f

 
G

i2N
d0

i ,
G

j2N
d00

j

!
(by definition of lub on pairs)

= f

 
G

i2N
d0

i ,d
00

!
(by definition of d00)

= fd00

 
G

i2N
d0

i

!
(by definition of fd00 )

=
G

i2N
fd00(d0

i) (by continuity of fd00 )

=
G

i2N
f (d0

i ,d
00) (by definition of fd00 )

=
G

i2N
fd0

i
(d00) (by definition of fd0

i
)

=
G

i2N
fd0

i

 
G

j2N
d00

j

!
(by definition of d00)

=
G

i2N

G

j2N
fd0

i
(d00

j ) (by continuity of fd0
i
)

=
G

i2N

G

j2N
f (d0

i ,d
00
j ) (by definition of fd0

i
)

=
G

k2N
f (d0

k,d
00
k ) (by Lemma 8.1 (switch lemma))

ut

8.6 Apply, Curry and Fix

As done for IMP we will use the l -notation as meta-language for the denotational
semantics of HOFL. In Section 8.2 we have already defined two new continuous
functions for our meta-language (p1 and p2). In this section we introduce some
additional functions that will form the kernel of our meta-language.

Definition 8.7 (Apply). Let D and E be two CPOs. We define a function apply :
[D ! E]⇥D ! E as follows:

apply( f ,d)
def
= f (d)

The function apply represents the application of a function in our meta-language: it
takes a continuous function f : D ! E and an element d 2 D and then returns f (d) as
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a result. We leave it as an exercise to prove that apply is monotone (see Problem 8.5).
We prove that it is also continuous.

Theorem 8.8 (Continuity of apply). Let apply : [D ! E]⇥D ! E be the function
defined above and let {( fn,dn)}n2N be a chain in the CPO? [D ! E ]⇥D then:

apply

 
G

n2N
( fn,dn)

!
=
G

n2N
apply( fn,dn)

Proof. By Theorem 8.7 we can prove the continuity on each parameter separately.

• Let us fix d 2 D and take a chain { fn}n2N in [D ! E]. We have:

apply

  
G

n2N
fn

!
,d

!
=

 
G

n2N
fn

!
(d) (by definition)

=
G

n2N
( fn(d)) (by definition of lub of functions)

=
G

n2N
apply( fn,d) (by definition)

• Now we fix f 2 [D ! E] and take a chain {dn}n2N in D. We have:

apply

 
f ,
G

n2N
dn

!
= f

 
G

n2N
dn

!
(by definition)

=
G

n2N
f (dn) (by continuity of f )

=
G

n2N
apply( f ,dn) (by definition)

So apply is a continuous function. ut

Currying is the name of a technique for transforming a function that takes a pair
(or, more generally, a tuple) of arguments into a function that takes each argument
separately but computes the same result.

Definition 8.8 (Curry and un-curry). We define the function

curry : (D⇥E ! F) ! (D ! E ! F)

by letting, for any g : D⇥E ! F , d 2 D and e 2 E:

curry g d e def
= g(d,e)

And we define the function

un-curry : (D ! E ! F) ! (D⇥E ! F)
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by letting, for any h : D ! E ! F , d 2 D and e 2 E:

un-curry h (d,e) def
= h d e

Theorem 8.9 (Continuity of curry). Let D,E,F be CPOs and g : D⇥E ! F be a
continuous function. Then (curryg) : D ! (E ! F) is a continuous function, namely
given any chain {di}i2N in D:

(curry g)

 
G

i2N
di

!
=
G

i2N
(curry g)(di).

Proof. Let us note that since g is continuous, by Theorem 8.7, g is continuous
separately on each argument. Then let us take e 2 E we have:

(curry g)

 
G

i2N
di

!
(e) = g

  
G

i2N
di

!
,e

!
(by definition of curry g)

=
G

i2N
g(di,e) (by continuity of g)

=
G

i2N
((curry g)(di)(e)) (by definition of curry g)

ut

To define the denotational semantics of recursive definitions we need to provide a
fixpoint operator. So it seems useful to introduce fix in our meta-language.

Definition 8.9 (Fix). Let D be a CPO?. We define fix : [D ! D] ! D as:

fix def
=
G

i2N
l f . f i(?D)

Note that, since {l f . f i(?D)}i2N is a chain of functions and [D ! D] ! D is
complete, we are guaranteed that the lub

F
i2N l f . f i(?D) exists.

Theorem 8.10 (Continuity of fix). The function fix : [D ! D] ! D is continuous,
namely fix 2 [[D ! D] ! D].

Proof. We know that [[D ! D] ! D] is complete, thus if for all i 2 N the function
l f . f i(?D) is continuous, then fix =

F
i2N l f . f i(?D) is also continuous. We prove

that 8i 2 N. l f . f i(?D) is continuous by mathematical induction on i.

Base case: l f . f 0(?D) = l f . ?D is a constant, and thus continuous, function.
Inductive case: Let us assume that g def

= l f . f i(?D) is continuous, i.e., that given
a chain { fn}n2N in [D ! D] we have g(

F
n2N fn) =

F
n2N g( fn),

and let us prove that h def
= l f . f i+1(?D) is continuous, namely that

h(
F

n2N fn) =
F

n2N h( fn). In fact we have:



DRAFT

8.6 Apply, Curry and Fix 191

h

 
G

n2N
fn

!
=

 
G

n2N
fn

!i+1

(?D) (by def. of h)

=

 
G

n2N
fn

!0

@
 
G

n2N
fn

!i

(?D)

1

A (by def. of (·)i+1)

=

 
G

n2N
fn

! 
g

 
G

n2N
fn

!!
(by def. of g)

=

 
G

n2N
fn

! 
G

n2N
g( fn)

!
(by ind. hyp.)

=

 
G

n2N
fn

! 
G

n2N
f i
n(?D)

!
(by def of g)

=
G

n2N

 
fn

 
G

m2N
f i
m(?D)

!!
(by def. of lub)

=
G

n2N

G

m2N
fn
�

f i
m(?D)

�
(by cont. of fn)

=
G

k2N
fk
�

f i
k(?D)

�
(by Lemma 8.1)

=
G

k2N
f i+1
k (?D) (by def. of (·)i+1)

=
G

n2N
h( fn) (by def. of h)

ut

Finally we introduce the let operator, whose role is that of binding a name x to
a de-lifted expression. Note that the continuity of the let operator directly follows
from the continuity of the lifting operator.

Definition 8.10 (Let operator). Let E be a CPO? and lx. e a function in [D ! E].
We define the let operator as follows, where d0 2 D?:

let x ( d0. e def
= (lx. e)

D!E

⇤

D?!E

(d0

D?

)

E

=

⇢
?E if d0 = ?D?
e
⇥d/x

⇤
if d0 = bdc for some d 2 D

Intuitively, taken d0 2 D?, if d0 = ? then let x ( d0. e returns ?E , otherwise
it means that d0 = bdc for some d 2 D and thus it returns e

⇥d/x
⇤
, as if lx. e was

applied to d, i.e., d0 = bdc is de-lifted so that lx. e can be used.
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Problems

8.1. Prove that the projection functions in Definition 8.3 are monotone.

8.2. Prove that the domain [D ! E ] from Definition 8.4 is a CPO?.

8.3. Prove that the lifted domain D? from Definition 8.5 is a CPO?.

8.4. Complete the proof of Theorem 8.4 for what is concerned with the monotonicity
of the lifting function (·)⇤.

8.5. Prove that the function apply : [D ! E]⇥D ! E introduced in Definition 8.7 is
monotone.

8.6. Let D be a CPO and f : D ! D be a continuous function. Prove that the set of
fixpoints of f is itself a CPO (under the order inherited from D).

8.7. Let D and E be two CPO?s. A function f : D ! E is called strict if f (?D) = ?E .
Prove that the set of strict functions from D to E is a CPO? under the usual order.

8.8. Let D and E be two CPOs. Prove that the following two definitions of the order
between continuous functions f ,g : D ! E are equivalent.

1. f v g , 8d 2 D. f (d) vE g(d).
2. f � g , 8d1,d2 2 D. (d1 vD d2 ) f (d1) vE g(d2))

8.9. Let D = (D,vD) and E = (E,vE) be two CPOs. Their sum D +E has:

1. The set of elements

{?}]D]E = {(0,?)}[{1}⇥ (({0}⇥D)[ ({1}⇥E))

2. The order relation vD+E defined by letting:

• (1,(0,d1)) vD+E (1,(0,d2)) if d1 vD d2;
• (1,(1,e1)) vD+E (1,(1,e2)) if e1 vE e2;
• 8x 2 {?}]D]E. (0,?) vD+E x.

Prove that D +E is a CPO?.

8.10. Prove that un-curry is continuous and inverse to curry (see Definition 8.8).
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Chapter 9
Denotational Semantics of HOFL

Work out what you want to say before you decide how you want
to say it. (Christopher Strachey’s first law of logical design)

Abstract In this chapter we exploit the domain theory from Chapter 8 to define the
(lazy) denotational semantics of HOFL. For each type t we introduce a corresponding
domain (Vt)? which is defined inductively over the structure of t and such that we
can assign an element of the domain (Vt)? to each (closed and typable) term t with
type t . Moreover, we introduce the notion of environment, which assigns meanings to
variables, and that can be exploited to define the denotational semantics of (typable)
terms with variables. Interestingly, all constructions we use are continuous, so that
we are able to assign meaning also to any (typable) term that is recursively defined.
We conclude the chapter by showing some important properties of the denotational
semantics; in particular, that it is compositional.

9.1 HOFL Semantic Domains

In order to specify the denotational semantics of a programming language, we have to
define, by structural recursion, an interpretation function from each syntactic domain
to a semantic domain. In IMP there are three syntactic domains, Aexp for arithmetic
expressions, Bexp for boolean expressions and Com for commands. Correspondingly,
we have defined three semantics domains and three interpretation functions (A J·K,
B J·K and C J·K). HOFL has a sole syntactic domain (i.e., the set of well-formed
terms t) and thus we have only one interpretation function, written J·K. However,
since HOFL terms are typed, the interpretation function is parametric w.r.t. the type
t of t and we have one semantic domain Vt for each type t . Actually, we distinguish
between Vt , where we find the meanings of the terms of type t with canonical forms,
and (Vt)?, where the additional element ?(Vt )? assigns a meaning to all the terms of
type t without a canonical form. Moreover, we will need to handle terms with free
variables, as, e.g., when defining the denotational semantics of lx. t in terms of the
denotational semantics of t (with x possibly in fv(t)). This was not the case for the
operational semantics of HOFL, where only closed terms are considered. As terms
may contain free variables, we pass to the interpretation function an environment

193
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r 2 Env def
= Var !

[

t
(Vt)?

which assigns meaning to variables. For consistency reasons, any environment r that
we consider must satisfy the condition r(x) 2 (Vt)? whenever x : t . Thus, we have

Jt : tK : Env ! (Vt)?.

The actual semantic domains Vt and (Vt)? are defined by structural recursion on
the syntax of types:

Vint
def
= Z (Vint)?

def
= Z?

Vt1⇤t2
def
= (Vt1)? ⇥ (Vt2)? (Vt1⇤t2)?

def
= ((Vt1)? ⇥ (Vt2)?)?

Vt1!t2
def
= [(Vt1)? ! (Vt2)?] (Vt1!t2)?

def
= [(Vt1)? ! (Vt2)?]?

Notice that the recursive definition above takes advantage of the domain constructors
we have defined in Chapter 8. While the lifiting Z? of the integer numbers Z is
strictly necessary, liftings on cartesian pairs and on continuous functions are actually
optional, since cartesian products and functional domains are already CPO?. We
will discuss the motivation of our choice by the end of Chapter 10.

9.2 HOFL Interpretation Function

Now we are ready to define the interpretation function, by structural recursion.
We briefly comment on each definition and show that the clauses of the structural
recursion are typed correctly.

9.2.1 Constants

We define the meaning of a constant as the obvious value on the lifted domain:

JnKr def
= bnc

At the level of types we have:

J n
int

Kr

(Vint )?=Z?

= bn
Z
c

Z?
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9.2.2 Variables

The meaning of a variable is defined by its value in the given environment r:

JxKr def
= r(x)

It is obvious that the typing is respected (under the assumption that r(x) 2 (Vt)?
whenever x : t):

Jx
t
Kr

(Vt )?

= r(x
t
)

(Vt )?

9.2.3 Arithmetic Operators

We give the generic semantics of a binary operator op 2 {+,�,⇥} as:

Jt0 op t1Kr = Jt0Kr op? Jt1Kr

where for any operator op 2 {+,�,⇥} in the syntax we have the corresponding
function op : Z⇥Z ! Z on the integers Z and also the binary function op? on Z?
defined as

op? : (Z? ⇥Z?) ! Z?

x1 op? x2 =

⇢
bn1 op n2c if x1 = bn1c and x2 = bn2c for some n1,n2 2 Z
?Z? otherwise

We remark that op? yields ?Z? when at least one of the two arguments is ?Z? .
At the level of types, we have:

J(t0
int

op t1
int

)

int

Kr

(Vint )?=Z?

= Jt0
int

Kr

(Vint )?

op?
(Z?⇥Z?)!Z?

Jt1
int

Kr

(Vint )?

(Vint )?

9.2.4 Conditional

In order to define the semantics of the conditional expression, we exploit the condi-
tional operator of the meta-language

Condt : Z? ⇥ (Vt)? ⇥ (Vt)? ! (Vt)?
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defined as:

Condt(v,d0,d1)
def
=

8
<

:

d0 if v = b0c
d1 if 9n 2 Z. v = bnc^n 6= 0
?(Vt )? if v = ?Z?

