3.1

A fundamental data-mining problem is to examine data for “similar” items. We
shall take up applications in Section 3.1, but an example would be looking at
a collection of Web pages and finding near-duplicate pages. These pages could
be plagiarisms, for example, or they could be mirrors that have almost the same
content but differ in information about the host and about other mirrors.

‘We begin by phrasing the problem of similarity as one of finding sets with a
relatively large intersection. We show how the problem of finding textually sim-
ilar documents can be turned into such a set problem by the technique known
as “shingling.” Then, we introduce a technique called “minhashing,” which com-
presses large sets in such a way that we can still deduce the similarity of the un-
derlying sets from their compressed versions. Other techniques that work when
the required degree of similarity is very high are covered in Section 3.9.

Another important problem that arises when we search for similar items of
any kind is that there may be far too many pairs of items to test each pair for
their degree of similarity, even if computing the similarity of any one pair can
be made very easy. That concern motivates a technique called “locality-sensitive
hashing,” for focusing our search on pairs that are most likely to be similar.

Finally, we explore notions of “similarity” that are not expressible as inter-
section of sets. This study leads us to consider the theory of distance measures
in arbitrary spaces. It also motivates a general framework for locality-sensitive
hashing that applies for other definitions of “similarity.”

Applications of Near-Neighbor Search

We shall focus initially on a particular notion of “similarity”: the similarity of
sets by looking at the relative size of their intersection. This notion of similarity
is called “Jaccard similarity,” and will be introduced in Section 3.1.1. We then
examine some of the uses of finding similar sets. These include finding textu-
ally similar documents and collaborative filtering by finding similar customers
and similar products. In order to turn the problem of textual similarity of docu-
ments into one of set intersection, we use a technique called “shingling,” which
is introduced in Section 3.2.

54

3.1.1

3:1.2

Finding Similar ltems

Jaccard Similarity of Sets

The Jaccard similarity of sets S and T is |S N T'|/|S U T, that is, the ratio of
the size of the intersection of S and T to the size of their union. We shall denote
the Jaccard similarity of S and T" by SIM(S, T).

EXAMPLE 3.1 In Fig. 3.1 we see two sets S and 7. There are three elements
in their intersection and a total of eight elements that appear in S or T or both.
Thus, SIM(S,T") = 3/8.

1

Figure 3.1 Two sets with Jaccard similarity 3/8

Similarity of Documents

An important class of problems that Jaccard similarity addresses well is that
of finding textually similar documents in a large corpus such as the Web or a
collection of news articles. We should understand that the aspect of similarity
we are looking at here is character-level similarity, not “similar meaning,” which
requires us to examine the words in the documents and their uses. That problem
is also interesting but is addressed by other techniques, which we hinted at
in Section 1.3.1. However, textual similarity also has important uses. Many of
these involve finding duplicates or near duplicates. First, let us observe that
testing whether two documents are exact duplicates is easy; just compare the
two documents character-by-character, and if they ever differ then they are not
the same. However, in many applications, the documents are not identical, yet
they share large portions of their text. Here are some examples:

Plagiarism

Finding plagiarized documents tests our ability to find textual similarity. The
plagiarizer may extract only some parts of a document for his own. He may alter
a few words and may alter the order in which sentences of the original appear.
Yet the resulting document may still contain 50% or more of the original. No

3:1.3

DT

Collk

Anat
collig
ik
laba

COTHE

O n—‘JJ

A

TTTTTTTTT

3.1 Applications of Near-Neighbor Search 55

3.1.3

simple process of comparing documents character by character will detect a
sophisticated plagiarism.

Mirror Pages

It is common for important or popular Web sites to be duplicated at a number
of hosts, in order to share the load. The pages of these mirror sites will be
quite similar, but are rarely identical. For instance, they might each contain
information associated with their particular host, and they might each have
links to the other mirror sites but not to themselves. A related phenomenon is
the appropriation of pages from one class to another. These pages might include
class notes, assignments, and lecture slides. Similar pages might change the name
of the course, year, and make small changes from year to year. It is important
to be able to detect similar pages of these kinds, because search engines produce
better results if they avoid showing two pages that are nearly identical within
the first page of results.

Articles from the Same Source

It is common for one reporter to write a news article that gets distributed,
say through the Associated Press, to many newspapers, which then publish the
article on their Web sites. Each newspaper changes the article somewhat. They
may cut out paragraphs, or even add material of their own. They most likely will
surround the article by their own logo, ads, and links to other articles at their
site. However, the core of each newspaper’s page will be the original article. News
aggregators, such as Google News, try to find all versions of such an article, in
order to show only one, and that task requires finding when two Web pages are
textually similar, although not identical.!

