Name and Surname: #matricola:

Question #1 [scores 1+2+2] Given the following four documents:

\[D_1 = \text{“it was the best of times”} \]
\[D_2 = \text{“the worst of times”} \]
\[D_3 = \text{“it was the age of wisdom”} \]
\[D_4 = \text{“the age of foolishness”} \]

a) Show the inverted index built on these documents.
b) Show the TF-IDF vectors of these documents by assuming logarithms to the base 2, and by not evaluating the logarithms numerically.
c) Find the document that is most similar to the query \(q = \text{“best age times”} \) by using the dot product (that is, the cosine similarity without normalization).

Question #2 [scores 2+3+2] Given the sorted sequence of integers
\[S = (1, 4, 5, 10, 16, 19, 23) \]

a) Show how to compress the gaps between consecutive integers in \(S \) via the gamma code.
b) Show how to compress \(S \) via the Elias-Fano code.
c) Show how to compress the gaps between consecutive integers in \(S \) via the PForDelta code with base = 1 and \(b = 2 \).

Question #3 [scores 1+3+3] Given the following graph

a) Comment on whether a random walk computed over this graph converges to a single state that is independent of the starting distribution.
b) Compute one step of PageRank by assuming a uniform starting probability distribution and \(\alpha = \frac{1}{2} \).
c) Compute one step of Personalized PageRank with respect to node D by assuming a uniform starting probability distribution and \(\alpha = \frac{1}{2} \).
Question #4 [scores 3+3+1] Consider the WAND algorithm for examining the head of the following four posting lists:

\[
\begin{align*}
 t_1 & \rightarrow 3, 4, 5, 6, 7, 20, 22 \\
 t_2 & \rightarrow 1, 5, 7, 10, 21 \\
 t_3 & \rightarrow 5, 7, 11, 20, 22 \\
 t_4 & \rightarrow 7, 8, 10, 11, 14
\end{align*}
\]

The current threshold is \(\theta = 3.3\), and the upper bounds of the scores in each posting list are: \(ub_1 = 1, ub_2 = 2, ub_3 = 0.5, ub_4 = 1.2\).

a) Which is the candidate docID, and is its full score computed?

b) Suppose instead the algorithm is Blocked-WAND with blocks of size 3 and local upper bounds of the first block in each list equal to \(lb_1 = 1, lb_2 = 1.8, lb_3 = 0.4, lb_4 = 0.8\). Which is the candidate docID, and its full score is computed?

c) Still considering the Blocked-WAND algorithm and the setting of point b) above, which block is discarded to go to the next docID?

Question #5 [scores 2] Describe the cluster pruning approach for approximate top-K retrieval.

Question #6 [scores 2] State which are the scores computed by HITS and comment on them briefly.