Note that Condt is parametric on the type t . In the following, when t can be
inferred, we write just Cond. The conditional operator is strict on its first argument
(i.e., it returns ? when the first argument is ?) but not on the second and third
arguments.

We can now define the denotational semantics of the conditional operator by
letting:

Jif t then t0 else t1Kr def
= Cond (JtKr,Jt0Kr,Jt1Kr)

At the level of types we have:

Jif t0
int

then t1
t

else t2
t

t

Kr

(Vt )?

= Condt
Z?⇥(Vt )?⇥(Vt )?!(Vt )?

(Jt0
int

Kr,

(Vint )?

Jt1
t
Kr,

(Vt )?

Jt2
t
Kr

(Vt )?

)

(Vt )?

9.2.5 Pairing

For the pairing operator we simply let:

J(t0, t1)Kr def
= b(Jt0Kr,Jt1Kr)c

Note that, for t0 : t0 and t1 : t1, the pair (Jt0Kr,Jt1Kr) is in (Vt0)? ⇥(Vt1)? and not in
((Vt0)? ⇥ (Vt1)?)?, thus we apply the lifting. In fact, at the level of type consistency
we have:

J(t0
t0

, t1
t1

)

t0⇤t1

Kr

(Vt0⇤t1 )?

= b(Jt0
t0

Kr

(Vt0 )?

,Jt1
t1

Kr

(Vt1 )?

)

(Vt0 )?⇥(Vt1 )?

c

((Vt0 )?⇥(Vt1 )?)?

9.2.6 Projections

We define the projections by using the lifted version of the projections p1 and p2 of
the meta-language:
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Jfst(t)Kr def
= let d ( JtKr. p1 d
= p⇤

1 (JtKr)

Jsnd(t)Kr def
= let d ( JtKr. p2 d
= p⇤

2 (JtKr)

The let operator (see Definition 8.10) allows to de-lift JtKr in order to apply projec-
tions p1 and p2. Instead, if JtKr = ? the result is also ?.

Again, we check that the type constraints are respected by the definition:

Jfst( t
t0⇤t1

)

t0

Kr

(Vt0 )?

= let d
Vt0⇤t1

( J t
t0⇤t1

Kr

(Vt0⇤t1 )?

. p1

(Vt0 )?⇥(Vt1 )?!(Vt0 )?

d
Vt0⇤t1

(Vt0 )?

The case of snd(t : t0 ⇤ t1) is completely analogous and thus omitted.

9.2.7 Lambda Abstraction

For lambda-abstraction we use, of course, the lambda operator of the meta-language:

Jlx. tKr def
=
j

ld. JtKr[d/x]
k

where we bind x to d for evaluating t.
Note that, as in the case of pairing, we need to apply the lifting, because

ld. JtKr[d/x] is an element of Vt0!t1 = [(Vt0)? ! (Vt1)?] and not of (Vt0!t1)? =
[(Vt0)? ! (Vt1)?]?.

Jl x
t0

. t
t1

t0!t1

Kr

(Vt0!t1 )?

= bl d
(Vt0 )?

. J t
t1

Kr[d/x]

(Vt1 )?

[(Vt0 )?!(Vt1 )?]

c

[(Vt0 )?!(Vt1 )?]?

9.2.8 Function Application

Similarly to the case of projections, we apply the de-lifted version of the function to
its argument:
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J(t1 t0)Kr def
= let j ( Jt1Kr. j(Jt0Kr)

= (lj. j (Jt0Kr))⇤ (Jt1Kr)

At the level of types, we have:

J( t1
t0!t1

t0
t0

)

t1

Kr

(Vt1 )?

= let j
Vt0!t1

( Jt1Kr
(Vt0!t1 )?

. j
Vt0!t1

(Jt0Kr
(Vt0 )?

)

(Vt1 )?

(Vt1 )?

9.2.9 Recursion

For handling recursion we would like to find a solution (in the domain (Vt)?, for
t : t) to the recursive equation

Jrec x. tKr = JtKr[Jrec x. tKr/x]

The least solution can be computed simply by applying the fix operator of the
meta-language:

Jrec x. tKr def
= fix ld. JtKr[d/x]

Finally, we check that also this last definition is consistent with the typing:

Jrec x
t
. t

t
t

Kr

(Vt )?

= fix
[[(Vt )?!(Vt )?]!(Vt )?]

l d
(Vt )?

. Jt
t
Kr[d/x]

(Vt )?

[(Vt )?!(Vt )?]

(Vt )?

9.2.10 Eager semantics

The denotational semantics we have defined is lazy, in the sense that the evaluation of
the argument is not enforced by the interpretation of application. The corresponding
eager variant could be defined simply by letting:

J(t1 t0)Kr def
= let j ( Jt1Kr. let d ( Jt0Kr. j(d)

The difference is that, according to the eager semantics, J(t1 t0)Kr evaluates to ?
when Jt0Kr evaluates to ?, while this is not necessarily the case in the lazy semantics.
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9.2.11 Examples

Example 9.1. Let us see some simple examples of evaluation of the denotational
semantics. We consider three similar terms f ,g,h such that f and h have the same de-
notational semantics while g has a different semantics because it requires a parameter
x to be evaluated even if not used.

1. f def
= lx : int. 3

2. g def
= lx : int. if x then 3 else 3

3. h def
= recy : int ! int. lx : int. 3

Note that f ,g,h : int ! int. For the term f we have:

J f Kr = Jlx. 3Kr = bld. J3Kr[d/x]c = bld. b3cc

When considering g, instead:

JgKr = Jlx. if x then 3 else 3Kr
= bld. Jif x then 3 else 3Kr[d/x]c
= bld. Cond(d,b3c,b3c)c
= bld. let x ( d. b3cc

where the last equality follows from the fact that both expressions Cond(d,b3c,b3c)
and let x ( d. b3c evaluate to ?Z? when d = ?Z? and to b3c if d is a lifted value.
Thus we can conclude that J f Kr 6= JgKr .

Finally, for h we get:

JhKr = Jrec y. lx. 3Kr
= fix ldy. Jlx. 3Kr[dy/y]

= fix ldy. bldx. J3Kr[dy/y,
dx /x]c

= fix ldy. bldx. b3cc

Let Gh = ldy. bldx. b3cc. We can compute the fixpoint by exploiting the fixpoint
theorem to compute successive approximations:

d0 = G 0
h (?[Z?!Z?]?) = ?[Z?!Z?]?

d1 = Gh(d0) = (ldy. bldx. b3cc)? = bldx. b3cc
d2 = Gh(d1) = (ldy. bldx. b3cc)bldx. b3cc = bldx. b3cc = d1

Since d2 = d1 we have reached the fixpoint and thus

JhKr = bldx. b3cc = J f Kr.

Note that we could have avoided the calculation of d2, because d1 is already a
maximal element in [Z? ! Z?]? and therefore it must be Gh(d1) = d1.
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9.3 Continuity of Meta-language’s Functions

In order to show that the semantics is always well defined we have to show that all
the functions we employ in the definition are continuous, so that the fixpoint theory
is applicable.

Theorem 9.1. The following functions are monotone and continuous:

1. op? : (Z? ⇥Z?) ! Z?;
2. Condt : Z? ⇥ (Vt)? ⇥ (Vt)? ! (Vt)?;
3. ( , ) : (Vt0)? ⇥ (Vt1)? ! Vt0⇤t1 ;
4. p1 : Vt0⇤t1 ! (Vt0)?;
5. p2 : Vt0⇤t1 ! (Vt1)?;
6. let
7. apply
8. fix : [[(Vt)? ! (Vt)?] ! (Vt)?].

Proof. Monotonocity is obvious in most cases. We focus on the continuity of the
various functions

1. Since op? is monotone over a domain with only finite chains then it is also
continuous.

2. By using the Theorem 8.7, we can prove the continuity of Cond on each parameter
separately.
Let us show the continuity on the first parameter. Since chains in Z? are finite,
it is enough to prove monotonicity. We fix d1,d2 2 (Vt)? and we prove the
monotonicity of lx. Condt(x,d1,d2) : Z? ! (Vt)?. Let n,m 2 Z.

• the cases ?Z? vZ? ?Z? or bnc vZ? bnc are trivial;
• for the case ?Z? vZ? bnc then obviously

Condt(?Z? ,d1,d2) = ?(Vt )? v(Vt )? Condt(bnc,d1,d2)

because ?(Vt )? is the bottom element of (Vt)?.
• for the case bnc vZ? bmc, since Z? is a flat domain we have n = m and trivially

Condt(bnc,d1,d2) v(Vt )? Condt(bmc,d1,d2)

Now let us show the continuity on the second parameter, namely we fix v 2 Z?
and d 2 (Vt)? and for any chain {di}i2N in (Vt)? we prove that

Condt

 
v,
G

i2N
di,d

!
=
G

i2N
Condt(v,di,d)

• if v = ?Z? , then

Condt

 
?Z? ,

G

i2N
di,d

!
= ?Z? =

G

i2N
?Z? =

G

i2N
Condt(?Z? ,di,d)
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• if v = b0c, then lx. Condt(b0c,x,d) is the identity function lx. x and we have

Condt

 
b0c,

G

i2N
di,d

!
=
G

i2N
di =

G

i2N
Condt(b0c,di,d)

• if v = bnc with n 6= 0, then lx. Condt(bnc,x,d) is the constant function lx. d
and we have

Condt

 
bnc,

G

i2N
di,d

!
= d =

G

i2N
d =

G

i2N
Condt(bnc,di,d)

In all cases Condt is continuous.
Continuity on the third parameter is analogous.

3. For pairing ( , ) we can use again the Theorem 8.7, which allows to show sepa-
rately the continuity on each parameter. If we fix the first element we have

 
d,
G

i2N
di

!
=

 
G

i2N
d,
G

i2N
di

!
=
G

i2N
(d,di)

by definition of lub of a chain of pairs (see Theorem 8.1). The same holds for the
second parameter.

4. Projections p1 and p2 are continuous by Theorem 8.2.
5. The let function is continuous since (·)⇤ is continuous by Theorem 8.4.
6. apply is continuous by Theorem 8.8
7. fix is continuous by Theorem 8.10. ut

In the previous theorem we have not mentioned the continuity proofs for lambda
abstraction and recursion. The next theorem fills these gaps.

Theorem 9.2. Let t : t be a well typed term of HOFL; then the following holds:

1. (ld. JtKr[d/x]) is a continuous function.
2. if t = t0 ! t1 is a functional type, then fix ld. JtKr[d/x] is a continuous function.

Proof. Let us prove the two properties:

1. We prove the stronger property that, for any n 2 N:

l (d1, ...,dn). JtKr[d1/x1 , · · · ,
dn /xn ]

is a continuous function. The proof is by structural induction on t. Below, for
brevity, we write ed instead of d1, ...,dn and r 0 instead of r[d1/x1 , · · · ,dn /xn ]:

t = y: Then l ed. JyKr 0 is either a projection function (if y = xi for some
i 2 [1,n]) or the constant function l ed. r(y) (if y 62 {x1, ...,xn}),
which are continuous.
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t = t1 op t2: By inductive hypothesis f1
def
= l ed. Jt1Kr 0 and f2

def
= l ed. Jt2Kr 0 are

continuous. Then f def
= l ed. (( f1 ed),( f2 ed)) is continuous, and

l ed. Jt1 op t2Kr 0 = l ed. (Jt1Kr 0 op? Jt2Kr 0)

= l ed. ( f1 ed) op? ( f2 ed)
= op? � f

is continuous because op? is continuous and the composition of
continuous functions yields a continuous function by Theorem 8.5.

t = ly. t 0: By inductive hypothesis we can assume that l ( ed,d).Jt 0Kr 0[d/y]

is continuous. Then curry(l ( ed,d).Jt 0Kr 0[d/y]) is continuous since
curry is continuous, and we conclude by noting that

curry(l ( ed,d).Jt 0Kr 0[d/y]) = l ed. ld. Jt 0Kr 0[d/y]

= l ed.Jly. t 0Kr 0.

We leave the remaining cases as an exercise.
2. To prove the second proposition we note that

fix ld.JtKr[d/x]

is the application of a continuous function (i.e., the function fix, by Theorem 8.10)
to a continuous argument (i.e., ld.JtKr[d/x], continuous by the first part of this
theorem) so it is continuous by Theorem 8.8. ut

We conclude this section by recalling that the definition of denotational semantics
is consistent with the typing.

Theorem 9.3 (Type Consistency). If t : t then 8r 2 Env. JtKr 2 (Vt)?.

Proof. The proof is by structural induction on t and it has been outlined when giving
the structurally recursive definition of the denotational semantics (where we have
also relied on the previous continuity theorems). ut

9.4 Substitution Lemma and Other Properties

We conclude this chapter by stating some useful theorems. The most important is the
Substitution Lemma which states that the substitution operator commutes with the
interpretation function.

Theorem 9.4 (Substitution Lemma). Let x, t : t and t 0 : t 0. We have
q

t 0[t/x]
y

r =
q

t 0
y

r[JtKr/x]
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Proof. By Theorem 7.1 we know that t 0[t/x] : t 0. The proof is by structural induction
on t 0 and left as an exercise (see Problem 9.13). ut

In words, replacing a variable x with a term t in a term t 0 returns a term t 0[t/x]
whose denotational semantics Jt 0[t/x]Kr = Jt 0Kr[JtKr/x] depends only on the denota-
tional semantics JtKr of t.