Collaborative Filtering as a Similar-Sets Problem

Another class of applications where similarity of sets is very important is called
collaborative filtering, a process whereby we recommend to users items that were
liked by other users who have exhibited similar tastes. We shall investigate col-
laborative filtering in detail in Section 9.3, but for the moment let us see some
common examples.

On-Line Purchases

Amazon.com has millions of customers and sells millions of items. Its database
records which items have been bought by which customers. We can say two cus-
tomers are similar if their sets of purchased items have a high Jaccard similarity.
Likewise, two items that have sets of purchasers with high Jaccard similarity
will be deemed similar. Note that, while we might expect mirror sites to have
Jaccard similarity above 90%, it is unlikely that any two customers have Jaccard

! News aggregation also involves finding articles that are about the same topic, even though
not textually similar. This problem too can yield to a similarity search, but it requires
techniques other than Jaccard similarity of sets.

56

Finding Similar ltems

3.1.4

similarity that high (unless they have purchased only one item). Even a Jaccard
similarity like 20% might be unusual enough to identify customers with similar
tastes. The same observation holds for items; Jaccard similarities need not be
very high to be significant.

Collaborative filtering requires several tools, in addition to finding similar cus-
tomers or items, as we discuss in Chapter 9. For example, two Amazon customers
who like science-fiction might each buy many science-fiction books, but only a
few of these will be in common. However, by combining similarity-finding with
clustering (Chapter 7), we might be able to discover that science-fiction books
are mutually similar and put them in one group. Then, we can get a more power-
ful notion of customer-similarity by asking whether they made purchases within
many of the same groups.

Movie Ratings
NetFlix records which movies each of its customers rented, and also the ratings
assigned to those movies by the customers. We can see movies as similar if they
were rented or rated highly by many of the same customers, and see customers
as similar if they rented or rated highly many of the same movies. The same
observations that we made for Amazon above apply in this situation: similarities
need not be high to be significant, and clustering movies by genre will make
things easier.

In addition, the matter of ratings introduces a new element. Some options are:

(1) Ignore low-rated customer/movie pairs; that is, treat these events as if the
customer never rented the movie.

(2) When comparing customers, imagine two set elements for each movie, “liked”
and “hated.” If a customer rated a movie highly, put the “liked” for that
movie in the customer’s set. If they gave a low rating to a movie, put “hated”
for that movie in their set. Then, we can look for high Jaccard similarity
among these sets. We can do a similar trick when comparing movies.

(3) If ratings are 1-to-5-stars, put a movie in a customer’s set n times if they
rated the movie n-stars. Then, use Jaccard similarity for bags when mea-
suring the similarity of customers. The Jaccard similarity for bags B and
C is defined by counting an element n times in the intersection if n is the
minimum of the number of times the element appears in B and C. In the
union, we count the element the sum of the number of times it appears in
B and in C.

EXAMPLE 3.2 The bag-similarity of bags {a,a,a,b} and {a,a,b,b,c} is 1/3.
The intersection counts a twice and b once, so its size is 3. The size of the union
of two bags is always the sum of the sizes of the two bags, or 9 in this case.

Exercises for Section 3.1

EXERCISE 3.1.1 Compute the Jaccard similarities of each pair of the following
three sets: {1,2,3,4}, {2,3,5,7}, and {2,4, 6}.

S e

EXE
lowi

NExE
choa
the &

3.2 Shis

The
tifyim
shor
as sk
setsal
this §
as e

8:2.1 k-Shi

A da
any §
with

that

EX AN
k=2

Nai
a shim
shingil

Hoves

The
is trem
space|
two om

EXAM
would
touch
retaim
the se
toucha

3.2 Shingling of Documents 57

EXERCISE 3.1.2 Compute the Jaccard bag similarity of each pair of the fol-
lowing three bags: {1,1,1,2}, {1,1,2,2,3}, and {1, 2,3,4}.

' EXERCISE 3.1.3 Suppose we have a universal set U of n elements, and we
choose two subsets S and T at random, each with m of the n elements. What is
the expected value of the Jaccard similarity of S and 77

3.2 Shingling of Documents

The most effective way to represent documents as sets, for the purpose of iden-
tifying lexically similar documents is to construct from the document the set of
short strings that appear within it. If we do so, then documents that share pieces
as short as sentences or even phrases will have many common elements in their

' sets, even if those sentences appear in different orders in the two documents. In
this section, we introduce the simplest and most common approach, shingling,
as well as an interesting variation.

36201, k-Shingles

A document is a string of characters. Define a k-shingle for a document to be
any substring of length k& found within the document. Then, we may associate
with each document the set of k-shingles that appear one or more times within
that document.

EXAMPLE 3.3 Suppose our document D is the string abcdabd, and we pick
k = 2. Then the set of 2-shingles for D is {ab, bc, cd, da, bd}.