Remark 9.1 (Compositionality). The substitution lemma is an important result, as it
implies the compositionality of denotational semantics, namely for all terms t1, t2
and environment r we have:

Jt1Kr = Jt2Kr )
q

t[t1/x]
y

r =
q

t[t2/x]
y

r

Theorem 9.5. Let t be a well-defined term of HOFL. Let r,r 0 2 Env such that
8 x 2 fv(t). r(x) = r 0(x) then:

JtKr = JtKr 0

Proof. The proof is by structural induction on t and left as an exercise (see Prob-
lem 9.16). ut

Theorem 9.6. Let c 2 Ct be a closed term in canonical form of type t . Then we
have:

8 r 2 Env. JcKr 6= ?(Vt )?

Proof. Immediate, by inspection of the clauses for terms in canonical forms. ut

Problems

9.1. Consider the HOFL term:

t def
= rec f . lx. if x then 0 else ( f (x)⇥ f (x))

Derive the type, the canonical form and the denotational semantics of t.

9.2. Consider the HOFL term:

t def
= rec f . lx. ly. if x⇥ y then x else ( f x)(( f x)y)

Derive the type, the canonical form and the denotational semantics of t.

9.3. Consider the HOFL term:

t def
= fst( (lx. x) ( 1 , ((rec f . ly. ( f y)) 2) ) ).

Derive the type, the canonical form and the denotational semantics of t.



DRAFT

204 9 Denotational Semantics of HOFL

9.4. Consider the HOFL term

t def
= rec f . lx. if x then 1 else (g ( f (x�1)))

1. Derive the type of t and the denotational semantics of JtKr by assuming that
rg = bhc for some suitable h.

2. Compute the canonical form of the term (((lg. t) lx. x) 1). Would it be possible
to compute the canonical form of t?

9.5. Let us consider the following recursive definition:

f (x) def
= if x = 0 then 1 else 2⇥ f (x�1).

1. Define a well-formed, closed HOFL term t that corresponds to the above definition
and determine its type.

2. Compute its denotational semantics JtKr and prove that

n � 0 ) let j ( JtKr. jbnc = b2nc.

Hint: Prove that the n-th fixpoint approximation is

dn = b ld. Cond(b0c  ?d < ?bnc , b2dc , ?) c.

9.6. Let us consider the following recursive definition:

f (x) def
= if x = 0 then 0 else f ( f (x�1))

1. Define a well-formed, closed HOFL term t that corresponds to the above definition
and determine its type, its canonical form and its denotational semantics.

2. Define the set of fixpoints that satisfy the recursive definition.

9.7. Consider the HOFL term

t def
= rec f . lx. if x then 0 else f (x� x)

1. Determine the type of t and its denotational semantics JtKr = fix G .
2. Is fix G the unique fixpoint of G ?

Hint: Consider the elements greater than fix G in the order and check if they are
fixpoints for G .

9.8. Consider the Fibonacci sequence already found in Problem 4.14 and the corre-
sponding term t from Problem 7.8:

F(0)
def
= 1 F(1)

def
= 1 F(n+2)

def
= F(n+1)+F(n)s.

where n 2 N.

1. Compute the suitable transformation G such that JtKr = fix G .
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2. Prove that the denotational semantics JtKr satisfies the above equations, to con-
clude that the given implementation of Fibonacci numbers is correct.
Hint: Compute J(t 0)Kr , J(t 1)Kr and J(t n+2)Kr exploiting the equality JtK =
G JtK.

9.9. Assuming that t1 has type t1, let us consider the term t2
def
= lx. (t1 x).

1. Do both terms have the same type?
2. Do both terms have the same lazy denotational semantics?

9.10. Let us consider the terms

t1
def
= lx. rec y. y+1

t2
def
= rec y. lx. (y x)+2

1. Do both terms have the same type?
2. Do both terms have the same lazy denotational semantics?

9.11. Given a monotone function f : Z? ! Z?, prove that f ?Z? = f ( f ?Z?). Then,
let t : int ! int be a closed term of HOFL and consider the term

t1
def
= rec f . lx. (t ( f x))

1. Determine the most general type of t1.
2. Exploit the above result to prove that Jt1Kr = Jt2Kr , where

t2
def
= rec f . lx. (t rec y. y)

9.12. Let us extend the syntax of (lazy) HOFL by adding the construct for sequential
composition t1; t2 that, informally, represents the function obtained by applying the
function t1 to the argument and then the function t2 to the result. Define, for the new
construct ;:

1. the typing rule;
2. the (big-step) operational semantics;
3. the denotational semantics.

Then prove that for every closed term t, both terms (t1; t2 t) and (t2 (t1 t)) have the
same type and are equivalent according to the denotational semantics.

9.13. Complete the proof of the Substitution Lemma (Theorem 9.4).

9.14. Let t1, t2 be well-formed HOFL terms and r an environment.

1. Prove that

Jt1Kr = Jt2Kr ) J(t1 x)Kr = J(t2 x)Kr (9.1)
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2. Prove that the reversed implication is generally not valid by giving a counterex-
ample. Then, find the conditions under which also the reversed implication holds.

3. Exploit the Substitution Lemma (Theorem 9.4) to prove that for all t and x 62
fv(t1)[ fv(t2):

Jt1Kr = Jt2Kr ) Jt[t1/x]Kr = Jt[t2/x]Kr (9.2)

4. Observe that the implication 9.1 is just a special case of the latter equality 9.2 and
explain how.

9.15. Is it possible to modify the denotational semantics of HOFL assigning to the
construct

if t then t0 else t1

• the semantics of t1 if the semantics of t is ?N? , and
• the semantics of t0 otherwise? (If not, why?)

9.16. Complete the proof of Theorem 9.5.
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Chapter 10
Equivalence between HOFL denotational and
operational semantics

Honest disagreement is often a good sign of progress. (Mahatma
Gandhi)

Abstract In this chapter we address the correspondence between the operational
semantics of HOFL from Chapter 7 and its denotational semantics from Chapter 9.
The situation is not as straightforward as for IMP. A first discrepancy between the
two semantics is that the operational one evaluates only closed (and typable) terms,
while the denotational one can handle terms with variables, thanks to environments.
Apart from this minor issue, the key fact is that the canonical forms arising from the
operational semantics for the terms of type t are more concrete than the mathematical
elements of the corresponding domain (Vt)?. Thus, it is inevitable that terms with
different canonical forms can be assigned the same denotation. Vice versa, we show
that terms with the same canonical form are always assigned the same denotation.
Only for terms of type int we have a full agreement between the two semantics.
On the positive side, a term converges operationally if and only if it converges
denotationally. We conclude the chapter by discussing the equivalences over terms
induced by the two semantics and by presenting an alternative denotational semantics,
called unlifted, which is simpler but less expressive than the one studied in Chapter 9.

10.1 HOFL: Operational Semantics vs Denotational Semantics

As we have done for IMP, now we address the relation between the denotational and
operational semantics of HOFL. One might expect to prove a complete equivalence,
as in the case of IMP:

8t,c. t ! c ?, 8r. JtKr = JcKr

But, as we are going to show, the situation in the case of HOFL is more complex and
the implication is valid in one direction only, i.e., the operational semantics is correct
but not complete:

t ! c ) 8r. JtKr = JcKr but (8r. JtKr = JcKr) 6) t ! c

207
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Let us consider a very simple example that shows the difference between the denota-
tional and the operational semantics.

Example 10.1. Let c0 = lx. x+0 and c1 = lx. x be two HOFL terms, where x : int.
Clearly:

Jc0Kr = Jc1Kr but c0 6! c1

In fact, from the denotational semantics we get:

Jc0Kr = Jlx. x+0Kr = bld. d+?b0cc = bld. dc = Jlx. xKr = Jc1Kr

but for the operational semantics we have that both lx. x and lx. x+0 are already
in canonical form and c0 6= c1.

The counterexample shows that, at least for the functional type int ! int, there are
different canonical forms with the same denotational semantics, namely terms which
compute the same function in [Z? ! Z?]?. One could think that a refined version
of our operational semantics (e.g., one which could apply an axiom like x+0 = 0 )
would be able to identify exactly all the canonical forms which compute the same
function. However this is not possible on computability grounds: since HOFL is
able to compute all computable functions, the set of canonical terms which compute
the same function is not recursively enumerable, while the set of theorems of every
(finite) inference system is recursively enumerable.

Even if we cannot have a strong correspondence result between the operational and
denotational semantics as it was the case for IMP, we can establish a full agreement
between the two semantics w.r.t. the notion of termination. In particular, by letting
the predicate t # denote the fact that the term t can be reduced to some canonical
form (called operational convergence) and t + denote the fact that the term t : t is
assigned a denotation other than ?(Vt )? (called denotational convergence), we have
the perfect match:

t # , t +

10.2 Correctness

We are ready to show the correctness of the operational semantics of HOFL w.r.t.
the denotational one. Note that since the operational semantics is defined for closed
terms only, the environment is inessential in the following theorem.

Theorem 10.1 (Correctness). Let t : t be a HOFL closed term and let c : t be a
canonical form. Then we have:

t ! c ) 8r 2 Env. JtKr = JcKr

Proof. We proceed by rule induction. So we prove

P(t ! c) def
= 8r. JtKr = JcKr
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for the conclusion t ! c of each rule, when the predicate holds for the premises.

Ct : The rule for terms in canonical forms (integers, pairs, abstraction) is

c ! c

We have to prove P(c ! c) def
= 8r. JcKr = JcKr , which is obviously true.

Arit.: Let us consider the rules for arithmetic operators op 2 {+,�,⇥}:

t1 ! n1 t2 ! n2

t1 op t2 ! n1 op n2

We assume the inductive hypotheses:

P(t1 ! n1)
def
= 8r. Jt1Kr = Jn1Kr = bn1c

P(t2 ! n2)
def
= 8r. Jt2Kr = Jn2Kr = bn2c

and we want to prove

P(t1 op t2 ! n1 op n2)
def
= 8r. Jt1 op t2Kr =

r
n1 op n2

z
r.

We have:

Jt1 op t2Kr = Jt1Kr op? Jt2Kr (by definition of J·K)
= bn1c op?bn2c (by inductive hypotheses)
= bn1 op n2c (by definition of op?)

=
r

n1 op n2

z
r (by definition of J·K).

Cond.: In the case of the conditional construct we have two rules to consider. For

t ! 0 t0 ! c0

if t then t0 else t1 ! c0

we can assume

P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove:

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr

We have:
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Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by def. of J·K
= Cond(b0c,Jt0Kr,Jt1Kr) (by ind. hyp.)
= Jt0Kr (by def. of Cond)
= Jc0Kr (by ind. hyp.).

The same procedure holds for the second rule of the conditional operator.
Proj.: Let us consider the rule for the first projection:

t ! (t0, t1) t0 ! c0

fst(t) ! c0

We can assume

P(t ! (t0, t1))
def
= 8r. JtKr = J(t0, t1)Kr

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

and we want to prove

P(fst(t) ! c0)
def
= 8r. Jfst(t)Kr = Jc0Kr.

We have:

Jfst(t)Kr = p⇤
1 (JtKr) (by def. of J·K)

= p⇤
1 (J(t0, t1)Kr) (by ind. hyp.)

= p⇤
1 (b(Jt0Kr,Jt1Kr)c) (by def. of J·K)

= p1(Jt0Kr,Jt1Kr) (by def. of lifting)
= Jt0Kr (by def. of p1)
= Jc0Kr (by ind. hyp.).

The same procedure holds for the snd operator.
App.: The rule for application is:

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

We can assume:

P(t1 ! lx. t 01)
def
= 8r. Jt1Kr =

q
lx. t 01

y
r

P(t 01[
t0/x] ! c) def

= 8r.
q

t 01[
t0/x]

y
r = JcKr

and we want to prove

P((t1 t0) ! c) def
= 8r. J(t1 t0)Kr = JcKr.

We have:
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J(t1 t0)Kr = let j ( Jt1Kr. j(Jt0Kr) (by definition of J·K)

= let j ( Jlx. t 01Kr. j(Jt0Kr) (by ind. hypothesis)

= let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (by definition of J·K)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by application)

= Jt 01[t0/x]Kr (by Subst. Lemma)

= JcKr (by ind. hypothesis).

Rec.: Finally, we consider the rule for recursion:

t[rec x. t/x] ! c

rec x. t ! c

We can assume:

P(t[rec x. t/x] ! c) def
= 8r.

q
t[rec x. t/x]

y
r = JcKr

and we want to prove

P(rec x. t ! c) def
= 8r. Jrec x. tKr = JcKr.

We have:

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)

= Jt[rec x. t/x]Kr (by the Substitution Lemma)

= JcKr (by inductive hypothesis)

Since there are no more rules to consider, we conclude the thesis holds. ut

10.3 Agreement on Convergence

Now we define the concept of convergence (i.e., termination) for the operational and
the denotational semantics.

Definition 10.1 (Operational convergence). Let t : t be a closed term of HOFL, we
define the following predicate:

t # , 9c 2 Ct . t �! c.

If t #, then we say that t converges operationally. We say that t diverges, written t ",
if t does not converge operationally.
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A term t converges operationally if the term can be evaluated to a canonical form
c. For the denotational semantics we have that a term t converges if the evaluation
function applied to t takes a value different from ? .

Definition 10.2 (Denotational convergence). Let t be a closed term of HOFL with
type t , we define the following predicate:

t + , 8r 2 Env,9v 2 Vt . JtKr = bvc.

If the predicate holds for t then we say that t converges denotationally.

We aim to prove that the two semantics agree at least on the notion of convergence.
The implication t # ) t + can be readily proved.

Theorem 10.2. Let t : t be a closed typable term of HOFL. Then we have:

t # ) t +

Proof. If t ! c, then 8r. JtKr = JcKr by Theorem 10.1. But JcKr is a lifted value,
(see Theorem 9.6) and thus it is different than ?(Vt )? . ut

Also the opposite implication t + ) t # holds (for any closed and typable term t,
see Theorem 10.3) but the proof is not straightforward: We cannot simply rely on
structural induction; instead it is necessary to introduce a particular logical relation
between elements of the interpretation domains and HOFL terms. We will only
sketch the proof, but first we show that the standard structural induction does not
help in proving the agreement of semantics about convergence.

Remark 10.1 (On the reason why structural induction fails for proving t + ) t #).
The property P(t) def

= t + ) t # cannot be proved by structural induction on t. Here
we give some insights on the reason why it is so. Let us focus on the case of function
application (t1 t0). By structural induction, we assume

P(t1)
def
= t1 + ) t1 # and P(t0)

def
= t0 + ) t0 #

and we want to prove P(t1 t0)
def
= (t1 t0) + ) (t1 t0) #.

Let us assume the premise (t1 t0) + (i.e., J(t1 t0)Kr 6= ?) of the implication. We
would like to prove that (t1 t0) #, i.e., that 9c. (t1 t0) ! c. By definition of denotational
semantics we have t1 +. In fact

J(t1 t0)Kr def
= let j ( Jt1Kr. j(Jt0Kr)

and therefore J(t1 t0)Kr 6= ? requires Jt1Kr 6= ?. By the first inductive hypothesis
we then have t1 # and by definition of the operational semantics it must be the case
that t1 ! lx. t 01 for some x and t 01. By correctness (Theorem 10.1), we then have

Jt1Kr =
q

lx. t 01
y

r =
j

ld.
q

t 01
y

r[d/x]
k
.
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Therefore:

J(t1 t0)Kr = let j (
⌅
ld. Jt 01Kr[d/x]

⇧
. j(Jt0Kr) (see above)

= (ld. Jt 01Kr[d/x]) (Jt0Kr) (by de-lifting)

= Jt 01Kr[Jt0Kr/x] (by functional application)

= Jt 01[t0/x]Kr (by the Substitution Lemma)

So (t1 t0) + if and only if t 01[
t0/x] +. We would like to conclude by structural induction

that t 01[
t0/x] # and then prove the theorem by using the rule:

t1 ! lx. t 01 t 01[
t0/x] ! c

(t1 t0) ! c

but this is incorrect since t 01[
t0/x] is not a sub-term of (t1 t0) and we are not allowed

to assume that P(t 01[
t0/x]) holds.

Theorem 10.3. For any closed typable term t : t we have:

t + ) t #

Proof. The proof exploits two suitable logical relations, indexed by HOFL types:

• .c
t✓ Vt ⇥Ct that relates canonical forms to corresponding values in Vt and that

is defined by structural induction over types t;
• .t✓ (Vt)? ⇥ Tt that relates well-formed (closed) terms to values in (Vt)? and

that is defined by letting:

d .t t def
= 8v 2 Vt . d = bvc ) 9c. t ! c^ v .c

t c

In particular, note that, by definition, we have ?(Vt )? .t t for any term t : t .

The logical relation on canonical forms is defined as follows

ground type: we simply let n .c
int n;

product type: we let (d0,d1) .c
t0⇤t1

(t0, t1) iff d0 .t0 t0 and d1 .t1 t1;
function type: we let j .c

t0!t1
lx. t iff 8d0 2 (Vt0)? and 8t0 : t0 closed, d0 .t0 t0

implies j(d0) .t1 t[t0/x].

Then one can show, by structural induction on t : t that:

1. 8d,d0 2 (Vt)?. (d v(Vt )? d0 ^d0 .t t) ) d .t t;
2. if {di}i2N is a chain in (Vt)? such that 8i 2 N. di .t t, then

F
i2N di .t t (i.e., the

predicate · .t t is inclusive).

Finally, by structural induction on terms, one can prove that 8t : t with fv(t) ✓ {x1 :
t1, . . . ,xk : tk}, if 8i 2 [1,k]. di .ti ti then JtKr[d1/x1 , ...,

dk /xk ].t t[t1/x1 , ...,
tk /xk ]. In

fact, taking t : t closed, it follows from the definition of .t that if t +, i.e., JtKr = bvc
for some v 2 Vt , then t ! c for some canonical form c, i.e., t #. ut
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10.4 Operational and Denotational Equivalences of Terms

In this chapter introduction we have shown that the denotational semantics is more
abstract than the operational. In order to study the relationship between the oper-
ational and denotational semantics of HOFL we now introduce two equivalence
relations between terms. Operationally two closed terms are equivalent if they both
diverge or have the same canonical form.

Definition 10.3 (Operational equivalence). Let t0 and t1 be two well-typed terms
of HOFL then we define a binary relation ⌘op as follows:

t0 ⌘op t1 , (t0 " ^ t1 ")_ (9c. t0 ! c ^ t1 ! c)

And we say that t0 is operationally equivalent to t1 if t0 ⌘op t1.

We have also the denotational counterpart of the definition of equivalence.

Definition 10.4 (Denotational equivalence). Let t0 and t1 be two well-typed terms
of HOFL then we define a binary relation ⌘den as follows:

t0 ⌘den t1 , 8r.Jt0Kr = Jt1Kr

And we say that t0 is denotationally equivalent to t1 if t0 ⌘den t1.

Remark 10.2. Note that the definition of denotational equivalence terms applies also
to non closed terms. Operational equivalence of non closed terms t and t 0 could also
be defined by taking the closure of the equivalence w.r.t. the embedding of t and t 0
in any context C[·] such that C[t] and C[t 0] are also closed, i.e., by requiring that C[t]
and C[t 0] are operationally equivalent for any context C[·].

From Theorem 10.1 it follows that: ⌘op ) ⌘den.
As pointed out in Example 10.1: ⌘den 6) ⌘op.
So it is in this sense that we can say that the denotational semantics is more

abstract then the operational one, because the former identifies more terms than the
latter. Note that if we assume t0 ⌘den t1 and Jt0Kr 6= ? then we can only conclude
that t0 ! c0 and t1 ! c1 for some canonical forms c0 and c1. We have Jc0Kr = Jc1Kr ,
but nothing ensures that c0 = c1 (see Example 10.1 at the beginning of this chapter).

Only when we restrict our attention to the terms of HOFL that are typed as integers,
then the corresponding operational and denotational semantics fully agree. This is
because if c0 and c1 are canonical forms in Cint then it holds that Jc0Kr = Jc1Kr ,
c0 = c1. It can be proved int is the only type for which the full correspondence holds.

Theorem 10.4. Let t : int be a closed term of HOFL and n 2 Z. Then:

8r. JtKr = bnc , t ! n

Proof. We prove the two implications separately.
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)) If JtKr = bnc, then t + and thus t # by the soundness of denotational semantics,
namely 9m such that t ! m, but then JtKr = bmc by Theorem 10.1, thus n = m
and t ! n.

() Just Theorem 10.1, because JnKr = bnc. ut

10.5 A Simpler Denotational Semantics

We conclude this chapter by presenting a simpler denotational semantics which we
call unlifted, because it does not use the lifted domains. This semantics is simpler but
also less expressive than the lifted one. We define the following new domains:

Dint
def
= Z? Dt1⇤t2

def
= Dt1 ⇥Dt2 Dt1!t2

def
= [Dt1 ! Dt2 ]

Now we can let Env0 def
= Var !

S
t Dt and define the simpler interpretation func-

tion Jt : tK0 : Env0 ! Dt as follows (where r 2 Env0):

(exactly as before)
JnK0 r = bnc
JxK0 r = r(x)

Jt1 op t2K0 r = Jt1K0 r op? Jt2K0 r
Jif t0 then t1 else t2K0 r = Cond(Jt0K0 r,Jt1K0 r,Jt2K0 r)

Jrec x. tK0 r = fixld. JtK0 r[d/x]

(updated definitions)
J(t1, t2)K0 r = (Jt1K0 r,Jt2K0 r)
Jfst(t)K0 r = p1(JtK0 r)

Jsnd(t)K0 r = p2(JtK0 r)
Jlx. tK0 r = ld. JtK0 r[d/x]

J(t1 t2)K0 r = (Jt1K0 r) (Jt2K0 r)

Note that the “unlifted” semantics differ from the “lifted” one only in the cases
of pairing, projections, abstraction and application. On the one hand the unlifted
denotational semantics is much simpler to read than the lifted one. On the other hand
the unlifted semantics is more abstract than the lifted one and does not express some
interesting properties. For instance, consider the two HOFL terms:

t1
def
= rec x. x : int ! int and t2

def
= lx. rec y. y : int ! int

In the lifted semantics we have Jt1Kr = ?[Z?�!Z?]? and Jt2Kr = b?[Z?�!Z?]c, thus

t1 6+ and t2 + .

In the unlifted semantics Jt1K0 r = Jt2K0 r = ?[Z?�!Z?], thus
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t1 6+0 and t2 6+0 .

Note however that t1 " while t2 #, thus the property t #) t +0 does not hold, at least
for some t : int ! int, since t2 # but t2 6+0. However, the property holds for the unlifted
semantics in the case of integers.

As a concluding remark, we observe that the existence of two different, both
reasonable, denotational semantics for HOFL shows that denotational semantics is,
to some extent, an arbitrary construction, which depends on the properties one wants
to express.

Problems

10.1. Prove that the HOFL terms:

t1
def
= rec f . lx. ((ly. 1) ( f x)) t2

def
= lx. 1

have the same type and the same denotational semantics but different canonical
forms.

10.2. Let us consider the HOFL term

map def
= l f . lx. (( f fst(x)),( f snd(x)))

from Problem 7.5.

1. Write the denotational semantics of map and of (map l z. z).
2. Give two terms t1 : int and t2 : int such that the terms

((map l z. z)(t1, t2)) ((map l z. z)(t2, t1))

have different canonical forms but the same denotational semantics.

10.3. Consider the HOFL term

t def
= rec x. ((ly. if y then 0 else 0) x).

from Problem 7.6. Compute its denotational semantics, checking the equivalence
with its operational semantics.

10.4. Consider the HOFL term:

t def
= rec f . lx. if fst(x)⇥ snd(x) then x else ( f ( f x)).

Derive the type, the canonical form and the denotational semantics of t. Finally show
another term t 0 with the same denotational semantics as t but with different canonical
form.
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10.5. Consider the HOFL term:

t def
= rec f . lx. if fst(x)� snd(x) then x else ( f x).

Derive the type, the canonical form and the denotational semantics of t. Finally show
another term t 0 with the same denotational semantics as t but with different canonical
form.

10.6. Consider the HOFL term:

t def
= rec F. l f . ln. if ( f n) then 0 else ((F f ) n).

Derive the type, the canonical form and the denotational semantics of t. Finally show
another term t 0 with the same denotational semantics as t but with different canonical
form.

10.7. Consider the HOFL term:

t def
= rec f . lx. if (fst(x) snd(x)) then x else ( f x).

Derive the type, the canonical form and the denotational semantics of t. Finally show
another term t 0 with the same denotational semantics as t but with different canonical
form.

10.8. Modify the ordinary HOFL semantics by defining the denotational semantics
of the conditional construct as follows

Jif t then t0 else t1Kr = Condd(JtKr,Jt0Kr,Jt1Kr)

where

Condd(z,z0,z1) =

8
<

:

z0 if z = b0c _ z0 = z1
z1 if z = bnc ^ n 6= 0
? otherwise

Assume that t0, t1 : int.

1. Prove that Condd is a monotonic, continuous function.
2. Show a HOFL term with a different semantics than the ordinary, and explain how

the relation between operational and denotational semantics of HOFL is actually
changed.

10.9. Modify the semantics of HOFL assuming the following operational semantics
for the conditional command:

t0 ! 0 t1 ! c1 t2 ! c2

if t0 then t1 else t2 ! c1

t0 ! n n 6= 0 t1 ! c1 t2 ! c2

if t0 then t1 else t2 ! c2
.

1. Exibit the corresponding denotational semantics.
2. Prove that also for the modified semantics it holds that t ! c implies JtK = JcK.
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3. Finally, compute the operational and the denotational semantics of (fact 0), with

fact def
= rec f . lx. if x then 1 else x⇥ ( f (x�1))

and check if they coincide.

10.10. Suppose the operational semantics of projections is changed

from
t ! (t1, t2) t1 ! c

fst(t) ! c
to

t ! (t1, t2) t1 ! c t2 ! c0

fst(t) ! c

and analogously for snd, without changing the denotational semantics.

1. Prove that the property t ! c ) JtKr = JcKr is still valid.
2. Exhibit a counterexample showing that the property JtKr 6= ? ) t ! c is no

longer valid.
3. Finally, modify the denotational semantics to recover the above property and

illustrate its validity for the counterexample previously proposed.

10.11. Modify the operational semantics of HOFL by taking the following rules for
conditionals:

t ! 0 t0 ! c0 t1 ! c1

if t then t0 else t1 ! c0

t ! n n 6= 0 t0 ! c0 t1 ! c1

if t then t0 else t1 ! c1
.

without changing the denotational semantics. Prove that:

1. for any term t and canonical form c, we have t ! c ) 8r. JtKr = JcKr;
2. in general t + 6) t # (and exhibit a counterexample).