Note that the substring ab appears twice within D, but appears only once as
a shingle. A variation of shingling produces a bag, rather than a set, so each
shingle would appear in the result as many times as it appears in the document.
However, we shall not use bags of shingles here.

There are several options regarding how white space (blank, tab, newline, etc.)
is treated. It probably makes sense to replace any sequence of one or more white-
space characters by a single blank. That way, we distinguish shingles that cover
two or more words from those that do not.

EXAMPLE 3.4 If we use k = 9, but eliminate whitespace altogether, then we
would see some lexical similarity in the sentences “The plane was ready for
touch down”. and “The quarterback scored a touchdown”. However, if we
retain the blanks, then the first has shingles touch dow and ouch down, while
the second has touchdown. If we eliminated the blanks, then both would have
touchdown.

58

Finding Similar ltems

3:2.2

3.2.3

e = s

Choosing the Shingle Size

We can pick k to be any constant we like. However, if we pick k too small, then
we would expect most sequences of k characters to appear in most documents.
If so, then we could have documents whose shingle-sets had high J accard sim-
ilarity, yet the documents had none of the same sentences or even phrases. As
an extreme example, if we use k = 1, most Web pages will have most of the
common characters and few other characters, so almost all Web pages will have
high similarity.

How large k should be depends on how long typical documents are and how
large the set of typical characters is. The important thing to remember is:

e k should be picked large enough that the probability of any given shingle
appearing in any given document is low.

Thus, if our corpus of documents is emails, picking k£ = 5 should be fine. To
see why, suppose that only letters and a general white-space character appear
in emails (although in practice, most of the printable ASCII characters can be
expected to appear occasionally). If so, then there would be 27° = 14,348,907
possible shingles. Since the typical email is much smaller than 14 million char-
acters long, we would expect k£ = 5 to work well, and indeed it does.

However, the calculation is a bit more subtle. Surely, more than 27 characters
appear in emails, However, all characters do not appear with equal probability.
Common letters and blanks dominate, while "z” and other letters that have
high point-value in Scrabble are rare. Thus, even short emails will have many 5-
shingles consisting of common letters, and the chances of unrelated emails sharing
these common shingles is greater than would be implied by the calculation in
the paragraph above. A good rule of thumb is to imagine that there are only 20
characters and estimate the number of k-shingles as 20*. For large documents,
such as research articles, choice k = 9 is considered safe.

Hashing Shingles

Instead of using substrings directly as shingles, we can pick a hash function
that maps strings of length & to some number of buckets and treat the resulting
bucket number as the shingle. The set representing a document is then the set
of integers that are bucket numbers of one or more k-shingles that appear in the
document. For instance, we could construct the set of 9-shingles for a document
and then map each of those 9-shingles to a bucket number in the range 0 to
932 _ 1. Thus, each shingle is represented by four bytes instead of nine. Not only
has the data been compacted, but we can now manipulate (hashed) shingles by
single-word machine operations.

Notice that we can differentiate documents better if we use 9-shingles and hash
them down to four bytes than to use 4-shingles, even though the space used to
represent a shingle is the same. The reason was touched upon in Section 3.2.2. If
we use 4-shingles, most sequences of four bytes are unlikely or impossible to find

Shing
An alli

similag
this pe
are oi
articl

COTmmmg

article

stop w

shoull
and til

!
1

There

Exerc

EXER(
tion 3&

TTTTVITFTTTN

3.2 Shingling of Documents 59

3.2.4

3.2:5

in typical documents. Thus, the effective number of different shingles is much
less than 232 —1. If, as in Section 3.2.2, we assume only 20 characters are frequent
in English text, then the number of different 4-shingles that are likely to occur is
only (20)* = 160,000. However, if we use 9-shingles, there are many more than
232 likely shingles. When we hash them down to four bytes, we can expect almost
any sequence of four bytes to be possible, as was discussed in Section 1.3.2.

Shingles Built from Words

An alternative form of shingle has proved effective for the problem of identifying
similar news articles, mentioned in Section 3.1.2. The exploitable distinction for
this problem is that the news articles are written in a rather different style than
are other elements that typically appear on the page with the article. News
articles. and most prose, have a lot of stop words (see Section 1.3.1), the most
common words such as “and,” “you,” “to,” and so on. In many applications, we
want to ignore stop words, since they don’t tell us anything useful about the
article, such as its topic.

However, for the problem of finding similar news articles, it was found that
defining a shingle to be a stop word followed by the next two words, regardless
of whether or not they were stop words, formed a useful set of shingles. The
advantage of this approach is that the news article would then contribute more
shingles to the set representing the Web page than would the surrounding ele-
ments. Recall that the goal of the exercise is to find pages that had the same
articles, regardless of the surrounding elements. By biasing the set of shingles
in favor of the article, pages with the same article and different surrounding
material have higher Jaccard similarity than pages with the same surrounding
material but with a different article.

EXAMPLE 3.5 An ad might have the simple text “Buy Sudzo.” However, a
news article with the same idea might read something like “A spokesperson
for the Sudzo Corporation revealed today that studies have shown it is
good for people to buy Sudzo products.” Here we have italicized all the likely
stop words, although there is no set number of the most frequent words that
should be considered stop words. The first three shingles made from a stop word
and the next two following are:

A spokesperson for
for the Sudzo
the Sudzo Corporation

There are nine shingles from the sentence, but none from the “ad.”

Exercises for Section 3.2

EXERCISE 3.2.1 What are the first ten 3-shingles in the first sentence of Sec-
tion 3.27

60

Finding Similar Items

3.3

3.3:1

EXERCISE 3.2.2 If we use the stop-word-based shingles of Section 3.2.4, and
we take the stop words to be all the words of three or fewer letters, then what
are the shingles in the first sentence of Section 3.27

EXERCISE 3.2.3 What is the largest number of k-shingles a document of n
bytes can have? You may assume that the size of the alphabet is large enough
that the number of possible strings of length k is at least as n.

Similarity-Preserving Summaries of Sets

Sets of shingles are large. Even if we hash them to four bytes each, the space
needed to store a set is still roughly four times the space taken by the document.
If we have millions of documents, it may well not be possible to store all the
shingle-sets in main memory.2

Our goal in this section is to replace large sets by much smaller representations
called “signatures.” The important property we need for signatures is that we
can compare the signatures of two sets and estimate the Jaccard similarity of the
underlying sets from the signatures alone. It is not possible that the signatures
give the exact similarity of the sets they represent, but the estimates they provide
are close, and the larger the signatures the more accurate the estimates. For
example, if we replace the 200,000-byte hashed-shingle sets that derive from
50,000-byte documents by signatures of 1000 bytes, we can usually get within a

few percent.

Matrix Representation of Sets

Before explaining how it is possible to construct small signatures from large
sets, it is helpful to visualize a collection of sets as their characteristic matriz.
The columns of the matrix correspond to the sets, and the rows correspond to
elements of the universal set from which elements of the sets are drawn. There
is a 1 in row r and column c if the element for row r is a member of the set for
column ¢. Otherwise the value in position (r,¢) is 0.

EXAMPLE 3.6 In Fig. 3.2 is an example of a matrix representing sets chosen
from the universal set {a,b,c,d,e}. Here, S; = {a,d}, Sz = {c}, S3 = {b,d, e},
and S; = {a, ¢, d}. The top row and leftmost columns are not part of the matrix,
but are present only to remind us what the rows and columns represent.

It is important to remember that the characteristic matrix is unlikely to be
the way the data is stored, but it is useful as a way to visualize the data. For one
reason not to store data as a matrix, these matrices are almost always sparse
(they have many more 0’s than 1’s) in practice. It saves space to represent a

2 There is another serious concern: even if the sets fit in main memory, the number of pairs
may be too great for us to evaluate the similarity of each pair. We take up the solution to

this problem in Section 3.4.

8.3:2

3.3 Similarity-Preserving Summaries of Sets 61

3.3.2

Element 51 S Ss 94

o Q0 o
O O O
O O+ O O
R kO RO
O H I O K

Figure 3.2 A matrix representing four sets

sparse matrix of 0’s and 1’s by the positions in which the 1’s appear. For another
reason, the data is usually stored in some other format for other purposes.

As an example, if rows are products, and columns are customers, represented
by the set of products they bought, then this data would really appear in a
database table of purchases. A tuple in this table would list the item, the pur-
chaser, and probably other details about the purchase, such as the date and the
credit card used.

Minhashing

The signatures we desire to construct for sets are composed of the results of a
large number of calculations, say several hundred, each of which is a “minhash”
of the characteristic matrix. In this section, we shall learn how a minhash is com-
puted in principle, and in later sections we shall see how a good approximation
to the minhash is computed in practice.

To minhash a set represented by a column of the characteristic matrix, pick a
permutation of the rows. The minhash value of any column is the number of the
first row, in the permuted order, in which the column has a 1.

EXAMPLE 3.7 Let us suppose we pick the order of rows beadc for the matrix of
Fig. 3.2. This permutation defines a minhash function h that maps sets to rows.
Let us compute the minhash value of set S; according to h. The first column,
which is the column for set S7, has 0 in row b, so we proceed to row e, the second
in the permuted order. There is again a 0 in the column for S7, so we proceed
to row a, where we find a 1. Thus. h(S1) = a.

Element Si1 S» Sz Sa

0O o0
O = = O O
= O O O O
O H O = I
P = OO

Figure 3.3 A permutation of the rows of Fig. 3.2

Although it is not physically possible to permute very large characteristic

vvvvvvvvv

62

Finding Similar ltems

3.3.3

3.3.4

matrices, the minhash function A implicitly reorders the rows of the matrix of
Fig. 3.2 so it becomes the matrix of Fig. 3.3. In this matrix, we can read off the

values of h by scanning from the top until we come to a 1. Thus, we see that
h(S2) = ¢, h(S3) = b, and h(S4) = a.