10.12. Suppose we extend HOFL with the inference rule:

t1 ! 0
t1 ⇥ t2 ! 0

as in Problem, 7.12.

1. Exhibit a counterexample showing that the property

8t,c. t ! c ) 8r. JtKr = JcKr

is no longer valid.
2. Modify the denotational semantics so that the above correspondence is obtained,

and prove that this is the case.
3. Repeat the exercise adding also the inference rule:

t2 ! 0
t1 ⇥ t2 ! 0

.

10.13. Prove formally that
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if x 62 fv(t) then rec x. t is equivalent to t

employing both the operational and the denotational semantics.

10.14. Assume that the HOFL term t0 has c0 as canonical form.

1. Exploit the Substitution Lemma (Theorem 9.4) to prove that for every term t 01 we
have q

t 01[
t0/x]

y
r =

q
t 01[

c0/x]
y

r.

2. Prove that if t 01 : int and fv(t 01) ✓ {x}, then t 01[
t0/x] ⌘op t 01[

c0/x].
3. Conclude that if we replace the lazy evaluation rule

t1 ! lx. t 01 t 01[t0/x] ! c
(t1 t0) ! c

with the eager rule

t1 ! lx. t 01 t0 ! c0 t 01[c0/x] ! c
(t1 t0) ! c

then, if (t1 t0) ! c : int in the eager semantics, then (t1 t0) ! c in the lazy
semantics.

4. Exhibit a simple counterexample such that 9c. (t1 t0) ! c according to the lazy
semantics but not to the eager one.

5. Finally, exhibit another counterexample where the type of t 01 is not int and the
properties at points 2 and 3 do not hold.

10.15. Extend the operational semantics of HOFL to non-closed terms, by allowing
canonical forms that are not closed but otherwise keeping the same inference rules.
Show an example of reduction to canonical form for a non closed term t. Then, prove
that the following properties are still valid:

1. subject reduction: t : t and t ! c implies c : t;
2. t ! c implies JtKr = JcKr (remind that the Substitution Lemma holds for any

terms, also not closed ones);
3. t # implies t +;
4. t1 : int ! c1, t2 : int ! c2 and Jt1K = Jt2K imply c1 = c2;
5. t ! c implies Jt[rec z. z/x]Kr = Jc[rec z. z/x]Kr .

Hint: Exploit property 2 above and the Substitution Lemma.

10.16. Modify the denotational semantics of HOFL by restricting the use of the
lifting domain construction only to integers, namely Vint = Z? but Vt1⇤t2 = Vt1 ⇥Vt2
and similarly for functions.

1. List all the modified clauses of the denotational semantics.
2. Prove that t ! c implies JtKr = JcKr .
3. Finally, prove that it is not true that t ! c implies JtKr 6= ?.

Hint: consider the HOFL term t def
= rec f . lx. ( f x) : int ! int.
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Problems of Chapter 2

2.1

1. The strings in LB are all non-empty sequences of b’s. The strings in LA are all
non-empty sequences of a’s followed by strings in LB.

2. Letting sn denote the string obtained by concatenating n replicas of the string s,
we have LB = {bn | n > 0} and LA = {anbm | n,m > 0}.

3.
s 2 LA

a s 2 LA
(1)

s 2 LB

a s 2 LA
(2)

b 2 LB
(3)

s 2 LB

b s 2 LB
(4)

4. Proof tree: Goal-oriented derivation:

(3)
b 2 LB

(4)
b b 2 LB

(2)
a b b 2 LA

(1)
a a b b 2 LA

(1)
a a a b b 2 LA

a a a b b 2 LA - a a b b 2 LA
- a b b 2 LA
- b b 2 LB
- b 2 LB
- ⇤

5. We first prove the correspondence for B, i.e., that s 2 LB is a theorem iff there
exists some n > 0 with s = bn. For the ‘only if’ part, by rule induction, since
s 2 LB, either s = b (by rule (3)), or s = b s0 for some s0 2 LB (by rule (4)). In the
former case, we take n = 1 and we are done. In the latter case, by s0 2 LB we have
that there is n0 > 0 with s0 = bn0 and take n = n0 +1. For the ‘if’ part, by induction
on n, if n = 1 we conclude by applying axiom (3); if n = n0 +1, we can assume
that bn0 2 LB and conclude by applying rule (4).
Then we prove the correspondence for A, i.e., that s 2 LA is a theorem iff there
exists some n,m > 0 with s = anbm. For the ‘only if’ part, by rule induction,
since s 2 LA, either s = a s0 for some s0 2 LA (by rule (1)), or s = a s0 for some

349
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s0 2 LB (by rule (2)). In the former case, by s0 2 LA we have that there is n0,m0 > 0
with s0 = an0

bn0 and take n = n0 + 1, m = m0. In the latter case, by the previous
correspondence on B, by s0 2 LB we have that s0 = bk for some k > 0 and conclude
by taking n = 1 and m = k. For the ‘if’ part, take s = anbm. By induction on n, if
n = 1 we conclude by applying axiom (2), since for the previous correspondence
we know that bm 2 LB; if n = n0 +1, we can assume that an0

bm 2 LA and conclude
by applying rule (1).

2.3

1. The predicate even(x) is a theorem iff x represents an even number (i.e., x is the
repeated application of s(·) to 0 for an even number of times).

2. The predicate odd(x) if not a theorem for any x, because there is no axiom.
3. The predicate leq(x,y) is a theorem iff x represents a natural number which is less

than or equal to the natural number represented by y.

2.5 Take t = s(x) and t 0 = s(y).

2.8

fib(0 , 1) : � .

fib(s(0) , 1) : � .

fib(s(s(x)) , y) : � fib(x , u) , fib(s(x) , v) , sum(u , v , y).

2.11 Pgvdrk is intelligent.

Problems of Chapter 3

3.2 Let us denote by c the body of the while command:

c def
= if y = 0 then y := y+1 else skip

Let us take a generic memory s and consider the goal hw,si ! s 0.
If s(y) < 0 we have:

hw,si ! s 0 -s 0=s hy � 0,si ! false
-⇤ ⇤

If instead s(y) > 0, we have:

hw,si ! s 0 - hy � 0,si ! true , hc,si ! s 00 , hw,s 00i ! s 0

-⇤ hc,si ! s 00 , hw,s 00i ! s 0

-⇤ hskip,si ! s 00 , hw,s 00i ! s 0

-⇤
s 00=s hw,si ! s 0



DRAFT

Solutions 351

Since we reach the same goal from which we started, the command diverges.
Finally, if instead s(y) = 0, we have:

hw,si ! s 0 - hy � 0,si ! true , hc,si ! s 00 , hw,s 00i ! s 0

-⇤ hc,si ! s 00 , hw,s 00i ! s 0

-⇤ hy := y+1,si ! s 00 , hw,s 00i ! s 0

-⇤
s 00=s [1/y]

hw,s [1/y]i ! s 0

We reach a goal where w is to be evaluated in a memory s [1/y] such that
s [1/y](y) > 0. Thus we are in the previous case and we know that the command
diverges.

Summing up, hw,si ! s 0 iff s(y) < 0^s 0 = s .

3.4 Let us denote by c0 the body of c2:

c0 def
= if b then c else skip

We proceed by contradiction. First, assume that there exist s ,s 0 such that hc1,si !
s 0 and hc2,si 6! s 0. Let us take such s ,s 0 for which hc1,si ! s 0 has the shortest
derivation.

If hb,si ! false, we have

hc1,si ! s 0 -s 0=s hb,si ! false
-⇤ ⇤

hc2,si ! s 0 -s 0=s hb,si ! false
-⇤ ⇤

Thus it must be hb,si ! true. In this case, we have

hc1,si ! s 0 -s 0=s hb,si ! true , hc,si ! s 00 , hc1,s 00i ! s 0

-⇤ hc,si ! s 00 , hc1,s 00i ! s 0

hc2,si ! s 0 -s 0=s hb,si ! true , hc0,si ! s 00 , hc2,s 00i ! s 0

-⇤ hc0,si ! s 00 , hc2,s 00i ! s 0

- hb,si ! true , hc,si ! s 00 , hc2,s 00i ! s 0

-⇤ hc,si ! s 00 , hc2,s 00i ! s 0

Now, since s and s 0 were chosen so to allow for the shortest derivation hc1,si !
s 0 that cannot be mimicked by hc2,si, it must be the case that hc1,s 00i ! s 0, which
is shorter, can still be mimicked, thus hc2,s 00i ! s 0 is provable, but then hc2,si ! s 0

holds, leading to a contradiction.
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Second, assume that there exist s ,s 0 such that hc2,si ! s 0 and hc1,si 6! s 0.
Then the proof is completed analogously to the previous case.

3.6 Take any s such that s(x) = 0. Then hc1,si ! s , while hc2,si 6!.

3.9

1. Take a = 0/0. Then, for any s , we have, e.g., ha,si ! 1 (since 0 = 0⇥1) and
ha,si ! 2 (since 0 = 0⇥2) by straightforward application of rule (div).

2. Take a = 1/2. Then, we cannot find an integer n such that 1 = 2⇥n and the rule
(div) cannot be applied.

Problems of Chapter 4

4.2 We let:

locs(skip)
def
= ?

locs(x := a)
def
= {x}

locs(c0;c1) = locs(if b then c0 else c1)
def
= locs(c0)[ locs(c1)

locs(while b do c) def
= locs(c)

We prove the property

P(hc,si ! s 0)
def
= 8y 62 locs(c). s(y) = s 0(y)

by rule induction.

skip: We need to prove P(hskip,si ! s)
def
= 8y 62 locs(skip). s(y) = s(y) that

holds trivially.
assign: We need to prove

P(hx := a,si ! s [n/x])
def
= 8y 62 locs(x := a). s(y) = s [n/x](y)

Trivially: locs(x := a) = {x} and 8y 6= x. s [n/x](y) = s(y).
seq: We assume

P(hc0,si ! s 00)
def
= 8y 62 locs(c0). s(y) = s 00(y)

P(hc1,s 00i ! s 0)
def
= 8y 62 locs(c0). s 00(y) = s 0(y)

and we need to prove

P(hc0;c1,si ! s 0)
def
= 8y 62 locs(c0;c1). s(y) = s 0(y)
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Take y 62 locs(c0;c1) = locs(c0)[ locs(c1). It follows that y 62 locs(c0) and
y 62 locs(c1). By y 62 locs(c0) and the first inductive hypothesis we have
s(y) = s 00(y). By y 62 locs(c1) and the second inductive hypothesis we
have s 00(y) = s 0(y) . By transitivity, we conclude s(y) = s 0(y).

iftt: We assume

P(hc0,si ! s 0)
def
= 8y 62 locs(c0). s(y) = s 0(y)

and we need to prove

P(hif b then c0 else c1,si ! s 0)
def
=

8y 62 locs(if b then c0 else c1). s(y) = s 0(y)

Take y 62 locs(if b then c0 else c1) = locs(c0)[ locs(c1). It follows that
y 62 locs(c0) and hence, by the inductive hypothesis, s(y) = s 0(y).

ifff: This case is analogous to the previous one and thus omitted.
whff: We need to prove

P(hwhile b do c,si ! s)
def
= 8y 62 locs(while b do c). s(y) = s(y)

which is obvious (as for the case of rule skip).
whtt: We assume

P(hc,si ! s 00)
def
= 8y 62 locs(c). s(y) = s 00(y)

P(hwhile b do c,s 00i ! s 0)
def
= 8y 62 locs(while b do c). s 00(y) = s 0(y)

and we need to prove

P(hwhile b do c,si ! s 0)
def
= 8y 62 locs(while b do c). s(y) = s 0(y)

Take y 62 locs(while b do c) = locs(c). By the first inductive hypothesis,
it follows that s(y) = s 00(y), while by the second inductive hypothesis we
have s 00(y) = s 0(y). By transitivity, we conclude s(y) = s 0(y).

4.3 We prove the property

P(hw,si ! s 0)
def
= s(x) � 0 ^ s 0 = s

h
s(x)+s(y)/y,

0 /x

i

by rule induction. Since the property is concerned with the command w, it is enough
to consider the two rules for the while construct.

whff: We assume
hx 6= 0,si ! false

We need to prove

P(hw,si ! s)
def
= s(x) � 0 ^ s = s

h
s(x)+s(y)/y,

0 /x

i
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Since hx 6= 0,si ! false it follows that s(x) = 0 and thus s(x) � 0. Then,
s
h

s(x)+s(y)/y,0 /x

i
= s

h
0+s(y)/y,s(x) /x

i
= s

h
s(y)/y,s(x) /x

i
= s .

whtt: Let c def
= x := x�1;y := y+1. We assume

hx 6= 0,si ! false hc,si ! s 00 hw,s 00i ! s 0

P(hw,s 00i ! s 0)
def
= s 00(x) � 0 ^ s 0 = s 00

h
s 00(x)+s 00(y)/y,0 /x

i

We need to prove

P(hw,si ! s 0)
def
= s(x) � 0 ^ s 0 = s

h
s(x)+s(y)/y,

0 /x

i

From hc,si ! s 00 it follows that s 00 = s
h

s(y)+1/y,s(x)�1 /x

i
. By inductive

hypothesis we have s 00(x) � 0, thus s(x) � 1 and hence s(x) � 0. Moreover,
by inductive hypothesis, we have also

s 0 = s 00
h

s 00(x)+s 00(y)/y,0 /x

i
= s 00

h
s(x)�1+s(y)+1/y,0 /x

i
=

s 00
h

s(x)+s(y)/y,0 /x

i
= s

h
s(x)+s(y)/y,0 /x

i
.