Minhashing and Jaccard Similarity

There is a remarkable connection between minhashing and Jaccard similarity of
the sets that are minhashed.

e The probability that the minhash function for a random permutation of rows
produces the same value for two sets equals the Jaccard similarity of those
sets.

To see why, we need to picture the columns for those two sets. If we restrict
ourselves to the columns for sets S; and S, then rows can be divided into three
classes:

(1) Type X rows have 1 in both columns.
(2) Type Y rows have 1 in one of the columns and 0 in the other.
(3) Type Z rows have 0 in both columns.

Since the matrix is sparse, most rows are of type Z. However, it is the ratio
of the numbers of type X and type Y rows that determine both SIM(S1,S5) and
the probability that 4(S;) = h(Ss). Let there be z rows of type X and y rows of
type Y. Then SIM(S1, S2) = x/(x+y). The reason is that z is the size of S5 N S5
and x + y is the size of S; U Ss.

Now, consider the probability that h(S;) = h(S;). If we imagine the rows
permuted randomly, and we proceed from the top, the probability that we shall
meet a type X row before we meet a type ¥ row is z/(z +y). But if the first row
from the top other than type Z rows is a type X row, then surely h(S1) = h(S2).
On the other hand, if the first row other than a type Z row that we meet is a
type Y row, then the set with a 1 gets that row as its minhash value. However
the set with a 0 in that row surely gets some row further down the permuted list.
Thus, we know h(S1) # h(S2) if we first meet a type ¥ row. We conclude the
probability that h(S1) = h(S2) is z/(z + y), which is also the Jaccard similarity
of Sl and SQ.

Minhash Signatures

Again think of a collection of sets represented by their characteristic matrix
M. To represent sets, we pick at random some number n of permutations of
the rows of M. Perhaps 100 permutations or several hundred permutations will
do. Call the minhash functions determined by these permutations A;. Ros:e vl
From the column representing set S, construct the minhash signature for S, the
vector [hy(S), ha(S),. .., ha(S)]. We normally represent this list of hash-values

5.3.5

asa
ith g
colm

Nig
onky
formm
for i

Com

It i@
a ram
the m
maim
imple

Fom
a ram
are mg
throm
leavel
is lang
our hg

T
choses
matriy
of the
SIG| .l

(1) Ca
(2) Fa

Wﬂﬂﬂm

3.3 Similarity-Preserving Summaries of Sets 63

3:3:5

as a column. Thus, we can form from matrix M a signature matriz, in which the
ith column of M is replaced by the minhash signature for (the set of) the ith
column.

Note that the signature matrix has the same number of columns as M but
only n rows. Even if M is not represented explicitly, but in some compressed
form suitable for a sparse matrix (e.g., by the locations of its 1’s), it is normal
for the signature matrix to be much smaller than M.

Computing Minhash Signatures

It is not feasible to permute a large characteristic matrix explicitly. Even picking
a random permutation of millions or billions of rows is time-consuming, and
the necessary sorting of the rows would take even more time. Thus, permuted
matrices like that suggested by Fig. 3.3, while conceptually appealing, are not
implementable.

Fortunately, it is possible to simulate the effect of a random permutation by
a random hash function that maps row numbers to as many buckets as there
are rows. A hash function that maps integers 0,1, ...,k — 1 to bucket numbers 0
through k& — 1 typically will map some pairs of integers to the same bucket and
leave other buckets unfilled. However, the difference is unimportant as long as k
is large and there are not too many collisions. We can maintain the fiction that
our hash function h “permutes” row r to position h(r) in the permuted order.

Thus, instead of picking n random permutations of rows, we pick n randomly
chosen hash functions hq, ho,...,h, on the rows. We construct the signature
matrix by considering each row in their given order. Let SIG(4, ¢) be the element
of the signature matrix for the ith hash function and column c. Initially, set
SIG(%, ¢) to oo for all ¢ and ¢. We handle row r by doing the following:

(1) Compute h1(r), ha(r), ..., hn(r).
(2) For each column ¢ do the following:
(a) If ¢ has 0 in row 7, do nothing.
(b) However, if ¢ has 1 in row r, then for each i = 1,2,...,n set SIG(i, ¢) to
the smaller of the current value of SIG(7,¢) and h;(r).