4.4 We prove the two implication separately. First we prove the property

P(x R+ y) def
= 9k > 0. 9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = y

by rule induction.
For the first rule

x R y
x R+ y

we assume x R y and we need to prove P(x R+ y). We take k = 1, z0 = x and z1 = y
and we are done.

For the second rule
x R+ y y R+ z

x R+ z
we assume

P(x R+ y) def
= 9n > 0. 9u0, . . . ,un. x = u0 ^ u0 R u1 ^ . . .^ un�1 R un ^ un = y

P(y R+ z) def
= 9m > 0. 9v0, . . . ,vm. y = v0 ^ v0 R v1 ^ . . .^ vm�1 R vm ^ vm = z

and we need to prove

P(x R+ z) def
= 9k > 0. 9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = z

Take n,u0, ...,un and m,v0, ...,vm as provided by the inductive hypotheses. We set
k = n+m, from which it follows k > 0 since n > 0 and m > 0. Note that un = y = v0.
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Finally, we let

zi
def
=

⇢
ui if i 2 [0,n]
vi�n if i 2 [n+1,k]

and it is immediate to check that the conditions are satisfied.
To prove the reverse implication, we exploit the logical equivalence

(9k. A(k)) ) B , 8k. (A(k) ) B)

that holds whenever k does not appear (free) in the predicate B, to prove the univer-
sally quantified statement

8k > 0.8x,y.
�
(9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = y) ) x R+ y

�

by mathematical induction on k.
The base case is when k = 1. Take generic x and y. We assume the premise

9z0,z1. x = z0 ^ z0 R z1 ^ z1 = y

and the thesis x R+ y follows by applying the first inference rule.
For the inductive case, we assume that

8x,y.
�
(9z0, . . . ,zk. x = z0 ^ z0 R z1 ^ . . .^ zk�1 R zk ^ zk = y) ) x R+ y

�

and we want to prove that

8x,z.
�
(9z0, . . . ,zk+1. x = z0 ^ z0 R z1 ^ . . .^ zk R zk+1 ^ zk+1 = z) ) x R+ z

�

Take generic x,z and assume that there exist z0, . . . ,zk+1 satisfying the premise of the
implication:

x = z0 ^ z0 R z1 ^ . . .^ zk R zk+1 ^ zk+1 = z

By the inductive hypothesis, it follows that x R+ zk. Moreover, from zk R zk+1 = z we
can apply the first inference rule to derive zk R+ z. Finally, we conclude by applying
the second inference rule to x R+ zk and zk R+ z, obtaining x R+ z.

Regarding the second question, the relation R0 is just the reflexive and transitive
closure of R.

Problems of Chapter 5

5.2

1. It can be readily checked that f is monotone: let us take S1,S2 2 √(N), with
S1 ✓ S2; we need to check that f (S1) ✓ f (S2). Let x 2 f (S1) = S1 \ X . Then
x 2 S1 and x 2 X . Since S1 ✓ S2, we have also x 2 S2 and thus x 2 S2 \X = f (S2).
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The case of g is more subtle. Intuitively, the larger is S, the smaller is √(N)\S
and consequently (√(N)\ S)\ X . Let us take S1,S2 2√(N), with S1 ⇢ S2, and
let x 2 S2 \ S1. Then x 2 √(N) \ S1 and x 62 √(N) \ S2. Now if x 2 X we have
x 2 g(S1) and x 62 g(S2), contradicting the requirement g(S1) ✓ g(S2). Note that,
unless X = ?, such a counterexample can always be constructed.

2. Let us take a chain {Si }i2N in √(N). We need to prove that f (
S

i2N Si) =S
i2N f (Si), i.e., that (

S
i2N Si)\X =

S
i2N(Si \X). We have

x 2
 
[

i2N
Si

!
\X , x 2

 
[

i2N
Si

!
^ x 2 X

, 9k 2 N. x 2 Sk ^ x 2 X
, 9k 2 N. x 2 Sk \X
, x 2

[

i2N
(Si \X)

Since g is in general not monotone, it is not continuous (unless X = ?, in which
case g is the constant function returning ? and thus trivially monotone and
continuous).

3. f is monotone and continuous for any X , while g is monotone and continuous
only when X = ?.

5.3
1. Let D1 be the discrete order with two elements 0 and 1. All chains in D1 are

constant (and finite) and all functions f : D1 ! D1 are monotone and continuous.
The identity function f1(x) = x has two fixpoints but no least fixpoint (as discussed
also in Example 5.18).

2. Let D2 = D1. If we let f2(0) = 1 and f2(1) = 0, then f2 has no fixpoint.
3. If D3 is finite, then any chain is finite and any monotone function is continuous.

So we must choose D3 with infinitely many elements. We take D3 and f3 as in
Example 5.17.

5.4 Let us take D = N with the usual “less than or equal to” order. As discussed in
Chapter 5, it is a partial order with bottom but it is not complete, because, e.g., the
chain of even numbers has no upper bound.

1. From what said above, the chain

0 � 2 � 4 � 6 � · · ·

is an infinite descending chain, and thus D 0 is not well-founded.
2. The answer is no: if D is not complete, then D 0 is not well-founded. To show this,

let us take a chain
d0 v d1 v d2 v · · ·

that has no least upper bound (it must exists, because D is not complete). The
chain {di}i2N cannot be finite, as otherwise the maximum element would be the
least upper bound. However, it is not necessarily the case that
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d0 � d1 � d2 � · · ·

is an infinite descending chain of D 0, because {di}i2N can contain repeated
elements. To discard clones, we define the function next : N ! N to select the
smallest index with which the ith different element appears in the chain (letting
d0 be the 0th element)

next(0)
def
= 0

next(i+1)
def
= min{ j | d j 6= d j�1 ^next(i) < j}

and take the infinite descending chain

dnext(0) � dnext(1) � dnext(2) � · · ·

5.5

1. We need to check that v is reflexive, antisymmetric and transitive.

reflexive: for any string a 2 V ⇤ [V • we have a = ae and hence a v a ;
antisymmetric: we assume a v b and b v a and we need to prove that a = b ;

let g and d such that b = ag and a = bd , then a = agd : if
a 2 V ⇤, then it must be g = d = e and a = b ; if a 2 V •, from
b = ag it follows b = a;

transitive: we assume a v b and b v g and we need to prove that a v g;
let d and w such that b = ad and g = bw , then g = adw and
thus a v g .

2. To prove that the order is complete we must show that any chain has a limit. Take

a0 v a1 v a2 v · · · v an v · · ·

If the chain is finite, then the greatest element of the chain is the least upper bound.
Otherwise, it must be ai 2 V ⇤ for any i 2 N and for any length n we can find a
string akn in the sequence such that |akn | � n (if not, the chain would be finite).
Then we can construct a string a 2 V • such that for any position n in a the nth
symbol of a appears in the same position in one of the strings in the chain. In fact
we let a(n)

def
= akn(n) and a is the limit of the chain.

3. The bottom element is the empty string e , in fact for any a 2 V ⇤ [V • we have
ea = a and thus e v a .

4. The maximal elements are all and only the strings in V •. In fact, on the one hand,
taken a 2 V • we have

a v b , 9g. b = ag , b = a

On the other hand, if a 2 V ⇤, then a v aa and a 6= aa.
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Problems of Chapter 6

6.1

1. The expression lx. lx. x is a-convertible to the expressions a, c, e.
2. The expression ((lx. ly. x) y) is equivalent to the expressions d and e.

6.3 Let c00 def
= if x = 0 then c1 else c2. Using the operational semantics we have:

hc,si ! s 0 - hx := 0,si ! s 00, hc00,s 00i ! s 0

- ⇤s 00=s [0/x] hx = 0,s [0/x]i ! true, hc1,s [0/x]i ! s 0

-⇤ hc1,s [0/x]i ! s 0

hc0,si ! s 0 - hx := 0,si ! s 00, hc1,s 00i ! s 0

- ⇤s 00=s [0/x] hc1,s [0/x]i ! s 0

Since both goals reduce to the same goal hc1,s [0/x]i ! s 0, the two commands c and
c0 are equivalent.

Using the denotational semantics, we have:

C JcKs = C
q

c00y⇤
(C Jx := 0Ks)

= C
q

c00y⇤
(s [0/x])

= C
q

c00y(s [0/x])

= (ls 0. (B Jx = 0Ks 0 ! C Jc1Ks 0 , C Jc2Ks 0))(s [0/x])

= B Jx = 0Ks [0/x] ! C Jc1Ks [0/x] , C Jc2Ks [0/x]
= true ! C Jc1Ks [0/x] , C Jc2Ks [0/x]
= C Jc1Ks [0/x]

C
q

c0ys = C Jc1K⇤ (C Jx := 0Ks)

= C Jc1K⇤ (s [0/x])
= C Jc1K(s [0/x]).

6.4 Let c0 def
= if b then c else skip. We have that

Gb,c j s = B JbKs ! j⇤(C JcKs) , s
Gb,c0 j s = B JbKs ! j⇤(C

q
c0ys) , s

= B JbKs ! j⇤(B JbKs ! C JcKs , B JskipKs) , s
= B JbKs ! j⇤(B JbKs ! C JcKs , s) , s

Let us show that Gb,c = Gb,c0 .
If B JbKs = false, then Gb,c j s = s = Gb,c j s .
If B JbKs = true, then
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Gb,c j s = j⇤(C JcKs)

Gb,c0 j s = j⇤(B JbKs ! C JcKs , s)

= j⇤(C JcKs)

6.5 We have already seen in Example 6.6 that C Jwhile true do skipK = ls . ?S? .
For the second command we have C Jwhile true do x := x+1K = fix G , where

G j s = B JtrueKs ! j⇤(C Jx := x+1Ks) , s
= true ! j⇤(C Jx := x+1Ks) , s
= j⇤(C Jx := x+1Ks)

= j⇤(s [s(x)+1/x])
= j(s [s(x)+1/x])

Let us compute the first elements of the chain {jn}n2N with jn = G n ?S!S? :

j0 s = ?S?

j1 s = G j0 s
= j0(s [s(x)+1/x])
= (ls . ?S?)(s [s(x)+1/x])
= ?S?

Since j1 = j0 we have reached the fixpoint and have C Jwhile true do x := x+1K=
ls . ?S? .

6.6 We have immediately C Jx := 0Ks = s [0/x].
Moreover, we have C Jwhile x 6= 0 do x := 0K = fix G , where

G j s = B Jx 6= 0Ks ! j⇤(C Jx := 0Ks) , s
= s(x) 6= 0 ! j⇤(s [0/x]) , s
= s(x) 6= 0 ! j(s [0/x]) , s

Let us compute the first elements of the chain {jn}n2N with jn = G n ?S!S? :
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j0 s = ?S?

j1 s = G j0 s
= s(x) 6= 0 ! j0(s [0/x]) , s
= s(x) 6= 0 ! ?S? , s

j2 s = G j1 s
= s(x) 6= 0 ! j1(s [0/x]) , s
= s(x) 6= 0 ! (ls 0. s 0(x) 6= 0 ! ?S? , s 0)(s [0/x]) , s
= s(x) 6= 0 ! (s [0/x](x) 6= 0 ! ?S? , s [0/x]) , s
= s(x) 6= 0 ! (false ! ?S? , s [0/x]) , s
= s(x) 6= 0 ! s [0/x] , s
= s(x) 6= 0 ! s [0/x] , s [0/x]
= s [0/x]

j3 s = G j2 s
= s(x) 6= 0 ! j2(s [0/x]) , s
= s(x) 6= 0 ! (ls 0. s 0[0/x])(s [0/x]) , s
= s(x) 6= 0 ! s [0/x][0/x] , s
= s(x) 6= 0 ! s [0/x] , s [0/x]
= s [0/x]

Note in fact that, when s(x) 6= 0 is false, then s = s [0/x].
Since j3 = j2 we have reached the fixpoint and have C Jwhile x 6= 0 do x := 0K=

ls . s [0/x].
We conclude by observing that since j2 is a maximal element of its domain, it

must be already the lub of the chain, namely the fixpoint. Thus it is not necessary to
compute j3.

6.10

1.

hc,si ! s 0 hb,s 0i ! false
(do)

hdo c undoif b,si ! s 0

hc,si ! s 0 hb,s 0i ! true
(undo)

hdo c undoif b,si ! s

2.
C Jdo c undoif bKs def

= B JbK⇤ (C JcKs) !⇤ s , C JcKs

where B JbK⇤ : S? ! B? denotes the lifted version of the interpretation functions
for boolean expressions (as c can diverge) and t !⇤ t0, t1 denotes the lifted version
of the conditional operator, such that it returns ?S? when t is ?B? .

3. First we extend the proof of completeness by rule induction. We recall that:

P
�
hc,si ! s 0� def

= C JcKs = s 0
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do: we assume that hb,s 0i ! false and P(hc,si ! s 0)
def
= C JcKs = s 0. We

need to prove that

P
�
hdo c undoif b,si ! s 0� def

= C Jdo c undoif bKs = s 0

From hb,s 0i ! false it follows B JbK(s 0) = false. We have

C Jdo c undoif bKs def
= B JbK⇤ (C JcKs) !⇤ s , C JcKs
= B JbK⇤ s 0 !⇤ s , s 0

= B JbKs 0 !⇤ s , s 0

= false !⇤ s , s 0

= false ! s , s 0

= s 0.

undo: we assume that hb,s 0i ! true and P(hc,si ! s 0)
def
= C JcKs = s 0. We

need to prove that

P(hdo c undoif b,si ! s)
def
= C Jdo c undoif bKs = s

From hb,s 0i ! true it follows B JbK(s 0) = true. We have

C Jdo c undoif bKs def
= B JbK⇤ (C JcKs) !⇤ s , C JcKs
= B JbK⇤ s 0 !⇤ s , s 0

= B JbKs 0 !⇤ s , s 0

= true !⇤ s , s 0

= true ! s , s 0

= s .