Row S1 S22 S3 Si z+1 modb5 3z+4+1 modb5H

=W = O
o= O O
oo+ OO
[e B o
O == O
O W N
W O N =

Figure 3.4 Hash functions computed for the matrix of Fig. 3.2

64

Finding Similar ltems

EXAMPLE 3.8 Let us reconsider the characteristic matrix of Fig. 3.2, which we
reproduce with some additional data as Fig. 3.4. We have replaced the letters
naming the rows by integers 0 through 4. We have also chosen two hash functions:
hi(z) = £+ 1 mod 5 and hy(z) = 3z + 1 mod 5. The values of these two
functions applied to the row numbers are given in the last two columns of Fig. 3.4.
Notice that these simple hash functions are true permutations of the rows, but
a true permutation is only possible because the number of rows, 5, is a prime.
In general, there will be collisions, where two rows get the same hash value.

Now, let us simulate the algorithm for computing the signature matrix. Ini-
tially, this matrix consists of all co’s:

S1 S S35 S

hi ‘o0l oo ©9 0
ho- Hoo /00" 00k 0O

First, we consider row 0 of Fig. 3.4. We see that the values of h;(0) and h2(0)
are both 1. The row numbered 0 has 1’s in the columns for sets S; and Sy, so
only these columns of the signature matrix can change. As 1 is less than oo, we
do in fact change both values in the columns for S; and Sy. The current estimate
of the signature matrix is thus:

S10-95 155 454

hl].OOOOl
hot il o ool

Now, we move to the row numbered 1 in Fig. 3.4. This row has 1 only in Ss,
and its hash values are h;(1) = 2 and hy(1) = 4. Thus, we set SIG(1,3) to 2
and SIG(2,3) to 4. All other signature entries remain as they are because their
columns have 0 in the row numbered 1. The new signature matrix:

S1 S22 S3 S

hy 1) 1
h210041

The row of Fig. 3.4 numbered 2 has 1’s in the columns for Sy and Sy, and
its hash values are hy(2) = 3 and hs(2) = 2. We could change the values in the
signature for Sy, but the values in this column of the signature matrix, [1, 1], are
each less than the corresponding hash values [3,2]. However, since the column
for Sy still has oo’s, we replace it by [3, 2], resulting in:

S Sz S3 Sy

hy 1 3 2 1
ha i} 2 4 1

Next comes the row numbered 3 in Fig. 3.4. Here, all columns but S3 have 1,
and the hash values are h;(3) = 4 and ho(3) = 0. The value 4 for h; exceeds what

336

-

valms
tham
N
im il

Fl
o ¢
colm
SIG{]

Trna

3.3 Similarity-Preserving Summaries of Sets 65

3.3.6

o

is already in the signature matrix for all the columns, so we shall not change any
values in the first row of the signature matrix. However, the value 0 for hs is less
than what is already present, so we lower SIG(2,1), SIG(2,3) and SIG(2,4) to 0.
Note that we cannot lower SIG(2, 2) because the column for S» in Fig. 3.4 has 0
in the row we are currently considering. The resulting signature matrix:

S1 S S3 S

hi =3 20
ho ORI ()

Finally, consider the row of Fig. 3.4 numbered 4. h;(4) = 0 and hy(4) = 3. Since
row 4 has 1 only in the column for S3, we only compare the current signature
column for that set, [2,0] with the hash values [0,3]. Since 0 < 2, we change
SIG(1,3) to 0, but since 3 > 0 we do not change SIG(2, 3). The final signature
matrix is:

S1 S2 S35 S

h1 1 3 0 -
Rioin 0D OE0

We can estimate the Jaccard similarities of the underlying sets from this sig-
nature matrix. Notice that columns 1 and 4 are identical, so we guess that
SIM(S1, S4) = 1.0. If we look at Fig. 3.4, we see that the true Jaccard similarity
of S and Sy is 2/3. Remember that the fraction of rows that agree in the signa-
ture matrix is only an estimate of the true Jaccard similarity, and this example
is much too small for the law of large numbers to assure that the estimates are
close. For additional examples, the signature columns for S; and S3 agree in half
the rows (true similarity 1/4), while the signatures of S; and S estimate 0 as
their Jaccard similarity (the correct value).

Exercises for Section 3.3

EXERCISE 3.3.1 Verify the theorem from Section 3.3.3, which relates the Jac-
card similarity to the probability of minhashing to equal values, for the particular
case of Fig. 3.2.

(a) Compute the Jaccard similarity of each of the pairs of columns in Fig. 3.2.
(b) Compute, for each pair of columns of that figure, the fraction of the 120
permutations of the rows that make the two columns hash to the same value.

EXERCISE 3.3.2 Using the data from Fig. 3.4, add to the signatures of the
columns the values of the following hash functions:

(a) hs(z) =2z +4.
(b) ha(z) =3z —1.

EXERCISE 3.3.3 In Fig. 3.5 is a matrix with six rows.

66

Finding Similar Items

Element S1 So Sz S

U= W N = O
= O O = O O
O O © O I+ =
O =K OO O
O = O I+ O =

Figure 3.5 Matrix for Exercise 3.3.3

(a) Compute the minhash signature for each column if we use the following three
hash functions: b, (z) = 2z+1 mod 6; ho(z) = 3z+2 mod 6; hs(z) = 52+2
mod 6.

(b) Which of these hash functions are true permutations?

(c) How close are the estimated Jaccard similarities for the six pairs of columns
to the true Jaccard similarities?

! EXERCISE 3.3.4 Now that we know Jaccard similarity is related to the proba-
bility that two sets minhash to the same value, reconsider Exercise 3.1.3. Can you
use this relationship to simplify the problem of computing the expected Jaccard
similarity of randomly chosen sets?

! EXERCISE 3.3.5 Prove that if the Jaccard similarity of two columns is 0, then
then minhashing always gives a correct estimate of the Jaccard similarity.

I EXERCISE 3.3.6 One might expect that we could estimate the Jaccard simi-

larity of columns without using all possible permutations of rows. For example,
we could only allow cyclic permutations; i.e., start at a randomly chosen row r,
which becomes the first in the order, followed by rows r + 1, 7 + 2, and so on,
down to the last row, and then continuing with the first row, second row, and so
on, down to row r — 1. There are only n such permutations if there are n rows.
However, these permutations are not sufficient to estimate the Jaccard similarity
correctly. Give an example of a two-column matrix where averaging over all the
cyclic permutations does not give the Jaccard similarity.

! EXERCISE 3.3.7 Suppose we want to use a map-reduce framework to compute
minhash signatures. If the matrix is stored in chunks that correspond to some
columns, then it is quite easy to exploit parallelism. Each Map task gets some of
the columns and all the hash functions, and computes the minhash signatures of
its given columns. However, suppose the matrix were chunked by rows, so that a
Map task is given the hash functions and a set of rows to work on. Design Map
and Reduce functions to exploit map-reduce with data in this form.

[

3.4

34.1

—

3.4 Locality-Sensitive Hashing for Documents 67

3.4

34.1

Locality-Sensitive Hashing for Documents

Even though we can use minhashing to compress large documents into small
signatures and preserve the expected similarity of any pair of documents, it still
may be impossible to find the pairs with greatest similarity efficiently. The reason
is that the number of pairs of documents may be too large, even if there are not
too many documents.

EXAMPLE 3.9 Suppose we have a million documents, and we use signatures of
length 250. Then we use 1000 bytes per document for the signatures, and the
entire data fits in a gigabyte — less than a typical main memory of a laptop.
However, there are (°°2:9%) or half a trillion pairs of documents. If it takes a
microsecond to compute the similarity of two signatures, then it takes almost six
days to compute all the similarities on that laptop.

If our goal is to compute the similarity of every pair, there is nothing we can do
to reduce the work, although parallelism can reduce the elapsed time. However,
often we want only the most similar pairs or all pairs that are above some lower
bound in similarity. If so, then we need to focus our attention only on pairs that
are likely to be similar, without investigating every pair. There is a general theory
of how to provide such focus, called locality-sensitive hashing (LSH) or near-
neighbor search. In this section we shall consider a specific form of LSH, designed
for the particular problem we have been studying: documents, represented by
shingle-sets, then minhashed to short signatures. In Section 3.6 we present the
general theory of locality-sensitive hashing and a number of applications and
related techniques.

LSH for Minhash Signatures

One general approach to LSH is to “hash” items several times, in such a way that
similar items are more likely to be hashed to the same bucket than dissimilar
items are. We then consider any pair that hashed to the same bucket for any
of the hashings to be a candidate pair. We check only the candidate pairs for
similarity. The hope is that most of the dissimilar pairs will never hash to the
same bucket, and therefore will never be checked. Those dissimilar pairs that do
hash to the same bucket are false positives; we hope these will be only a small
fraction of all pairs. We also hope that most of the truly similar pairs will hash
to the same bucket under at least one of the hash functions. Those that do not
are false negatives; we hope these will be only a small fraction of the truly similar
pairs.

If we have minhash signatures for the items, an effective way to choose the
hashings is to divide the signature matrix into b bands consisting of r rows
each. For each band, there is a hash function that takes vectors of r integers
(the portion of one column within that band) and hashes them to some large
number of buckets. We can use the same hash function for all the bands, but we

68

Finding Similar ltems

342

use a separate bucket array for each band, so columns with the same vector in
different bands will not hash to the same bucket.