Finally, we extend the proof of correctness by structural induction. We assume

P(c) def
= 8s ,s 0. C JcKs = s 0 ) hc,si ! s 0

and we want to prove that

P(do c undoif b)
def
= 8s ,s 0. C Jdo c undoif bKs = s 0 ) hdo c undoif b,si ! s 0

Let us take s and s 0 such that C Jdo c undoif bKs = s 0. We need to prove that
hdo c undoif b,si ! s 0. Since C Jdo c undoif bKs = s 0 it must be C JcKs =
s 00 for some s 00 6= ?S? and by inductive hypothesis hc,si ! s 00. We distinguish
two cases.

B JbKs 00 = false: then s 0 = s 00 and hb,s 00i ! false. Since hc,si ! s 00 we
apply rule (do) to derive hdo c undoif b,si ! s 00 = s 0.



DRAFT

362 Solutions

B JbKs 00 = true: then s 0 = s and hb,s 00i ! true. Since hc,si ! s 00 we apply
rule (undo) to conclude that hdo c undoif b,si ! s .

Problems of Chapter 7

7.2

rec f
t2!int

. l x
t⇤int

. if snd( x
t⇤int

)

int

then 1
int

else f
t2!int

( fst(x)
int!t1

, ( fst(x)
t=int!t1

snd(x)
int

)

t1

)

t2=(int!t1)⇤t1

int

(t⇤int)!int

From which we must have t2 ! int = (t ⇤ int) ! int, i.e., t2 = (t ⇤ int). But
since t2 = (int ! t1)⇤ t1, it must be t = (int ! t1) and int = t1. Summing up, we
have t1 = int, t = int ! int and t2 = (int ! int)⇤ int and the principal type of t is
((int ! int)⇤ int) ! int.

7.3

1. We let t = int ⇤(int ⇤(int ⇤ int)) be the type of a list of integers with three elements
(the last element of type int is 0 and it marks the end of the list) and we define

t def
= l `

t
. fst(snd( snd(`

t
)

int⇤(int⇤int)

)

int⇤int

)

int

t!int

Let L = (n1,(n2,(n3,0))) : t be a generic list of integers with three elements. Now
we check that (t L) ! n3:

(t L) ! c - t ! lx. t 0, t 0[L/x] ! c
-⇤

x=`, t 0=fst(snd(snd(`))) fst(snd(snd(L))) ! c
- snd(snd(L)) ! (t1, t2), t1 ! c
- snd(L) ! (t3, t4), t4 ! (t1, t2), t1 ! c
- L ! (t5, t6), t6 ! (t3, t4), t4 ! (t1, t2), t1 ! c

-t5=n1, t6=(n2,(n3,0)) (n2,(n3,0)) ! (t3, t4), t4 ! (t1, t2), t1 ! c
-t3=n2, t4=(n3,0) (n3,0) ! (t1, t2), t1 ! c

-t1=n3, t2=0 n3 ! c
-c=n3 ⇤
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2. The answer is negative. In fact a generic list of k integers has a type that depends
on the length of the list itself and we do not have polymorphic functions in HOFL.
The natural candidate

t def
= rec f . lx. if snd(x) then fst(x) else f (snd(x))

is not typable, in fact we have

rec f
int!t

. l x
t⇤int

. if snd( x
t⇤int

)

int

then fst(x)
t

else f
int!t

(snd(x))
int

t
t

(t⇤int)!t

From which we must have int ! t = (t ⇤ int) ! t , i.e., int = (t ⇤ int), which is
not possible.

7.4

1. We have:

t1
def
= l x

int

. l y
t1

. x
int

+ 3
int

int

t1!int

int!t1!int

t2
def
= l z

int⇤t2

. fst( z
int⇤t2

)

int

+ 3
int

int

(int⇤t2)!int

2. Assume t1 = t2 = t with c : t in canonical form. We compute the canonical forms
of ((t1 1) c) and (t2 (1,c)) as follows:

((t1 1) c) ! c1 - (t1 1) ! ly0. t 0, t 0[c/y0 ] ! c1
- t1 ! lx0. t 00, t 00[1/x0 ] ! ly0. t 0, t 0[c/y0 ] ! c1

-x0=x, t 00=ly. x+3 ly. 1+3 ! ly0. t 0, t 0[c/y0 ] ! c1
-y0=y, t 0=1+3 1+3 ! c1

-c1=n1+n2 1 ! n1, 3 ! n2
-⇤

n1=1, n2=3 ⇤

Thus c1 = n1+n2 = 1+3 = 4 is the canonical form of ((t1 1) c).

(t2 (1,c)) ! c2 - t2 ! l z0. t 0, t 0[(1,c)/z0 ] ! c2
-z0=z, t 0=fst(z)+3 fst((1,c))+3 ! c2

-c2=n1+n2 fst((1,c)) ! n1, 3 ! n2
- (1,c) ! (t 00, t 000), t 00 ! n1, 3 ! n2

-t 00=1, t 000=c 1 ! n1, 3 ! n2
-⇤

n1=1, n2=3 ⇤

Thus c2 = n1+n2 = 1+3 = 4 is the canonical form also of (t2 (1,c)).
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7.5 We find the principal type of map:

map def
= l f

t1!t

. l x
t1⇤t1

. (( f
t1!t

fst( x
t1⇤t2

)

t1

)

t

,( f
t1!t

snd( x
t1⇤t2

)

t2=t1

)

t

)

t⇤t

(t1⇤t1)!(t,t)

(t1!t)!(t1⇤t1)!(t,t)

We now compute the canonical form of the term ((map t) (1,2)) where t def
= lx. 2⇥x:

((map t) (1,2)) ! c - (map t) ! ly.t 0, t 0[(1,2)/y] ! c
- map ! lg.t 00, t 00[t/g] ! ly.t 0, t 0[(1,2)/y] ! c

-g= f , t 00=... lx. ((t fst(x)),(t snd(x))) ! ly.t 0, t 0[(1,2)/y] ! c
-y=x, t 0=... ((t fst((1,2))),(t snd((1,2)))) ! c

-c=((t fst((1,2))),(t snd((1,2)))) ⇤

So the canonical form is c = (((lx. 2⇥ x) fst((1,2))),((lx. 2⇥ x) snd((1,2)))).

Problems of Chapter 8

8.4 We prove the monotonicity of the lifting operator (·)⇤ : [D ! E] ! [D? ! E].
Let us take two continuous functions f ,g 2 [D ! E] such that f vD!E g. We want
to prove that f ⇤ vD?!E g⇤. So we need to prove that for any x 2 D? we have
f ⇤(x) vE g⇤(x). We have two possibilities:

• if x = ?D? , then f ⇤(?D?) = ?E = g⇤(?D?);
• if x = bdc for some d 2 D, we have f ⇤(bdc) = f (d) v g(d) = g⇤(bdc), because

f vD!E g by hypothesis.

8.5 We prove that the function apply : [D ! E]⇥D ! E is monotone. Let us take
two continuous functions f1, f2 2 [D ! E] and two elements d1,d2 2 D such that
( f1,d1) v[D!E]⇥D ( f2,d2), we want to prove that apply ( f1,d1) vE apply ( f2,d2).
By definition of the cartesian product domain, ( f1,d1) v[D!E]⇥D ( f2,d2) means that
f1 v[D!E] f2 and d1 vD d2. Then, we have:

apply ( f1,d1) = f1(d1) (by definition of apply)
vE f1(d2) (by monotonicity of f1)
vE f2(d2) (because f1 v[D!E] f2)
= apply ( f1,d1) (by definition of apply).

8.6 Let F f = {d | d = f (d)} ✓ D be the set of fixpoints of f : D ! D. It is immediate
that F f is a PO, because it is a subset of the partial order D from which it inherits
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the order relation. It remains to be proved that it is complete. Take a chain {di}i2N
in F f . Since F f ✓ D and D is a CPO, the chain {di}i2N has a limit d =

F
i2N di in D.

We want to prove that d 2 F f , i.e., that d = f (d). We note that for any i 2 N we have
di = f (di), because di 2 F f . Since f is continuous, we have:

f (d) = f

 
G

i2N
di

!
=
G

i2N
f (di) =

G

i2N
di = d.

8.8 We divide the proof in two parts: first we show that f v g implies f � g and
then that f � g implies f v g.

For the first implication, suppose that f v g. Taken any two elements d1,d2 2 D
such that d1 vD d2 we want to prove that f (d1) vE g(d2). From the monotonicity of f
we have f (d1) vE f (d2) and by the hypothesis f v g it follows that f (d2) vE g(d2);
thus, f (d1) vE f (d2) vE g(d2).

For the second implication, suppose f � g. We want to prove that for any element
d 2 D we have f (d) vE g(d). But this is immediate, because by reflexivity we have
d vD d and thus f (d) vE g(d) by definition of �.

Problems of Chapter 9

9.1 We show that t is typable:

t def
= rec f

int!int

. l x
int

. if x
int

then 0
int

else ( f
int!int

( x
int

)

int

⇥ f
int!int

( x
int

)

int

int

int

)

int!int

int!int

So we conclude t : int ! int.
The canonical form is readily obtained by unfolding once the recursive definition:

t ! c - lx. if x then 0 else (t(x)⇥ t(x)) ! c
-c=lx. if x then 0 else (t(x)⇥t(x)) ⇤

Finally, the denotational semantics is computed as follows:
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JtKr = fix ld f . Jlx. if x then 0 else ( f (x)⇥ f (x))Kr[d f / f ]

= fix ld f . bldx. Jif x then 0 else ( f (x)⇥ f (x))Kr[d f / f ,
dx /x]| {z }

r 0

c

= fix ld f . bldx. Cond(JxKr 0,J0Kr 0,J f (x)⇥ f (x)Kr 0)c
= fix ld f . bldx. Cond(dx,b0c,J f (x)Kr 0⇥?J f (x)Kr 0)c
= fix ld f . bldx. Cond(dx,b0c,(let j ( d f . j(dx))⇥?(let j ( d f . j(dx)))c

because

J f (x)Kr 0 = let j ( J f Kr 0. j(JxKr 0)

= let j ( d f . j(dx)

Let us compute the fixpoint by successive approximations:

f0 = ?(Vint!int )?

f1 = bldx. Cond(dx,b0c,(let j ( f0. j(dx))⇥?(let j ( f0. j(dx)))c
= bldx. Cond(dx,b0c,(?(Vint )?)⇥?(?(Vint )?))c
= bldx. Cond(dx,b0c,?(Vint )?)c

f2 = bldx. Cond(dx,b0c,(let j ( f1. j(dx))⇥?(let j ( f1. j(dx)))c
= bldx. Cond(dx,b0c,(Cond(dx,b0c,?(Vint )?))⇥?(Cond(dx,b0c,?(Vint )?)))c
= bldx. Cond(dx,b0c,(?(Vint )?)⇥?(?(Vint )?))c
= bldx. Cond(dx,b0c,?(Vint )?)c
= f1

So we have reached the fixpoint and

JtKr = bldx. Cond(dx,b0c,?(Vint )?)c

9.9

1. Assume t1 : t . We have
t2

def
= l x

t1

. ( t1
t1!t2

x
t1

)

t2

t1!t2

Unless t = t1 ! t2 the pre-term t2 is not typable.
2. Let us compute the denotational semantics of t2:
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Jt2Kr =
j

ldx. Jt1 xKr[dx/x]
k

=
j

ldx. let j ( Jt1Kr[dx/x]. j(JxKr[dx/x])
k

=
j

ldx. let j ( Jt1Kr[dx/x]. j(dx)
k

Suppose x 62 fv(t1). Then we have 8y 2 fv(t1). r(y) = r[dx/x](y) and thus by
Theorem 9.5 we have Jt1Kr[dx/x] = Jt1Kr .
Now, if Jt1Kr = ?(Vt )? , then Jt2Kr =

j
ldx. ?(Vt2 )?

k
6= Jt1Kr .

Otherwise, it must be Jt1Kr = b f c for some f 2 Vt1!t2 and hence Jt2Kr =
bldx. f dxc = b f c = Jt1Kr .

9.10

1. Let us compute the principal types for t1 and t2:

t1
def
= l x

t1

. rec y
int

. y
int

+ 1
int

int

int

t1!int

t2
def
= rec y

t2!int

. l x
t2

. ( y
t2!int

x
t2

)

int

+ 2
int

int

t2!int

t2!int

Therefore t1 and t2 have the same type if and only if t1 = t2.
2. Let us compute the denotational semantics of t1:

Jt1Kr = bldx. Jrec y. y+1Kr[dx/x]c
= bldx. fix ldy. Jy+1Kr[dx/x,

dy /y]c
= bldx. fix ldy. JyKr[dx/x,

dy /y]+?J1Kr[dx/x,
dy /y]c

= bldx. fix ldy. dy+?b1cc

We need to compute the fixpoint fix ldy. dy+?b1c:

d0 = ?(Vint )?

d1 = d0+?b1c = ?(Vint )? = d0

From which it follows

Jt1Kr = bldx. ?(Vint )?c = b?(Vt!int )c

Let us now turn the attention to t2:
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Jt2Kr = fix ldy. Jlx. (y x)+2Kr[dy/y]

= fix ldy. bldx. J(y x)+2Kr[dy/y,
dx /x]| {z }

r 0

c

= fix ldy. bldx. Jy xKr 0+?J2Kr 0c
= fix ldy. bldx. (let j ( JyKr 0. j(JxKr 0))+?b2cc
= fix ldy. bldx. (let j ( dy. j(dx))+?b2cc

Let us compute the fixpoint:

f0 = ?(Vt!int )?

f1 = bldx. (let j ( f0. j(dx))+?b2cc
= bldx. (?(Vint )?)+?b2cc
= bldx. ?(Vint )?c
= b?(Vt!int )c

f2 = bldx. (let j ( f1. j(dx))+?b2cc
= bldx. (?(Vt!int )(dx))+?b2cc
= bldx. (?(Vint )?)+?b2cc
= bldx. ?(Vint )?c
= b?(Vt!int )c
= f1

So we have computed the fixpoint and got

Jt2Kr = b?(Vt!int )c = Jt1Kr.

9.15 Let us try to change the denotational semantics of the conditional construct of
HOFL by defining:

Jif t then t0 else t1Kr def
= Cond0(JtKr,Jt0Kr,Jt1Kr)

where
Cond0(x,d0,d1) =

⇢
d0 if x = bnc for some n 2 Z
d1 if x = ?(Vint )? .

The problem is that the newly defined operation Cond0 is not monotone (and thus not
continuous)! To see this, remind that ?(Vint )? v b1c and take any d0,d1: we should
have Cond0(?(Vint )? ,d0,d1) v Cond0(b1c,d0,d1). However, if we take d0,d1 such
that d1 6v d0 it follows that:

Cond0(?(Vint )? ,d0,d1) = d1 6v d0 = Cond0(b1c,d0,d1)

For a concrete example, take d1 = b1c and d0 = b0c.
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At the level of HOFL syntax, the previous cases arise when considering, e.g., the
terms t1

def
= if (rec x. x) then 0 else 1 and t2

def
= if 1 then 0 else 1, as

Jt1Kr = b1c 6v b0c = Jt2Kr

As a consequence, typable terms such as

t def
= lx. if x then 0 else 1 : int ! int

would not be assigned a semantics in (Vint!int)? because the function JtKr would
not be continuous.

Problems of Chapter 10

10.1 Let us check the type of t1 and t2:

rec f
t2!t1

. l x
t2

. ((l y
t1

. 1
int

)

t1!int

( f
t2!t1

x
t2

)

t1

)

int

t2!int

t2!t1=t2!int

l x
t
. 1

int

t!int

So it must be t1 = int and the terms have the same type if t2 = t .
The denotational semantics of t1 requires the computation of the fixpoint:

Jt1Kr = fix ld f . Jlx. ((ly. 1) ( f x))Kr[d f / f ]

= fix ld f . bldx. J((ly. 1) ( f x))Kr[d f / f ,
dx /x]| {z }

r 0

c

= fix ld f . bldx. (let j ( Jly. 1Kr 0. j(J f xKr 0))c
= fix ld f . bldx. (let j ( bldy. b1cc. (j(letj 0 ( d f . j 0(dx))))c
= fix ld f . bldx. ((ldy. b1c)(letj 0 ( d f . j 0(dx)))c
= fix ld f . bldx. b1cc

f0 = ?(Vt!int )?

f1 = bldx. b1cc

We can stop the calculation of the fixpoint, as we have reached a maximal element.
Thus Jt1Kr = bldx. b1cc. For t2 we have directly:
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Jt2Kr = bldx. J1Kr[dx/x]c
= bldx. b1cc
= Jt1Kr

To show that the canonical forms are different, we note that t2 is already in
canonical form, while for t1 we have:

t1 ! c1 - lx. ((ly. 1) (t1 x)) ! c1
-c1=lx. ((ly. 1) (t1 x)) ⇤

10.2

1. We compute the denotational semantics of map and of t def
= (map l z. z):

JmapKr = bld f . Jlx. (( f fst(x)),( f snd(x)))Kr[d f / f ]c
= bld f . bldx. J(( f fst(x)),( f snd(x)))Kr[d f / f ,

dx /x]| {z }
r 0

cc

= bld f . bldx. b(J( f fst(x))Kr 0,J( f snd(x))Kr 0)ccc
= bld f . bldx. b((let j1 ( J f Kr 0. j1(Jfst(x)Kr 0)),

(let j2 ( J f Kr 0. j2(Jsnd(x)Kr 0)))ccc
= bld f . bldx. b((let j1 ( d f . j1(let d1 ( JxKr 0. p1 d1)),

(let j2 ( d f . j2(let d2 ( JxKr 0. p2 d2)))ccc
= bld f . bldx. b((letj1 ( d f . j1(let d1 ( dx. p1 d1)),

(let j2 ( d f . j2(let d2 ( dx. p2 d2)))ccc
JtKr = let j ( JmapKr. j(Jl z. zKr)

= let j ( JmapKr. j(bldz. JzKr[dz/z]c)
= let j ( JmapKr. j(bldz. dzc)
= bldx. b((let j1 ( bldz. dzc. j1(let d1 ( dx. p1 d1)),

(let j2 ( bldz. dzc. j2(let d2 ( dx. p2 d2)))cc
= bldx. b(((ldz. dz)(let d1 ( dx. p1 d1)),

((ldz. dz)(let d2 ( dx. p2 d2)))cc
= bldx. b((let d1 ( dx. p1 d1),(let d2 ( dx. p2 d2))cc

2. It suffices to take t1
def
= 1+1 and t2

def
= 2. It can be readily checked that

J(t1, t2)Kr = b(b2c,b2c)c = J(t2, t1)Kr.

Letting t0
def
= (map l z. z), we have that the terms (t0 (t1, t2)) and (t0 (t2, t1)) have

the same denotational semantics
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Jt0 (t1, t2)Kr = let j ( Jt0K . j(J(t1, t2)Kr)

= let j ( Jt0K . j(b(b2c,b2c)c)
= b((let d1 ( b(b2c,b2c)c. p1 d1),(let d2 ( b(b2c,b2c)c. p2 d2))c
= b((p1 (b2c,b2c)),(p2 (b2c,b2c)))c
= b(b2c,b2c)c

Jt0 (t2, t1)Kr = let j ( Jt0K . j(J(t2, t1)Kr)

= let j ( Jt0K . j(b(b2c,b2c)c)
= Jt0 (t1, t2)Kr

The same result can be obtained by observing that (t0 (t1, t2)) = (t0 y)[(t1,t2)/y]
and (t0 (t2, t1)) = (t0 y)[(t2,t1)/y]. Then, by compositionality we have:

Jt0 (t1, t2)Kr =
r
(t0 y)[(t1,t2)/y]

z
r

= J(t0 y)Kr[J(t1,t2)Kr/y]

= J(t0 y)Kr[b(b2c,b2c)c/y]

= J(t0 y)Kr[J(t2,t1)Kr/y]

=
r
(t0 y)[(t2,t1)/y]

z
r

= Jt0 (t2, t1)Kr.

We conclude by showing that the terms (t0 (t1, t2)) and (t0 (t2, t1)) have different
canonical forms:

(t0 (t1, t2)) ! c1 - t0 ! lx0.t, t[(t1,t2)/x0 ] ! c1
- map ! l f 0.t 0, t 0[l z. z/ f 0 ] ! lx0.t, t[(t1,t2)/x0 ] ! c1

- f 0= f ,t 0=... lx. (((l z. z) fst(x)),((l z. z) snd(x))) ! lx0.t,
t[(t1,t2)/x0 ] ! c1

-x0=x,t=... (((l z. z) fst((t1, t2))),((l z. z) snd((t1, t2)))) ! c1
-c1=(...,...) ⇤

(t0 (t2, t1)) ! c2 -⇤ (((l z. z) fst((t2, t1))),((l z. z) snd((t2, t1)))) ! c2
-c2=(...,...) ⇤

10.11

1. We extend the proof of correctness to take into account the new rules. We recall
that the predicate to be proved is

P(t ! c) def
= 8r. JtKr = JcKr.

For the rule
t ! 0 t0 ! c0 t1 ! c1

if t then t0 else t1 ! c0
we can assume
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P(t ! 0)
def
= 8r. JtKr = J0Kr = b0c

P(t0 ! c0)
def
= 8r. Jt0Kr = Jc0Kr

P(t1 ! c1)
def
= 8r. Jt1Kr = Jc1Kr

and we want to prove

P(if t then t0 else t1 ! c0)
def
= 8r. Jif t then t0 else t1Kr = Jc0Kr.

We have:

Jif t then t0 else t1Kr = Cond(JtKr,Jt0Kr,Jt1Kr) (by definition)
= Cond(b0c,Jt0Kr,Jt1Kr) (by inductive hypothesis)
= Jt0Kr (by definition of Cond)
= Jc0Kr (by inductive hypothesis)

For the other rule the proof is analogous and thus omitted.
2. As a counterexample, we can take

t def
= if 0 then 1 else rec x. x.

In fact, its denotational semantics is

JtKr = Cond(J0Kr,J1Kr,Jrec x. xKr) = Cond(b0c,b1c,?(Vint )? = b1c

and therefore t +. Vice versa t ", as:

t ! c - 0 ! 0, 1 ! c, rec x. x ! c0

- 1 ! c, rec x. x ! c0

-c=1 rec x. x ! c0

- x[rec x. x/x] ! c0

= rec x. x ! c0

- · · ·

10.13 According to the operational semantics we have:

rec x. t ! c - t[rec x. t/x] ! c
= t ! c

because by hypothesis x 62 fv(t). So we conclude that either both terms have the same
canonical form or they do not have any canonical form.

According to the denotational semantics we have

Jrec x. tKr = fix ldx. JtKr[dx/x]

= fix ldx. JtKr
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When we compute the fixpoint, assuming t : t , we get:

d0 = ?(Vt )?

d1 = (ldx. JtKr) d0 = JtKr[d0/dx ] = JtKr
d2 = (ldx. JtKr) d1 = JtKr[d1/dx ] = JtKr = d1

So we have reached the fixpoint and have Jrec x. tKr = JtKr .
Alternatively, we could have computed the semantics as follows:

Jrec x. tKr = JtKr[Jrec x. tKr/x] (by definition)
= Jt[rec x. t/x]Kr (by Substituition Lemma)
= JtKr (because x 62 fv(t))

10.14

1. By Theorem 10.1 (Correctness) we have Jt0Kr = Jc0Kr . Hence:
q

t 01[
t0/x]

y
r =

q
t 01

y
r[Jt0Kr/x] =

q
t 01

y
r[Jc0Kr/x] =

q
t 01[

c0/x]
y

r.

2. If Jt 01[t0/x]Kr = Jt 01[c0/x]Kr = ?Z? , then we have that t 01[
t0/x] " and t 01[

c0/x] ",
because the operational semantics agrees on convergence with the denotational
semantics.
If Jt 01[t0/x]Kr = Jt 01[c0/x]Kr 6= ?Z? , it exists n 2 Z such that Jt 01[t0/x]Kr =
Jt 01[c0/x]Kr = bnc. Then, since t 01[

t0/x] and t 01[
c0/x] are closed, by Theorem 10.4,

we have t 01[
t0/x] ! n and t 01[

c0/x] ! n.
3. Suppose that (t1 t0) ! c in the eager semantics. Then it must be the case that

t1 ! lx. t 01 for some suitable x and t 01, and that t 01[c0/x] ! c (we know that t0 ! c0
by initial hypothesis). Since c : int it must be c = n for some integer n. Then, by
the previous point we know that t 01[

t0/x] ! n because t 01[
c0/x] ! n. We conclude

that (t1 t0) ! c in the lazy semantics by exploiting the (lazy) rule for function
application.

4. As a simple counterexample, we can take, e.g., t1 = lx. ((ly. x) (rec z. z)) with
y 62 fv(t0). In fact, in the lazy semantics, we have:

(t1 t0) ! c - t1 ! lx0. t 01, t 01[
t0/x0 ] ! c

-x0=x, t 01=((ly. x) (rec z. z)) ((ly. t0) (rec z. z)) ! c
- (ly. t0) ! ly0. t2, t2[(rec z. z)/y0 ] ! c

-y0=y, t2=t0 t0[(rec z. z)/y] ! c
= t0 ! c

-c=c0 ⇤

Whereas in the eager semantics we have:
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(t1 t0) ! c - t1 ! lx0. t 01, t0 ! c0, t 01[
c0
/x0 ] ! c

-x0=x, t 01=((ly. x) (rec z. z)) t0 ! c0, ((ly. c0) (rec z. z)) ! c
-c0=c0 ((ly. c0) (rec z. z)) ! c

- (ly. c0) ! ly0. t2, rec z. z ! c00, t2[c
00
/y0 ] ! c

-y0=y, t2=t0 rec z. z ! c00, t0[c
00
/y] ! c

- rec z. z ! c00, t0[c
00
/y] ! c

- · · ·

5. Let x, t0 : t0 and y : t and assume t0 6= c0. As a last counterexample, let us
take t 01 = ly. x (and t1 = lx. t 01), with t 01 : t ! t0. We have immediately that
t 01[

t0/x] = ly. t0 and t 01[
c0/x] = ly. c0 are already in canonical form and they are

different. Moreover, (t1 t0) ! ly. t0 in the lazy semantics, but (t1 t0) ! ly. c0 in
the eager semantics.
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