10002
32:1:29
013050

band 1

band 2

band 3

band 4

Figure 3.6 Dividing a signature matrix into four bands of three rows per band

EXAMPLE 3.10 Figure 3.6 shows part of a signature matrix of 12 rows divided
into four bands of three rows each. The second and fourth of the explicitly
shown columns each have the column vector [0,2,1] in the first band, so they
will definitely hash to the same bucket in the hashing for the first band. Thus,
regardless of what those columns look like in the other three bands, this pair
of columns will be a candidate pair. It is possible that other columns, such as
the first two shown explicitly, will also hash to the same bucket according to
the hashing of the first band. However, since their column vectors are different,
[1,3,0] and [0,2,1], and there are many buckets for each hashing, we expect the
chances of an accidental collision to be very small. We shall normally assume
that two vectors hash to the same bucket if and only if they are identical.

Two columns that do not agree in band 1 have three other chances to become a,
candidate pair; they might be identical in any one of these other bands. However,
observe that the more similar two columns are, the more likely it is that they will
be identical in some band. Thus, intuitively the banding strategy makes similar
columns much more likely to be candidate pairs than dissimilar pairs.

Analysis of the Banding Technique

Suppose we use b bands of r rows each, and suppose that a particular pair of doc-
uments have Jaccard similarity s. Recall from Section 3.3.3 that the probability
the minhash signatures for these documents agree in any one particular row of
the signature matrix is s. We can calculate the probability that these documents
(or rather their signatures) become a candidate pair as follows:

(1) The probability that the signatures agree in all rows of one particular band

is s".

3.4 Locality-Sensitive Hashing for Documents 69

(2) The probability that the signatures do not agree in at least one row of a
particular band is 1 — s".

(3) The probability that the signatures do not agree in all rows of any of the
bands is (1 — s™)®.

(4) The probability that the signatures agree in all the rows of at least one band,
and therefore become a candidate pair, is 1 — (1 — s™)®.

It may not be obvious, but regardless of the chosen constants b and 7, this
function has the form of an S-curve, as suggested in Fig. 3.7. The threshold, that
is, the value of similarity s at which the rise becomes steepest, is a function of
b and r. An approximation to the threshold is (1/b)1/". For example, if b = 16
and r = 4, then the threshold is approximately 1/2, since the 4th root of 16 is 2.

!

Probability
of becoming
a candidate

0 Jaccard similarity 1
—_—
of documents

Figure 3.7 The S-curve

EXAMPLE 3.11 Let us consider the case b = 20 and r = 5. That is, we suppose
we have signatures of length 100, divided into twenty bands of five rows each.
Figure 3.8 tabulates some of the values of the function 1 — (1 — s%)20. Notice
that the threshold, the value of s at which the curve has risen halfway, is just
slightly more than 0.5. Also notice that the curve is not exactly the ideal step
function that jumps from 0 to 1 at the threshold, but the slope of the curve
in the middle is significant. For example, it rises by more than 0.6 going from
s =0.4 to s = 0.6, so the slope in the middle is greater than 3.

For example, at s = 0.8, 1 — (0.8)3 is about 0.328. If you raise this number to
the 20th power, you get about 0.00035. Subtracting this fraction from 1 yields
0.99965. That is, if we consider two documents with 80% similarity, then in any
one band, they have only about a 33% chance of agreeing in all five rows and thus

s

70 Finding Similar Items
skl (T2
2= 5006
3. 047
4 186
S A0
6 802
29T
.8 .9996
Figure 3.8 Values of the S-curve for b=20 and r =5
becoming a candidate pair. However, there are 20 bands and thus 20 chances to
become a candidate. Only roughly one in 3000 pairs that are as high as 80%
similar will fail to become a candidate pair and thus be a false negative.
343 Combining the Techniques

We can now give an approach to finding the set of candidate pairs for similar
documents and then discovering the truly similar documents among them. It
must be emphasized that this approach can produce false negatives — pairs of
similar documents that are not identified as such because they never become
a candidate pair. There will also be false positives — candidate pairs that are
evaluated, but are found not to be sufficiently similar.

(1) Pick a value of k and construct from each document the set of k-shingles.
Optionally, hash the k-shingles to shorter bucket numbers.

(2) Sort the document-shingle pairs to order them by shingle.

(3) Pick a length n for the minhash signatures. Feed the sorted list to the
algorithm of Section 3.3.5 to compute the minhash signatures for all the
documents.

(4) Choose a threshold ¢ that defines how similar documents have to be in order
for them to be regarded as a desired “similar pair.” Pick a number of bands b
and a number of rows 7 such that br = n, and the threshold ¢ is approximately
(1/b)*/7. If avoidance of false negatives is important, you may wish to select
b and r to produce a threshold lower than ¢; if speed is important and you
wish to limit false positives, select b and r to produce a higher threshold.

(5) Construct candidate pairs by applying the LSH technique of Section 3.4.1.

(6) Examine each candidate pair’s signatures and determine whether the fraction
of components in which they agree is at least ¢.

(7) Optionally, if the signatures are sufficiently similar, go to the documents
themselves and check that they are truly similar, rather than documents
that, by luck, had similar signatures.

